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Abstract

Background: Undifferentiated carcinoma with osteoclast-like giant cells (UC-OGC) is an extremely uncommon
pancreatic neoplasm that comprises less than 1% of all exocrine pancreatic tumors. To date, cases and data from
whole-exome sequencing (WES) analysis have been reported by specific studies. We report a case of pancreatic UC-
OGC with a literature review, and provide novel insights into the molecular characteristics of this tumor entity.

Case presentation: A 31-year-old male presented with intermittent abdominal pain for several months, and
positron emission tomography (PET) showed isolated high metabolic nodules during the pancreatic uncinate
process that were likely to be malignant disease. Pathological examination after radical excision revealed UC-OGC
associated with poorly differentiated adenocarcinoma at the head of the pancreas. The disease recurred 7.4 months
after radical surgery. The KRAS p.G12D (c.35G > A) and somatic BRCA2 p.R2896C (c.8686C > T) mutations were
detected by subsequent WES analysis. The patient showed no response to platinum-based systemic chemotherapy,
and his condition quickly worsened. He finally died, with an overall survival of 1 year.

Conclusions: As an extremely uncommon tumor entity, UC-OGC is really a unique variant of conventional
pancreatic ductal adenocarcinoma due to its similarities, as shown by genomic WES analysis. Clinical examination
and molecular analysis by WES could further indicate potential treatment strategies for UC-OGC.

Keywords: Undifferentiated carcinoma with osteoclast-like giant cells, Pancreatic ductal adenocarcinoma, Pancreas,
Case report, Whole exome sequencing

Background
Pancreatic cancer is the thirteenth most malignancy
worldwide [1], with a high mortality that is equal to the
incidence. Pancreatic ductal adenocarcinoma (PDAC), as
the most common pathologic type, is associated with
poor treatment response and poor prognosis. The

reported evidence has revealed that the molecular char-
acteristics of PDAC include alterations in the driver gene
KRAS and the tumor suppressor genes TP53, CDKN2A
and SMAD4 [2–6]. Undifferentiated carcinoma with
osteoclast-like giant cells (UC-OGC), as a variant of ana-
plastic carcinoma of the pancreas, is observed extremely
rarely in clinical practice [7, 8]. Worldwide, sporadic
case reports have indicated that UC-OGC comprises less
than 1% of all exocrine pancreatic tumors [9, 10]. Ana-
lysis of 38 UC-OGC cases demonstrated that it showed
a better clinical course compared with that of
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conventional PDAC [8]. In addition, a few molecular
studies of UC-OGC reported that KRAS mutations most
frequently occurred, which was similar to that observed
in PDAC [11–13]. Additionally, one detailed study re-
ported the molecular features of UC-OGC by perform-
ing whole-exome sequencing (WES) analysis [14], and
all these results implied that pancreatic UC-OGC was
analogous to PDAC. To date, more cohorts of patients
are needed to investigate the pathological and genetic
features of this unique tumor variant. Herein, we report
a case of pancreatic UC-OGC harboring the KRAS
p.G12D mutation and somatic BRCA2 mutation, as de-
tected by WES, in a patient experienced reduced
disease-free survival (DFS) and overall survival (OS).
Furthermore, we provide a literature review of UC-OGC
studies and analyze them to obtain novel insights re-
garding the molecular characteristics of this tumor
entity.

Case presentation
A 31-year-old male with no past medical or family his-
tory of disease presented with intermittent abdominal
pain lasting almost 2 months, and he was admitted to
the local hospital on February 28, 2017. Positron emis-
sion tomography (PET) showed isolated high metabolic
nodules during the pancreatic uncinate process that
were likely to represent malignant disease (Fig.1a, b).

