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Abstract

Background: Multiple longitudinal responses together with time-to-event outcome are common in biomedical
studies. There are several instances where the longitudinal responses are correlated with each other and at the same
time each longitudinal response is associated with the survival outcome. The main purpose of this study is to present
and explore a joint modeling approach for multiple correlated longitudinal responses and a survival outcome. The
method will be illustrated using the Jackson Heart Study (JHS), which is one of the largest cardiovascular studies
among African Americans.

Methods: Four longitudinal responses, i.e., total cholesterol (TC), high density lipoprotein (HDL) cholesterol,
triglyceride (TG) and inflammation measured by high-sensitivity C-reactive protein (hsCRP); and time-to-coronary
heart disease (CHD) were considered from the JHS. The repeated lipid and hsCRP measurements from a given subject
overtime are likely correlated with each other and could influence the subject’s risk for CHD. A joint modeling
framework is considered. To deal with the high dimensionality due to the multiple longitudinal profiles, we use a
pairwise bivariate model fitting approach that was developed in the context of multivariate Gaussian random effects
models. The method is further explored through simulations.

Results: The proposed model performed well in terms of bias and relative efficiency. The JHS data analysis showed
that lipid and hsCRP trajectories could exhibit interdependence in their joint evolution and have impact on CHD risk.

Conclusions: We applied a unified and flexible joint modeling approach to analyze multiple correlated longitudinal
responses and survival outcome. The method accounts for the correlation among the longitudinal responses as well
as the association between each longitudinal response and the survival outcome at once. This helps to explore how
the combination of multiple longitudinal trajectories could be related to the survival process.
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Background
Longitudinal data together with time-to-event measure-
ments are common in biomedical studies. In cardio-
vascular researches, for example, as we focus in this
paper, lipid levels, i.e., total cholesterol (TC), low density
lipoprotein (LDL) cholesterol, high density lipoprotein
(HDL) cholesterol and triglyceride (TG) could be mea-
sured repeatedly over time along with time-to-event data
such as time to coronary heart disease (CHD). Abnor-
malities in LDL cholesterol, HDL cholesterol, TC and TG
levels have all been linked to increased risk for CHD.
Furthermore, inflammation measured by high-sensitivity
C-reactive protein (hsCRP) correlates with CHD status.
As people age, bodymass and composition as well as phys-
ical activity levels and diet tend to change which are often
associated with changes in lipid levels.
There is an extensive literature available on separate

analyses of longitudinal measurement data and time-to-
event data including the popular linear mixed effects
model for the former [1, 2], and parametric (Weibull
model or exponential model) or semiparametric (Cox)
proportional hazards model for the latter [3]. However,
separate analyses could be inappropriate in some applica-
tions as health status (for example, risk to CHD) is likely
correlated with longitudinal lipid level trajectory. Fur-
thermore, separate analysis may not adequately address
the underlying research questions. Wang and Taylor [4]
include the longitudinal marker as a time-dependent
covariate in the (proportional hazards) survival model.
It has been shown, however, that including longitudinal
measurements as time-varying covariate may be inappro-
priate as the measurements could be subject to measure-
ment error [5]. Several approaches of joint modeling of
a longitudinal continuous response and a time-to-event
outcome have been available. Tsiatis and Davidian [6] pro-
posed a two-stage joint model in application to longitudi-
nal CD4 count data as surrogate marker to HIV/AIDS sur-
vival whereby a repeated measures random components
model is considered in the first stage for the longitudinal
CD4 count data while a Cox model is employed in the sec-
ond stage for estimating the parameters. Henderson et al.
[7] proposed a flexible joint modelling framework such
that the longitudinal and survival processes are con-
nected via a latent bivariate Gaussian process. A fully
Bayesian version of this approach, implemented via
Markov chain Monte Carlo (MCMC) methods is pre-
sented in Guo and Carlin [8]. Ibrahim et al. [9] applied
such joint modeling and explored why it is needed
in cancer research. A joint model for longitudinal and
survival data with nonparametirc multiplicative random
effects approach has been studied by Ding and Wang
[10].
The majority of the joint models in the literature focus

on a single longitudinal response and a survival outcome.

Little attention has been given to modeling multiple lon-
gitudinal responses and a survival process simultaneously.
Flexible semiparametric multivariate joint model that
relate multiple longitudinal outcomes to a time-to-event
have been proposed [11, 12] with emphasis on the associ-
ation between the longitudinal data and survival outcome.
Such multivariate joint analysis is also needed when one
aims to explore not only the association between an indi-
vidual longitudinal outcome and a survival process but
also the correlation between the multiple longitudinal
responses. In the Jackson Heart Study (JHS), described in
“Methods” section, longitudinal HDL, TC, TG and hsCRP
measurements taken from each subject repeatedly over
time are subject to measurement error, potentially corre-
lated with each other, and at the same time each of these
lipid and hsCRP profiles is likely associated with the sub-
ject’s risk for CHD. It is then useful to assess these features
by studying their association and simultaneous covariate
effects, which can be addressed in joint modelling context.
However, joint modeling of such multivariate longitudinal
responses and a survival outcome poses computational
challenges due to the high dimensionality in the random
effects model.
This paper aims to present a joint modeling approach

for multiple longitudinal responses and a survival data.
To deal with the high dimensionality due to multiple lon-
gitudinal components, a pairwise model fitting approach
that was developed in the context of multivariate Gaussian
random effects is adopted [13].
The rest of the paper is organized as follows. In “Study

data” section, a motivating dataset is described with anal-
ysis reported in “Results” section. “Review of basic mod-
els” section focuses on brief review of models for separate
and joint analysis of a continuous longitudinal response
and a survival outcome. “Multivariate joint model” section
focuses on a joint model for multivariate continuous
longitudinal responses and a time-to-event outcome, fol-
lowed by a likelihood based estimation approach along the
lines of Fieuws and Verbeke [13] in “Estimation” section.
“Simulation” section presents results of a simulation study.
Discussion and concluding statements are given in “Dis-
cussion” and “Conclusion” sections, respectively.