The patient then underwent radical pancreaticoduode-
nectomy on March 9, 2017. Pathological examination
after radical excision showed poorly differentiated ductal
adenocarcinoma associated with UC-OGC at the head of
the pancreas (Fig.2a-d). Immunohistochemistry staining
revealed that the cells were positive for CD68 and CK7,
whereas the cells were negative for vimentin and S-100
(Fig. 2e, f). The tumor was measured to be 3 × 3 × 2 cm
in size and exhibited invasion of the nerves, nearby pan-
creatic tissues, duodenum and the lower part of the
common bile duct. The surgical margins were negative,
and there was no discovery of lymph node metastasis.
The surgical-pathological staging of the tumor was IIA
(T3N0M0) according to the 7th edition of the American
Joint Committee on Cancer (AJCC)/Union for Inter-
national Cancer Control (UICC) TNM staging system.
Adjuvant chemotherapy with gemcitabine and albumin-

bound paclitaxel was administered starting on April 10,
2017 for six cycles, and the toxicity was acceptable. How-
ever, the patient developed a backache 2 months after the
termination of adjuvant chemotherapy. The contrasted
computed tomography (CT) scan performed on Novem-
ber 27, 2017 showed multiple lymph node metastases in
the mesenteric region (Fig. 1c) and peritoneum (Fig. 1d)
with a serum CA199 level > 900 U/ml. Exploratory lapar-
otomy was performed on November 29, 2017, and af-
firmed peritoneal metastasis was confirmed by peritoneal
biopsy. The patient afterwards received systemic

Fig. 1 The PET showed high metabolic nodules at pancreatic uncinated process and inclined to be malignant disease at baseline (a, b). The
contrasted CT scan showed multiple lymphatic metastases in the mesenteric region(c) and peritoneum (d) beyond termination of
adjuvant chemotherapy
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chemotherapy with the FOLFIRINOX regimen (combin-
ation of oxaliplatin, irinotecan, fluorouracil and leucov-
orin) for two cycles. Unfortunately, the serum tumor
marker CA199 level was elevated to 1595U/ml after two
treatment cycles, and the patient’s condition deteriorated
due to obvious myelosuppression and digestive tract tox-
icity caused by the chemotherapeutic drugs. Finally, he
had to suspend chemotherapy and was admitted to our
hospital on January 11, 2018.
WES analysis was performed, and the KRAS p. G12D

(c. 35G > A) and somatic BRCA2 p. R2896C (c. 8686C >
T) mutations were detected in both surgical formalin-
fixed paraffin-embedded (FFPE) tumor tissues and
plasma ctDNA samples. Additionally, WES indicated
that the tumor did not show microsatellite instability
(MSI) and did not present a high tumor mutational bur-
den (TMB). Considering the poor condition of the pa-
tient and the fact that the polyadenosine diphosphate-

ribose polymerase (PARP) inhibitor olaparib was not
available, we administered apatinib combined with tega-
fur/gimeracil/oteracil potassium capsules (S-1) for his
disease. However, the patient’s condition worsened rap-
idly with the occurrence of fever, jaundice and vomiting
after 1 month of treatment with this regimen, and even-
tually he died on March 12, 2018. The disease-free sur-
vival (DFS), which was defined as the time from radical
surgery to disease recurrence, was just 7.4 months. The
overall survival (OS), which was defined as the time be-
tween the primary diagnosis of UC-OGC and death, was
only 12.6 months.

Discussion and conclusion
Undifferentiated carcinoma of the pancreas, is a highly
malignant tumor that tends to exhibit invasion of the
perineum, lymph nodes and blood vessels and is called
“giant cell carcinoma” or “pleomorphic large cell

Fig. 2 Histological features of pancreatic undifferentiated carcinoma with osteoclast-like giant cells (UC-OGC) under 100X (H&E, a). UC-OGC
associated with poorly differentiated ductal adenocarcinoma component under 100X (H&E, b). The UC-OGC composed of anaplastic carcinoma
and intermixed with pleomorphic neoplastic mononuclear cells and multinucleated osteoclast-like giant cells under 200X (H&E, c and d).
Osteoclast-like giant cells of the tumor were stained positive for CD68 (IHC, e). Staining was positive for CK7 diffusely in the PDAC component of
the tumor (IHC, f)
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carcinoma” [15]. Tumors with osteoclast-like giant cells
(OGCs) have been documented in a variety of organs,
including the kidney, breast, thyroid gland, heart, parotid
gland and skin [7, 16–18]. The UC-OGC is composed of
pleomorphic neoplastic mononuclear cells that are and
intermixed with large non-neoplastic multinucleated
giant cells, as observed under microscopy [19], and it is
suggested that UC-OGC is derived from epithelial tu-
mors and the components of vimentin-positive carcin-
oma, which represent the mesenchymal transition of
ductal cells [20, 21]. Based on the pathological features,
the World Health Organization (WHO) had classified
UC-OGC as a unique PDAC variant in 2010 [22].
The OGCs within the background of anaplastic malig-

nant cells in UC-OGC are commonly considered to be
of benign histiocytic origin, which has been supported in
several cases by their immunoreactivity with CD68 [16].
Currently, it is hypothesized that OGC recruitment is a
result of chemotactic factors produced by neoplastic
cells and is indicative of a better prognosis [16]. Notably,
such tumors can be classified as pure UC-OGC if they
are not associated with a distinct neoplasm with a differ-
ent morphology [14]. Luchini et al. [14] reported that
the median OS (mOS) of 16 analyzed UC-OGC patients
was 20 months, and the mOS of patients with pure UC-
OGC was significantly higher than that of patients with
associated PDAC (36 vs. 15 months, P = 0.04). Further-
more, it revealed an UC-OGC associated with PDAC
conferred a five-fold increased risk of death [14], which
was in accordance with the survival data reported by
Muraki et al. [8]. The presence of UC-OGC in our case
was confirmed by CD68 staining in the margin of undif-
ferentiated tumors, and immunoreactivity with CK7
showed the presence of an associated adenocarcinoma
component, which proved that this particular case was
not pure UC-OGC. The 31-year-old male patient in our
case survived for only 1 year, which was similar to the
length of survival previously reported above [8, 14].
WES analysis of 8 UC-OGC patients had revealed that

KRAS oncogenic mutations were identified in all ana-
lyzed cases, which implied that this tumor entity shared
similar genomic features with conventional PDAC [14].
In addition, other previous studies also indicated the
prevalence of KRAS mutations in UC-OGC [11–13, 23].
Based on the WES outcome for the UC-OGC cohort re-
ported by Luchini et al. [14], all variants of KRAS muta-
tions were found in codon 12, including the G12V,
G12D and G12R mutations. In addition, additional som-
atic mutations in the tumor suppressor genes TP53,
CDKN2A and SMAD4 were detected in these UC-OGC
cases, which further indicated that UC-OGC is a unique
phenotype of PDAC due to the fact that these alterations
either commonly appear in PDAC [14]. Additionally,
Luchini et al. found the same SERPINA3 variant

(p.M290L) in a hotspot region in two UC-OGC cases
and suggested that it may be an oncogene that had been
previously reported in squamous cell carcinoma in the
cervix [14]. SERPINA3 encodes α-1-antichymotrypsin,
which inhibits a plasma protease belonging to the serine
protease inhibitor class [24]. Of note, the upregulation
of SERPINA3 is correlated with increases in cancer cell
migration and invasion, and indicated a poor prognosis
for several cancer types [25, 26]. WES analysis also sug-
gested that GLI3 was a driver gene of UC-OGC, as it
was detected in two cases [14]. GLI3, as a target of
microRNAs and transcription factors of the Hedgehog
signalling pathway, is known to be upregulated in mul-
tiple cancers, in which it results in cancerous cell behav-
iour such as anchorage-independent growth,
angiogenesis, proliferation and migration [27]. Except
for the above mutations, it was difficult to interpret the
importance of the other nonsynonymous mutations in
MEGF8, MAGEB4 and TTN detected by WES [14].
Muller et al. reported that the dosage gain in KRAS p.
G12D dosage gain was not only related to early tumor
progression, but also associated with metastasis in
PDAC [28]. Unfortunately, there is currently no highly
selective agent to suppress KRAS-mutated cancer. The
WES analysis of our case indicated that the KRAS p.
G12D mutation functioned as a major driver that re-
sulted in the activation of downstream signalling path-
ways and high-grade disease malignancy. The patient
suffered a pancreatic tumor at a young age and his dis-
ease progressed rapidly within an extremely short time
after the previous radical operation. These results indi-
cated that KRAS mutations in both in UC-OGC and
PDAC result in the activation of oncogenes, which re-
sults in a poor prognosis, and that targeted agents
against KRAS oncogenic mutations are urgently needed.
PDAC has been reported to have an immunosuppres-