Methods
Study data
The Jackson Heart Study (JHS) is a longitudinal
community-based study that investigates the causes of
cardiovascular disease among African Americans. JHS
participants were recruited from urban and rural areas
from the three counties that make up the Jackson
metropolitan area (Hinds, Madison, and Rankin). The
5,306 enrolled participants received three clinical exami-
nations (Exam 1, 2000-04; Exam 2, 2005-08; Exam 3, 2009-
13) that generated a plethora of longitudinal data includ-
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ing, but not limited to, cardiovascular disease risk factors,
socio-economic information and biochemical analytes. In
addition to the clinic exams, JHS has kept track of the
occurrence of events of interest (i.e. coronary heart dis-
ease, abbreviated as CHD) through adjudicated events.
Details on the design methods and data collection of the
JHS can be obtained from Taylor et al. [14] and Carpenter
et al. [15].
This paper uses data from two sources of JHS: (1)

the longitudinal clinical examinations where sex, dia-
betes status, hypertension status, statin use, body mass
index, inflammation, and lipid levels are extracted from;
and (2) the annual follow-up surveys where Coronary
Heart Disease (CHD) adjudicated events through 2016 are
obtained. We allow for right censoring, i.e., those who
experienced CHD since the baseline year (2000) were
considered as incident cases and those who have died,
withdrew from the study or have not seen CHD until
2016 are treated as censored. The time variable (event or
censoring) begins from the baseline year and we haven’t
assumed truncation as present. These variables are sum-
marized in Table 1 by CHD status across the three mea-
surement occasions where count and percentages are used
for categorical variables and means and SDs for continu-
ous variables. There are some notable highlights. Of the
4232 participants who have lipids and hsCRP measure-
ments available at baseline, 236 (5.6%) experienced CHD
event with a median survival time of 13.8 years. The mean
age at baseline for non-CHD was 53.2 ±12 years while
62.0 ±10 years for those who had CHD. The proportion
of diabetes as well as hypertension is higher in the CHD
incident cases as compared to those without CHD across
all visits. The mean HDL seems to increase over time,
though the magnitude of mean level in non-CHD partic-
ipants appears slightly higher when compared across the
respective visits. The mean TG, however, tends to decline
in both groups and non-CHD participants appear to have

lower values. Incident cases are more likely to be men.
Individual profiles plots of TG, hsCRP, HDL and TC for
a random sample of one hundred participants are shown
in Fig. 1. Clearly, there is evidence of between-subjects
variability both at baseline and over time. On the other
hand, Fig. 2 shows the average profiles plots of TG, hsCRP,
HDL andTC for the full cohort. The average TG trajectory
tends to decline while hsCRP and HDL seem to suggest an
increasing average trend. TC appears to be more or less
stable. A formal statistical test is needed to see the signif-
icance of these comparisons which will be dealt with later
in “Results” section.
The Jackson Heart Study provides a unique opportunity

to study the longitudinal trajectory of lipids and hsCRP
and incident CHD. Therefore, we will assess the asso-
ciation between the longitudinal lipids and hsCRP with
incident CHD as well as the correlation between the
longitudinal lipids and hsCRP measurements in African
American participants.

Review of basic models
In “Linear mixed model for longitudinal data”, we will
briefly review the linear mixed model for continuous lon-
gitudinal data, followed by a basic parametric model for
survival data in “Model for time-to-event data” sections.
“Joint model” section focuses on a joint model for a
longitudinal response and time-to-event outcome.

Linearmixedmodel for longitudinal data
Let yi1, yi2, . . . yini be longitudinal measurements from the
ith subject at times ti1, ti2, . . . tini . The model can be writ-
ten as

yij = x′
1i

(
tij

)
β + z′

1i
(
tij

)
b1i + εij, (1)

where x1i
(
tij

)
are regressors corresponding to unknown

regression coefficients β , b1i are random effects with

Table 1 Participants Characteristics by coronary heart disease status and visit through 2016, Jackson Heart Study

Incident coronary heart disease No incident coronary heart disease

Variables Visit1 Visit2 Visit3 Visit1 Visit2 Visit3

(n=236) (n=82) (n=120) (n=3996) (n=1929) (n=2564)

Men 99 (42.0%) 31 (37.8%) 44 (38.3%) 1417 (35.5%) 640 (33.2%) 883 (34.4%)

Diabetic 93 (39.4%) 32 (39.0%) 47 (39.2%) 676 (16.9%) 447 (23.2%) 678 (26.4%)

Hypertension 196 (83.1%) 73 (89.0%) 111 (92.5%) 2070 (51.8%) 1314 (68.1%) 1882 (73.4%)

Statin 61 (25.9%) 40 (48.8%) 69 (57.5%) 427 (10.7%) 547 (28.4%) 938 (36.6%)

BMI 31.22 (6.8) 31.73 (6.7) 31.04 (7.1) 31.78 (7.2) 32.31 (7.2) 32.31 (7.3)

HDL 50.69 (15.2) 51.64 (15.1) 56.93 (17.6) 52.05 (14.4) 54.67 (15.1) 58.38 (15.8)