sive tumor microenvironment with a high programmed
cell death-ligand 1 (PD-L1) expression, and in turn, the
overexpression of PD-L1 inhibited the cytotoxic effects
of activated T-cells [29]. Several studies have indicated
that all indicated PD-L1 expression in PDAC is associ-
ated with a significantly poorer prognosis compared to
that in patients without PD-L1 expression [29–34].
Luchini et al. investigated the PD-L1 expression patterns
in pancreatic UC-OGC and finally found that PD-L1
was more frequently expressed in cases associated with
PDAC than in cases associated with pure UC-OGC (P =
0.04), and PD-L1-positive UG-OGC was associated with
a three-fold (P = 0.034) higher risk of mortality than PD-
L1-negative UC-OGC [35]. In addition, the mismatch re-
pair (MMR) system plays a crucial role in the repair of
DNA sequence mismatches during replication. Defects
in the MMR system (dMMR) could lead to errors in
DNA replication, resulting in a high-TMB or increased
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MSI [36]. Thus, a high neoantigen load that increases
proinflammatory cytokine levels and the activation of T
cells is accumulated due to somatic mutations and con-
tributes to the immunogenicity of MSI tumors with a
sensitivity to immune checkpoint blockade [37]. Never-
theless, the prevalence of MSI/dMMR in PDAC is likely
to be much lower than that in other gastrointestinal can-
cers, with only a 0–0.8% prevalence rate, as previously
reported [38, 39]. Salem et al. analyzed 870 PDAC cases
and found a low prevalence (1.4%) of high TMB in
PDAC, and the majority of cases had a low TMB in ei-
ther MSI-high or MSI-low patients [40]. A genomic pro-
file analysis with a large sample size including 3594
PDAC cases [6] demonstrated that MSI-high and/or
TMB-high status was detected in only 0.5% of samples
[6]. In addition, KRAS, TP53, CDKN2A and SMAD4
were the most frequently altered genes, and KRAS muta-
tions ranked the first, with a prevalence of 88%. Add-
itionally, alterations of the BRCA and FANC genes,
which encode DNA damage repair proteins, were found
in 14% of PDAC cases [6]. The tumor did not show MSI
and did not present a high-TMB in our case, and the
PD-L1 expression of this case was unknown. Based on
the description given above, the patient associated with
our case had no indication for immunotherapy.
In addition to the common KRAS oncogenic muta-

tions, additional somatic BRCA2 alterations were de-
tected by WES in this case. Pancreatic cancer was
reported to be the third most common cancer associated
with BRCA mutations [41]. Approximately 7% of pa-
tients with pancreatic cancer carried germline mutations
in BRCA1/2, and the frequency of BRCA1/2 mutation
carriers was estimated to be at 4.9 to 26% in familial
pancreatic cancer [42]. To date, the largest reported
PDAC case series involving patients with germline BRCA
mutations showed that the median OS was 27.6 months
[43]. Ashkenazi Jews have been the population with the
highest prevalence of BRCA1/2 mutations in pancreatic
cancer, with approximately 96% of patients having muta-
tions in BRCA1/2 (BRCA1 185delAG, BRCA1 5382insC,
or BRCA2 6174delT), and the BRCA2 6174delT variant
is the most common variant in familial pancreatic cancer
[44]. The PARP inhibitor olaparib had an objective re-
sponse rate (ORR) of 21.7% in heavily pretreated pancre-
atic cancer patients with germline BRCA1/2 mutations
in a phase II study [45]. A randomized phase III study
[46] showed that after first-line platinum-based chemo-
therapy, olaparib functioned as a maintenance therapy in
pancreatic cancer patients with germline BRCA1/2 mu-
tations and significantly prolonged the median PFS com-
pared with that in patients subjected to maintenance
with a placebo (7.4 vs. 3.8 months, P = 0.004).
Advances in pancreatic cancer are lacking, as it is ac-