TC 205.89 (43.9) 198.79 (49.0) 197.52 (51.3) 199.33 (39.5) 197.04 (40.5) 197.91 (39.2)

TG 127.40 (125.3) 113.12 (96.2) 106.55 (66.1) 104.45 (76.8) 99.23 (89.0) 96.95 (55.8)

hsCRP 0.61 (0.9) 0.84 (1.8) 0.51 (0.7) 0.50 (0.9) 0.55 (0.7) 0.56 (0.9)

The numbers presented are mean (SD) for continuous variables and frequency (percent) for categorical variables
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Fig. 1 Individual profiles plot of triglyceride (TG), high-sensitivity C-reactive protein (hsCRP), high density lipoprotein (HDL) and total cholesterol (TC)
for a random sample of 100 participants



Kassahun-Yimer et al. BMCMedical ResearchMethodology          (2020) 20:294 Page 5 of 13

Fig. 2 Average trajectory of triglyceride (TG), high-sensitivity C-reactive protein (hsCRP), high density lipoprotein (HDL) and total cholesterol (TC) for
all participants
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design matrix z1
(
tij

)
, and εi are measurement errors.

The subject-specific random effects b1i and measurement
error εi are independent and assumed to follow normal
distribution, i.e., b1i ∼ N(0,D), and εi ∼ N(0,�i).
Details on linear mixed models can be found in Laird and
Ware [1].

Model for time-to-event data
Suppose si denotes the survival time for subject i, i =
1, 2, . . . , n. The event of interest may not be observed for
some of the subjects until the end of the follow-up period
and hence their event times are right censored. Let ci be
the censoring time for subject i. For an indicator function
δi = I(si ≤ ci), it follows that, δi = 0 if the survival time
for subject i is right censored and δi = 1 otherwise. For
subject i the observed time-to-event data are (ti, δi) where
ti = min(si, ci), i = 1, 2 . . . , n.
Weibull and exponential models are commonly used

parameteric models in survival data analysis. In a Weibull
model the density for the survival time for the ith subject
is given by

f (ti) = αtiα−1exp
(
λi − exp(λi)tiα

)
, (2)

α > 0, λi can be linked with covariates as λi = x2iξ ,
where x2i is the vector of covariates corresponding to the
ith observation and ξ is a vector of regression coefficients.
The Weibull model in (2) reduces to the exponential
model when α = 1.

Joint model
The longitudinal response in “Linearmixedmodel for lon-
gitudinal data” and survival process in “Model for time–
to-event data” sections can be correlated with each other.
One possible route to study this association is through
joint modeling, where the linear mixed model in (1) is
linked with the survival model in (2) through shared
random effects.
Assuming a linear mixed effects model for the longi-

tudinal part and a Weibull model for the survival part,
the joint distribution of the longitudinal response and
the time-to-event outcome conditional on the random
effects is:

fi
(
yij, ti|b1i, b2i,β , ξ , θ

)

= 1
(2π)

ni
2 |�i| 12

e
{
− 1

2 (yi−x′
1iβ−z′

1ib1i)
′
�i−1(yi−x′

1iβ−z′
1ib1i)

}

×
[
αtiα−1ex

′
2iξ+b2i

]δi
e−tiαex

′
2iξ+b2i ,

where b2i = θb1i, b1i and b2i are latent zero-mean bivari-
ate Gaussian processes corresponding to the longitudi-
nal measurements and events, θ is vector of association
parameters, and the rest of the quantities are as defined
in “Linear mixed model for longitudinal data” and “Model
for time-to-event data” sections. For random intercepts

b0i and random slopes b1i, for example, one possible
model could be

z′
1ib1i = b0i + b1itij,

b2i = θ1b0i + θ2b1i,

where θ1 and θ2 measure the association between the two
submodels induced by the random intercepts and ran-
dom slopes, respectively. Other ways of parametrization
for the association of the two submodels can also be used
as well [7]. Furthermore, b1i = (b0i, b1i) is assumed to
follow bivariate normal distribution, possibly correlated,
with mean 0 and variance-covariance matrix D given by

D =
(

d20 ρd0d1
ρd0d1 d21

)
, (3)

where ρ is the correlation between the random intercepts
and random slopes.

Multivariate joint model
The joint mode in “Joint model” section can be extended
to a multivariate setting where k longitudinal continuous
responses can be simultaneously modeled with time-to-
event data. A multivariate joint model formulation of the
k longitudinal responses and the time-to-event outcome
follows from combining each single joint model of the
longitudinal continuous response and the time-to-event
outcome via random effects that are assumed to follow
multivariate normal distribution. The general expression
for the resulting multivariate joint model can be given by

f =
∫

· · ·
∫ k∏


=1
f (y
, t)|b�)φ(b1, . . . , bk)db1 . . . dbk ,

(4)

where f (y
, t) is the single joint model corresponding
to the 
th continuous response and the time-to-event
data as described in “Joint model” section and φ is a
k-dimensional Gaussian density for the random effects
(b1, . . . , bk), such that, for subject i, each b�i is shared
between the linear mixed submodel corresponding to
the 
th longitudinal response and the time-to-event sub-
model through b1i and b2i, respectively, as shown in “Joint
model” section. The likelihood contribution of subject
i is li(Y1i, . . . ,Yki, ti|�), where � is the vector of fixed
effect and covariance parameters in the joint model. The
full multivariate joint model in (4) is complex due to the
high dimensionality in the random effects and inference
for � is not feasible in the standard statistical softwares.
An estimation approach to overcome this computational
challenge and reduce the dimensionality along the lines of
Fieuws and Verbeke [13] will be the topic of “Estimation”
section.
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Estimation
We employ the pairwise bivariate fitting to reduce the
high dimensionality of (4) and estimate the model param-
eters in � [13]. By pairwise fitting we mean that bivari-
ate joint models of all possible pairwise combinations
of the longitudinal continuous responses and a time-to-
event data are fitted and duplicate parameter estimates
are averaged across all pairs. Consider k random-intercept
models that are specific to k single joint models where
each joint model represents a longitudinal continuous
responses and time-to-event outcome as described in
“Joint model” section. The possible number of pairs out
of the k continuous responses is P = k(k−1)

2 . For subject
i, consider a vector of the rth and sth bivariate longitu-
dinal responses and the time-to-event outcome

(
Yri

′, ti
)

and
(
Ysi

′, ti
)
, respectively, where Yri = (

yri1, . . . , yrinri
)
and

Ysi = (
ysi1, . . . , ysinsi

)
, r = 1, . . . , k − 1, s = r + 1, . . . , k.

We assume that (Yri, ti) and (Ysi, ti) are conditionally inde-
pendent given bi = (bri, bsi)′, where bi ∼ MVN(0,D)

is vector of random effects corresponding to the rth and
sth bivariate joint models with mean 0 and covariance
matrix D.
The likelihood to be maximized corresponding to the

rth and sth bivariate joint model of two longitudinal con-
tinuous responses the time-to-event data takes the form

N∏

i=1

∫ ∫
⎧
⎨

⎩

nri∏

j=1
f
(
yrij, ti|bri

)
⎫
⎬

⎭

×
⎧
⎨

⎩

nsi∏

j=1
f
(
ysij, ti|bsi

)
⎫
⎬

⎭
φ (bri, bsi) dbridbsi,

(5)

where f and φ are as defined in (4) andN is the total num-
ber of subjects. Fitting these bivariate models is computa-
tionally feasible as there are only two correlated random
effects. The loglikelihood across all possible pairs can be
given as

∑P
p=1 l

(
Yp|�′

p

)
, where p = 1, . . . ,P, and �

′
p is

the vector of parameters corresponding to the pth bivari-
ate joint model. All pair-specific parameter vectors �

′
p

can be combined and the so resulting vector of param-
eters is denoted by �

′ . Assuming that �̂
′
p maximizes

l
(
Yp|�′

p

)
, �̂

′ would maximize l
(
�

′). An estimate for
each parameter in � of the full multivariate joint model
defined in “Multivariate joint model” section is obtained
by averaging all pair-specific estimates in �̂

′ . The resulting
averages are asymptotically normal. However, the stan-
dard errors can’t be directly computed by simple averaging
of their corresponding pair-specific estimates. Details on
the averaging of pair specific estimates and expression of
the asymptotic normality of �

′ follows in a similar way
as the multivariate linear mixed model and multivariate
semi-continuous data and can be obtained in Fieuws and

Verbeke [13]. This approach can be well generalized to
random intercepts and random slopes model of course
with additional computational complexity. Each bivariate
pair consists of a longitudinal response and a time-to-
event outcome as shown in (5) does not have a closed
form solution and is fitted numerically with the SAS pro-
cedure NLMIXED using adaptive Gaussian quadrature
based on quasi-Newton optimization technique. Other
flexible non-linear optimizers can be employed as well. A
SAS macro has been used to fit the P bivariate models and
combine the results.

Results
We analyze the JHS data introduced in “Study data”
section. A multivariate joint model of “Multivariate joint
model” section will be fitted for the longitudinal mea-
surements of high density lipoprotein (HDL) cholesterol,
triglyceride (TG), total cholesterol (TC), high-sensitivity
C-reactive protein (hsCRP), and time to coronary heart
disease (CHD) to capture the association between each
of these longitudinal response and the time-to-CHD as
well as the correlation between HDL, TG, TC and hsCRP.
Log-transformation was applied to the four longitudi-
nal responses based on earlier exploratory analysis. Let
y
ij, 
 = 1, . . . , 4 be the 
th log-transformed continuous
response for subject i at time j and we model the mean
μ
ij as

μ
ij = β
0 + β
1Ai + β
2Mi + β
3Dij + β
4Hij

+ β
5Tij + β
6BMIij + β
7STij + β
8SMi + b
i,

where Ai baseline age for subject i, Mi a gender indicator
for subject i coded as (1: male; 0: female), Dij is a dia-
betic status indicator for subject i at time j coded as (1:
diabetic; 0: non-diabetic),Hij is a hypertension status indi-
cator for subject i at time j coded as (1: hypertensive; 0:
non-hypertensive); Tij is the j measurement time for sub-
ject i in years from baseline; BMIij is body mass index for
subject i at time j, STij is a statin medication indictor for
subject i at time j coded as (1: medication; 0: no medi-
cation), SMi is current smoking indicator for subject i at
baseline coded as (1: smoker; 0: non-smoker) and b
i are
subject specific random intercepts for the 
th continuous
response.
Turning to the time-to-CHD, we consider an exponen-

tial submodel in each joint model with the 
th continuous
response, and further the hazard at time t is modeled as,