tually a highly heterogeneous disease resistant to

conventional cytotoxic chemotherapeutic drugs or tar-
geted agents [47]. The chemotherapy regimen of FOL-
FIRINOX (combination of oxaliplatin, irinotecan,
fluorouracil and leucovorin) [48] or gemcitabine plus
albumin-bound paclitaxel [49] is the preferred first-line
recommendation for the treatment of in metastatic
PDAC. Some evidence has also shown that BRCA-defi-
cient cells are more susceptible to platinum than BRCA-
proficient cells [50, 51], which has been supported by
several clinical trials [52, 53]. The new version of the
National Comprehensive Cancer Network (NCCN)
Guidelines had recommended gemcitabine/cisplatin
chemotherapy as one of the first-line regimens for
BRCA1/BRCA2-mutated PDAC [54]. Waddell et al. re-
ported that 4 patients with unstable genomes or a high
BRCA mutational signature burden had robust complete
or partial responses to platinum-based chemotherapy
among 8 PDAC patients who received the same regimen,
while 3 patients without these characteristics did not re-
spond. Subsequent research also indicated that BRCA2-
mutant patient-derived xenografts (PDXs) responded to
cisplatin, and PDXs without mutations in a BRCA path-
way gene failed to respond to cisplatin as well [55]. All
these findings demonstrated that mutations in BRCA
pathway genes or genomic instability had potential im-
plications for the selection of PDAC treatment. In our
case, the patient was a carrier of the somatic BRCA2
mutant (p. R2896C), which has not been characterized
to have known functional consequences. Subsequent
bioinformatics analysis with various prediction software
packages predicted the BRCA2 p. R2896C mutation to
be neutral. The disease in this patient rapidly progressed
after only two cycles of platinum-based chemotherapy,
and treatment with a PARP inhibitor was not possible
owing to the presence of a non-germline BRCA2
mutation.
Based on the mutational landscape of the genomics by

WES, Waddell et al. [55] classified PDAC into four sub-
types based on potential clinical utility according to ex-
ome and copy number variation (CNV) analyses
including stable, locally rearranged, scattered and un-
stable. In the stable subtype, tumor genomes showed
evidence of ≤50 structural variations that were located
randomly throughout the genome. The locally rear-
ranged type, it exhibited at least 50 focal variations on
one or two chromosomes and nearly 1/3 the tumors of
this subtype contained regions of copy number gain that
harbored certain oncogenes. The scattered subtype ex-
hibited nonrandom chromosomal damage and fewer
than 200 structural variations. The unstable subtype ex-
hibited a large number of structural variations (> 200),
and the high level of genomic instability suggested de-
fects in DNA maintenance and potentially showed sensi-
tivity to DNA-damaging agents. In addition, Bailey et al.
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defined pancreatic cancer according to another four sub-
types, including squamous, pancreatic progenitor, im-
munogenic and aberrantly differentiated endocrine
exocrine [5]. These different types are associated with
distinct histopathological characteristics, and each in-
ferred the presence of different mechanisms of the mo-
lecular evolution of pancreatic cancer. To some degree,
the assessment of the subtype can guide accurate thera-
peutic selection for pancreatic cancer. Furthermore, re-
searchers have identified five new susceptibility loci for
pancreatic cancer in the Chinese population to provide
effective markers for the early screening and diagnosis of
this very malignant cancer [56]. In this case, WES ana-
lysis revealed that the CNV in the SOX9 gene gained ap-
proximately 1.11% variarion, whereas the CNV results
for the KRAS and BRCA2 genes were normal. Based on
the mutational landscape of pancreatic cancer illustrated
above, the case in this study deserved to be classified as
the stable subtype owing to the presence of less than 50
structural variation events in the CNV.
In conclusion, although pancreatic UC-OGC is ex-

tremely uncommon and complex, the current evidence
has clarified that it is a unique variant of conventional
PDAC due to the genomic similarities between it and
PDAC revealed by WES analysis. Assessment of the clin-
ical and molecular characteristics by WES would further
provide potential treatment strategies for this tumor
entity.
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