λ
i(t) = exp (ξ
0 + ξ
1Ai + ξ
2Mi + ξ
3Di + ξ
4Hi

+ξ
5BMIi + ξ
6STi + ξ
7SMi + θ
b
i) ,

where θ
 captures the association between the linear
mixed submodel and the exponential submodel induced
by the random effects. The correlation between any two
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pairs of longitudinal responses is captured by the correla-
tion of the respective random intercepts.
Six pairs of bivariate models were fitted for the four

responses using the pairwise fitting approach outlined in
“Estimation” section. Results are shown in Table 2. Clearly,
the estimated association parameter of TG and CHD is
significant, suggesting evidence of strong negative asso-
ciation between the two submodels (θ̂ = −0.4473, p =
0.009), and this implies that high level of TG is asso-
ciated with poor survival or shorter time-to-CHD. The
same is true for the association between hsCRP and CHD
(θ̂ = −0.2504, p = 0.005). On the contrary, the esti-
mate corresponding to HDL (θ̂ = 1.0472, p = 0.002)
is positive and significant suggesting high HDL level is
associated with better survival. On the other hand, the

association parameter estimate corresponding to TC pro-
vides no evidence of association between total cholestol
and CHD (p = 0.151). Consider testing hypotheses about
the four association parameters jointly. One can employ a
multivariate Wald test for the hypothesis H0 = L(θ) = 0,
where L is a 4×4 identity matrix corresponding to θ̂
,

 = 1, . . . , 4. Thus, W 2 =

(
L̂θ

)′ (
LCOV(̂θ)L′)−1 (

L̂θ
) ∼

χ2
(4), where COV

(̂
θ
)
is the 4×4 covariance matrix of θ̂

obtained from fitting the multivariate joint model. This
test suggests joint significance of the association between
the four longitudinal responses and CHD (χ2 = 18.72,
p = 0.0009). Another important output of this analy-
sis is estimated correlation of the random intercepts. In
this regard, we observe evidence of negative correlation
between TG and HDL (−0.5026) as well as HDL and

Table 2 Parameter estimates and standard errors of multivariate joint modelling of Triglycerides (TG) with CHD, High density
lipoprotein (HDL) with CHD, high-sensitivity C-reactive protein (hsCRP) with CHD, and Total cholesterol (TC) with CHD

TG HDL hsCRP TC

Effect Parameter Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE)

Longitudinal

Intercept β0 3.7360 (0.0501) 4.1408 (0.0276) -3.7758 (0.1158) 5.1797 (0.0194)

Age β1 0.0054 (0.0006) 0.0022 (0.0003) 0.0058 (0.0003) 0.0025 (0.0003)

Men β2 0.1343 (0.0155) -0.2002 (0.0077) -0.3700 (0.0322) -0.0272 (0.0062)

Diabetes β3 0.1018 (0.0140) -0.0378 (0.0064) 0.0537 (0.0281) -0.0172 (0.0059)

Hypertension β4 0.0663 (0.0113) 0.0057 (0.0051) 0.1077 (0.0246) 0.0128 (0.0047)

Time β5 -0.0047 (0.0010) 0.0138 (0.0004) 0.0226 (0.0023) 0.0028 (0.0004)

BMI β6 0.0115 (0.0010) -0.0085 (0.0006) 0.0666 (0.0024) -0.0005 (0.0004)

Statin β7 -0.0952 (0.0118) 0.0131 (0.0052) -0.2588 (0.0258) -0.1427 (0.0057)

Smoking β8 0.1569 (0.0238) -0.0209 (0.0118) 0.3624 (0.0530) -0.0153 (0.0095)

Std dev. error σ 0.2812 (0.0037) 0.1200 (0.0017) 0.6229 (0.0129) 0.1206 (0.0018)

Survival

Intercept ξ0 9.5160 (0.5302) 9.4283 (0.5296) 9.4111 (0.5241) 9.3920 (0.5116)

Age ξ1 -0.0542 (0.0063) -0.0525 (0.0063) -0.0528 (0.0063) -0.0530 (0.0063)

Men ξ2 -0.4067 (0.1439) -0.3893 (0.1439) -0.3568 (0.1439) -0.3820 (0.1416)

Diabetes ξ3 -0.7477 (0.1396) -0.7493 (0.1394) -0.7683 (0.1397) -0.7583 (0.1399)

Hypertension ξ4 -0.9204 (0.1922) -0.9219 (0.1911) -0.9100 (0.1911) -0.9415 (0.1917)

BMI ξ5 0.0082 (0.0112) 0.0081 (0.0112) 0.0086 (0.0109) 0.0098 (0.0108)

Statin ξ6 -0.3312 (0.1557) -0.3830 (0.1530) -0.3844 (0.1527) -0.3360 (0.1563)

Smoking ξ7 -0.7003 (0.1807) -0.7022 (0.1792) -0.6941 (0.1812) -0.7026 (0.1815)

Std dev. RE d 0.4061 (0.0070) 0.2153 (0.0029) 0.8643 (0.0141) 0.1598 (0.0027)

Assoc. θ -0.4473 (0.1705) 1.0472 (0.3404) -0.2504 (0.0884) -0.7682 (0.5354)

Correlation

TG 1 -0.5026 (0.0159) 0.1478 (0.0190) 0.4390 (0.0185)

HDL 1 -0.1112 (0.0195) 0.2235 (0.0194)

hsCRP 1 0.0268 (0.0215)

TC 1
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hsCRP (−0.1112), while positive correlation between TG
and TC (0.4390), TG and hsCRP (0.1478), and HDL and
TC (0.2235). However, there is no evidence of significant
correlation between TC and hsCRP. The estimated stan-
dard deviation of the random effects are significant across
all the responses, implying the presence of considerable
between-subjects variability that needs to be appropri-
ately accounted for. All the estimates corresponding to
time in the linear mixed submodel

(
β̂5

)
are significant,

i.e., negative time effect for TG, but positive effect for
HDL, TC and hsCRP, and this is inline with what has
been observed from the average profiles plot in Fig. 2.
Those who are in statin medication have lower TG, TC
and hsCRP, while no signifcant assocation was observed
between HDL and statin use. Smokers tend to have ele-
vated mean TG and hsCRP as compared to non-smokers.
Those who are diabetic have higher TG and hsCRP but
lower HDL and TC. The estimates of covariate effects
in the survival submodel are quite similar except some
slight variation depending on which of the longitudinal
responses of TG, HDL, TC or hsCRP was modeled in the
linear mixed submodel, and this is expected as these lipid
and hsCRP measures have different effects on CHD sur-
vival as demonstrated by the differences in the estimates of
the association parameter (θ) as well as the random inter-
cept standard deviations (d). CHD survival is estimated
to be shorter among hypertensive patients. For example,
looking the parameter estimate of HTN

(
ξ̂4

)
correspond

to TG, we observe that those who are hypertensive have
about 60%

(
1 − e−0.9204 = 1 − 0.3984

)
shorter survival

time. Similarly, smokers, diabetic patients, male gender
and older age have shorter survival or higher risk to CHD.
But no significant association was observed between BMI
and CHD survival. Likely due to the smaller number
of repeated measurements per subject, incorporating an
additional random slope term and association parameter
θ2 as described in “‘Joint model” section did not improve
model fit. This implies that the subject specific ran-
dom intercepts are sufficient to describe the longitudinal
aspect in these data.
For comparisons purpose, separate joint model of “Joint

model” section were fitted. The results are summarized
in Table 3. When compared with their respective multi-
variate joint model estimates of Table 2, we notice slight
differences in the association parameters estimates cor-
responding to TG and hsCRP as well as the intercept
terms of the survival component. The rest of the parame-
ter estimates appear to be similar. Furthermore, we fitted
an exponential model for time-to-CHD by including only
baseline values of lipids separately while adjusting for the
same covariates of the survival submodel considered so
far. The estimated regression coefficients (standard error)
corresponding to baseline TG, HDL, hsCRP and TC are

−0.2354 (0.0876), 0.6206 (0.1834), −0.1674 (0.0421), and
−0.5710 (0.2344), respectively. Comparing these results
with the association parameter estimates of joint multi-
variate model in Table 2, we clearly observe a remarkable
difference in modeling the longitudinal trajectories versus
the baseline measurements of lipids. We will explore this
further in “Simulation” section with simulation.

Simulation
In this section, we report on a simulation study set up to
examine the performance of the pairwise bivariate fitting
in joint modeling of multiple longitudinal measurements
and a time-to-event data. The estimates from the pairwise
bivariate fitting will be compared with the full likelihood
multivariate joint model in terms of bias and relative
efficiency.
We randomly generated 1000 data sets for three cor-

related longitudinal responses y
ij and a time-to-event
outcome ti from the multivariate joint model of “Multi
variate joint model” section for 1000 subject at 7 time
points. The 
th longitudinal data were generated as y
ij =
β
0 +β
1timeij +β
2malei +b
i + ε
ij, i = 1, . . . , 1000; j =
0, . . . , 6; 
 = 1, 2, 3. Similarly, the time-to-event data cor-
responding to the y
ij is generated from Weibull (α
,μ
i),
whereμ
i = ξ
0+ξ
1malei+θ
b
i, and the true parameter
values for the three responses were β1 = (3.7,−1, 0.5)′ ,
β2 = (4, 1,−0.5)′ , β3 = (5, 1,−0.5)′ , ξ 
 = ξ = (5,−0.5),
vector of association parameters of the longitudinal and
time-to-event data θ = (θ1, θ2, θ3) = (−0.8, 0.6,−0.5),
α
 = α = 0.5, the residual errors εij
 are assumed inde-
pendent, each generated from normal distribution with
mean 0 and standard deviations 0.8, 1 and 1. The random
intercepts (b1i, b2i, b3i) are assumed correlated and gen-
erated from multivariate normal distribution with mean
0, standard deviations 0.7, 0.5, and 0.5, and correlations:
ρ12 = −0.5, ρ13 = 0.6 and ρ13 = 0.3.
The simulated data were analyzed by the multivariate

joint model using pairwise bivariate fitting and full like-
lihood trivariate joint model. All the 1000 simulations
converged in the pairwise fitting while 985 simulations do
so in the full trivariate model, i.e., nearly 1.5% failed to
converge in the latter. For comparison purposes, results of
the 985 successful simulations of the full multivariate joint
model and the same number of simulations from the pair-
wise fitting, based on simulation ID number, were used.
The average estimated values from the pairwise bivari-
ate fitting (MeanP) and full trivariate joint model (MeanF )
are summarized in Table 4. All of the mean estimates
from the pairwise fitting are close to the true values and
nearly unbiased for the proposed approach. Furthermore,
as shown in Table 5, theMonte Carlo standard errors from
the pairwise fitting (MC.SEP) are close to those from the
full trivariate joint model (MC.SEF ) with their ratios range
from 0.997 to 1.056, and this suggests that no considerable
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Table 3 Parameter estimates and standard errors of univariate joint modelling of Triglycerides (TG) with CHD, High density lipoprotein
(HDL) with CHD, high-sensitivity C-reactive protein (hsCRP) with CHD, and Total cholesterol (TC) with CHD

TG HDL hsCRP TC

Effect Parameter Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE)

Longitudinal

Intercept β0 3.7495 (0.0476) 4.1341 (0.0235) -3.7712 (0.1023) 5.1841 (0.0192)

Age β1 0.0053 (0.0006) 0.0022 (0.0003) 0.0059 (0.0013) 0.0025 (0.0002)

Men β2 0.1334 (0.0150) -0.1998 (0.0077) -0.3733 (0.0322) -0.0275 (0.0060)

Diabetes β3 0.1030 (0.0131) -0.0398 (0.0060) 0.0549 (0.0285) -0.0159 (0.0054)

Hypertension β4 0.0660 (0.0112) 0.0045 (0.0051) 0.1083 (0.0245) 0.0135 (0.0047)

Time β5 -0.0048 (0.0010) 0.0139 (0.0004) 0.0224 (0.0022) 0.0027 (0.0004)

BMI β6 0.0113 (0.0009) -0.0083 (0.0004) 0.0664 (0.0020) -0.0006 (0.0004)

Statin β7 -0.0880 (0.0112) 0.0125 (0.0049) -0.2526 (0.0244) -0.1418 (0.0048)

Smoking β8 0.1570 (0.0218) -0.0206 (0.0111) 0.3516 (0.0469) -0.0155 (0.0087)

Std dev. error σ 0.2814 (0.0029) 0.1200 (0.0012) 0.6231 (0.0065) 0.1207 (0.0013)

Survival

Intercept ξ0 9.0594 (0.5993) 9.0681 (0.5947) 8.9882 (0.5899) 9.2058 (0.5926)

Age ξ1 -0.0504 (0.0066) -0.0496 (0.0066) -0.0500 (0.0066) -0.0515 (0.0066)

Men ξ2 -0.3857 (0.1386) -0.3534 (0.1382) -0.3949 (0.1382) -0.3633 (0.1384)

Diabetes ξ3 -0.7587 (0.1430) -0.7890 (0.1421) -0.7463 (0.1429) -0.7688 (0.1426)

Hypertension ξ4 -0.9215(0.1828) -0.9264(0.1834) -0.8656(0.1814) -0.9324(0.1834)

BMI ξ5 0.0147 (0.0113) 0.0136 (0.0113) 0.0132 (0.0112) 0.0122 (0.0111)

Statin ξ6 -0.3333 (0.1570) -0.3864 (0.1548) -0.3430 (0.1566) -0.3192 (0.1586)

Smoking ξ7 -0.6739 (0.1793) -0.6862 (0.1791) -0.2003 (0.2080) -0.7033 (0.1792)

Std dev. RE d 0.4052 (0.0058) 0.2151 (0.0028) 0.8639 (0.0124) 0.1595 (0.0024)

Assoc. θ -0.3980 (0.1736) 0.9992 (0.3273) -0.3328 (0.0874) -0.7620 (0.4817)

Table 4 Summary of simulation with pairwise fitting (MeanP) and full multivariate joint model (MeanF )

Response 1 (Y1) Response 2 (Y2) Response 3 (Y3)

Parameter True MeanP MeanF True MeanP MeanF True MeanP MeanF
β0 3.7 3.7000 3.7011 4 3.9998 3.9999 5 4.9987 5.0004

β1 -1 -1.0000 -1.0000 1 1.0000 0.9999 1 1.0002 1.0002

β2 0.5 0.5003 0.4980 -0.5 -0.4985 -0.4990 -0.5 -0.4978 -0.5011

ξ0 5 5.0137 5.0087 5 5.0111 5.0048 5 5.0096 4.9980

ξ1 -0.5 -0.5003 -0.4996 -0.5 -0.4988 -0.5006 -0.5 -0.5064 -0.4920

σ 0.8 0.8000 0.8001 1 1.0000 0.9997 1 1.0002 1.0002

d 0.7 0.6987 0.6985 0.5 0.4995 0.4995 0.5 0.4987 0.4988

α 0.5 0.5005 0.5009 0.5 0.5005 0.5012 0.5 0.5011 0.5014

θ -0.8 -0.8046 -0.8333 0.6 0.6182 0.6054 -0.5 -0.4936 -0.5031

ρ12 -0.5 -0.5005 -0.5002

ρ13 0.6 0.6020 0.6018

ρ23 0.3 0.2999 0.3000
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Table 5 Monte-Carlo standard error with pariwise fitting (MC.SEP) and full multivariate joint model (MC.SEF )

Response 1 (Y1) Response 2 (Y2) Response 3 (Y3)

Parameter MC.SEP MC.SEF MC.SEP MC.SEF MC.SEP MC.SEF

β0 0.0369 0.0370 0.0332 0.0333 0.0332 0.0333

β1 0.0048 0.0048 0.0060 0.0060 0.0060 0.0060

β2 0.0482 0.0482 0.0396 0.0396 0.0396 0.0396

ξ0 0.1312 0.1313 0.1294 0.1291 0.1289 0.1287

ξ1 0.1837 0.1836 0.1812 0.1805 0.1804 0.1800

σ 0.0073 0.0073 0.0091 0.0091 0.0091 0.0091

d 0.0186 0.0186 0.0178 0.0178 0.0178 0.0178

α 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176

θ 0.1412 0.1398 0.2251 0.2145 0.2229 0.2111

ρ12 0.0359 0.0359

ρ13 0.0328 0.0328

ρ23 0.0472 0.0472

efficiency loss of the pairwise bivariate approach relative
to the full likelihood multivariate model.
Furthermore, the simulated data were analyzed by

Weibull model of “Model for time-to-event data” section
to investigate the impact of omitting the longitudinal
aspect as well as the correlation between the longitudi-
nal responses. This was achieved by including only basline
measurements of the longitudinal responses as covariates
in the regression model for the time-o-event outcome.
Three separate models were fitted as Weibull(α
,μ
i),
where μ
i = ξ
0 + ξ
1malei + θ
y
i, y
i is baseline values
for the longitudinal response y
ij and the rest of the quan-
tizes remain defined earlier. The results are summarized
in Table 6. Clearly, the impact of taking just the baseline
values of y
i and ignoring the longitudinal trajectories is
remarkable. This can be clearly observed from the con-
siderable bias of the regression coefficients including the
association parameter θ .

Discussion
The method has been used to jointly analyze four mul-
tivariate longitudinal responses and a time-to-event out-
come from a cardiovascular study on African Americans.
The data analysis showed inverse relationship between
HDL cholesterol and incidence of coronary heart disease,

while elevated triglyceride level and high-sensitivity C-
reactive protein are associated with increased risk for
CHD. Duncan et al. [16] who studied association between
longitudinal lipid trajectories and atherosclerotic cardio-
vascular disease (ASCVD) including CHD reported a sim-
ilar finding on the association of HDL cholesterol and
ASCVD. This is inline with Wilikins et al. [17] and Skret-
tebegr et al. [18]. While Duncan’s investigation did not
find a significant association between triglyceride and
ASCVD, we observe an association of triglyceride with
CHD which is consistent with Sarwar et al. [19]. This is
likely because in Ducan’s study ASCVDE includes CHD,
stroke, or transient ischemic attack, and intermittent clau-
diction while the present study and Sarwar’s investigation
focus on CHD. Jeong et al. [20] reported a similar finding
on the association of triglyceride and CHD but reported a
significant association between total cholesterol and CHD
which is not the case for total cholesterol in the current
study. This could be attributed to the fact that Jeong et al.
[20] examined young adults (aged 20-39 years) while JHS
participants are relatively older.
Our simulation study suggest that bivariate fitting of

such multivariate joint model yields unbiased estimates
which are as nearly efficient as the full likelihood model.
These results are inline with the performance of the

Table 6 Summary of simulation with Weibull model

Response 1 (Y1) Response 2 (Y2) Response 3 (Y3)

Parameter True Mean True Mean True Mean

ξ0 5 6.3444 5 4.5521 5 5.5113

ξ1 -0.5 -0.3247 -0.5 -0.4388 -0.5 -0.5447

α 0.5 0.4888 0.5 0.4968 0.5 0.4978

θ -0.8 -0.3531 0.6 0.1169 -0.5 -0.1004
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pairwise bivariate fitting in the context of multivariate
Gaussian longitudinal data as shown in Fieuws and Ver-
beke [13] and of semi-continuous longitudinal data given
in Kassahun-Yimer et al. [21]. Pairwise bivariate fitting is
approximately unbiased in missing completely at random
(MCAR) and missing at random (MAR) when outcome-
specific parameters are considered, but these results may
not necessarily be generalized to all missing data problems
[21]. Details on missing data mechanisms can be obtained
in Little and Rubin [22]. Alison [23] presented a survey
of methods to handle missing data and indicated that
maximum likelihood based inference for handling miss-
ing data have nearly optimal statistical properties under
MAR. Ding and Wang [10], however, showed that in joint
modeling of univariate longitudinal response and time-to-
event modeling, informative dropout on the longitudinal
component could result in serious bias. Multiple impu-
tation is also an attractive approach in handling missing
data in some applications despite the several questions
posed in relation to the distributional choices, number
of imputations and iterations and prior knowledge about
the missingness pattern [22, 23]. Fieuws and Verbeke [13]
pointed out efficiency loss can be present when some of
the parameters are shared by a set of outcomes. An addi-
tional simulation conducted to investigate the impact of
taking just the baseline values of longitudinal response
and including as covariates in survival regression indi-
cated that parameter estimates could be severely biased.
This is inline with earlier simulation studies. For exam-
ple, Henderson et al. [7] and Ibrahim et al. [9] pointed
out that severe bias could occur for some parameter esti-
mates when there is ignored latent association between
the time-to-event and longitudinal data.
Apart from several advantages, our proposed approach

has also limitations. First, right censoring is assumed for
the time-to-event outcome, though other mechanisms of
censoring could also be operating in practice. Second, we
assumed the link between the longitudinal and the sur-
vival submodels is constant over time. Third, earlier sim-
ulations suggest that pairwise bivariate fitting is approxi-
mately unbiased in MCAR and MAR but this may not be
the case for all longitudinal data with missingness. Hence,
exploring the proposed approach in various missing data
mechanisms and patters together with appropriate model
diagnostic tools is a useful area of future work.

Conclusion
In this paper, we have presented and studied a multi-
variate joint model for multiple longitudinal Gaussian
responses and a time-to-event outcome which follows
from combining each single joint model of a longitudinal
continuous response and the time-to-event outcome via
random effects whereby a linear mixed submodel is used
for the longitudinal continuous part while a time-to-event

submodel is considered for the survival part. The model
was illustrated using the Jackson Heart Study. The associ-
ation between lipid levels and CHD risk obtained from the
joint model that takes into account the longitudinal lipid
trajectories is substantially higher than that estimated
using the baseline lipid values only. The Weibull model
(exponential model as its special case) is most common
for time-to-event data due to its flexibility, but alterna-
tive distributions, such as, the log-normal, log-logistic and
gamma could provide better fit to a particular dataset. The
choice of one distribution from the other could be based
on exploratory graphical tools or formal statistical tests.
The pairwise bivariate model fitting approach employed
for the Weibull model can be well extended to any other
probability density function in the survival submodel.
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