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Nothing wrong about change: the
adequate choice of the dependent variable
and design in prediction of cognitive
training success
André Mattes1† and Mandy Roheger2*†

Abstract

Background: Even though investigating predictors of intervention success (e.g Cognitive Training, CT) is gaining
more and more interest in the light of an individualized medicine, results on specific predictors of intervention
success in the overall field are mixed and inconsistent due to different and sometimes inappropriate statistical
methods used. Therefore, the present paper gives a guidance on the appropriate use of multiple regression
analyses to identify predictors of CT and similar non-pharmacological interventions.

Methods: We simulated data based on a predefined true model and ran a series of different analyses to evaluate
their performance in retrieving the true model coefficients. The true model consisted of a 2 (between: experimental
vs. control group) × 2 (within: pre- vs. post-treatment) design with two continuous predictors, one of which
predicted the success in the intervention group and the other did not. In analyzing the data, we considered four
commonly used dependent variables (post-test score, absolute change score, relative change score, residual score),
five regression models, eight sample sizes, and four levels of reliability.

Results: Our results indicated that a regression model including the investigated predictor, Group (experimental vs.
control), pre-test score, and the interaction between the investigated predictor and the Group as predictors, and
the absolute change score as the dependent variable seemed most convenient for the given experimental design.
Although the pre-test score should be included as a predictor in the regression model for reasons of statistical
power, its coefficient should not be interpreted because even if there is no true relationship, a negative and
statistically significant regression coefficient commonly emerges.

Conclusion: Employing simulation methods, theoretical reasoning, and mathematical derivations, we were able to
derive recommendations regarding the analysis of data in one of the most prevalent experimental designs in
research on CT and external predictors of CT success. These insights can contribute to the application of considered
data analyses in future studies and facilitate cumulative knowledge gain.

Keywords: Prognostic research, Simulation study, Methodology, Regression analysis, Cognitive decline, Cognitive
training
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Background
In medical and psychological research, researchers and
clinicians often study the effects of certain pharmaco-
logical and nonpharmacological interventions. One focus
in the field of neuropsychology so far is the effects of
non-pharmacological interventions, especially cognitive
training interventions to delay or even prevent the onset
of cognitive decline. Cognitive training (CT) interven-
tions are defined as a standardized set of exercise [1],
which involves repeated practice and is designed to re-
flect particular cognitive functions, such as memory, at-
tention, or executive functions [2, 3]. CT is not only
effective in improving and maintaining cognitive abilities
in patients with neurological diseases such as Alzhei-
mer’s [4] or Parkinson’s disease [5], but also in healthy
older adults as an attempt to prevent cognitive impair-
ment in the aging process [6]. Yet, in the course of the
increasing importance of personalized medical ap-
proaches, the question: “Who benefits most from CTs”
is gaining more and more attention. Defining prognostic
factors for performance changes after nonpharmacologi-
cal interventions is of high importance in order to define
subgroups of participants who may benefit from a spe-
cific treatment [7, 8], and for the design of new and
more effective training programs [9, 10]. For example,
many studies have investigated the impact on sociode-
mographic variables such as age [11], sex [12], and edu-
cation [13] as predictors of CT success. Yet, results on
prognostic factors for changes in performance after non-
pharmacological trainings so far are highly heteroge-
neous and in some cases contradictory. A study of
Matysiak et al. (2019) investigated for example prognos-
tic factors for changes in performance after a working
memory training for healthy older adults. With the help
of multi-level analysis they could show that older adults
with initially lower working memory capacity (lower
scores at study entry in the investigated domain) im-
proved less and reached lower levels of performance
[14]. This was explained with an approach called the
magnification account, which predicts that cognitively
efficient people also show the most gain in nonpharma-
cological interventions [15]. In contrast to that, a study
by Zinke et al. (2014), also investigating predictors of
working memory training success, revealed that partici-
pants with initially lower baseline performance were re-
lated to higher gains after training [16], using stepwise
regression analyses for their calculation. Yet, to explain
this result, a different explanatory account was used: the
compensation account, which states that interventions
will yield the largest gain in the least cognitively efficient
people [15]. But how is it possible that two studies,
which studied a similar topic (predictors of working
memory training success) reveal such contradictory re-
sults? To answer this question, a systematic review on

prognostic factors of memory training success in healthy
older adults was conducted that could show that the re-
sults vary not only as a function of the type of statistical
calculation used to determine prognostic factors, but
also of the type of dependent variables used in the calcu-
lations [17]: post-test scores, change scores, relative
change scores, and residual change scores. Post-test
scores are hereby defined as performance after training/
intervention, change scores refer to post-pre training
scores, relative change scores are norm-referenced
change scores, and residual change scores are defined as
change scores adjusted for baseline variance. Moreover,
the systematic review could show that different prognos-
tic studies used different independent variables and vari-
ations of these as their prediction models: e.g. some
studies did include “group” (Experimental vs. Control
Group) as a binary predictor in their regression analyses,
whereas some studies only calculated predictors within
the experimental group. In some regression models, in-
teractions between group variables and possible predic-
tors were assessed, whereas in other studies these
interactions were missing in the regression models. In
addition to that, some studies calculated regression
models that integrated neuropsychological performance
at study entry as a possible predictor. A special role of
neuropsychological performance at study entry was
identified, leading to the two already mentioned explana-
tory accounts: magnification vs. compensation. However,
a current paper of Smolén et al. (2018) could show that
most evidence for the compensation account of non-
pharmacological training interventions is unreliable due
to methodological errors in the original studies [18]. As
systematical error related to the choice of the dependent
variable in a prognostic model and the special role of
neuropsychological performance at study entry can the-
oretically be translated to all research fields which use
multiple regressions to determine prognostic factors for
changes after interventions, the present paper wants to
establish a framework for the appropriate use of multiple
regression analysis in the context of prognostic research,
here with a special focus on CT interventions.
Therefore, in the present paper, with the use of simu-

lation methods, we systematically investigate not only
which multiple regression model is best suited to answer
the question of “who benefits?” by calculating different
regression models with different independent variables
as possible predictors (Aim 1), but also take a look at
the impact of these four different dependent variables in
a multiple regression paradigm to determine which of
these variables is the most suited one to investigate per-
formance changes after intervention (Aim 2). Further-
more, we investigate the best sample size in relation to
the amount of predictors used in these multiple regres-
sion model (Aim 3) and evaluate the influence of the
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reliability of instruments to measure predictors and out-
comes (Aim 4). In a final step, we highlight the special
role of the pre-test score as a predictor in the multiple
regression analysis to shed further light on the discus-
sion in context of the magnification and compensation
account (Aim 5). We used CT as a specific example to
illustrate the simulation process. However, our results
can apply to many fields, which employ the simulated
and discussed experimental design.

Method
Simulations
We simulated data from a simple model which is often
found in experimental designs reported in the literature,
for instance of CT (e.g. [19], see Fig. 1). The model con-
sists of a 2 (group: experimental vs. control) × 2 (time:
pre-treatment vs. post-treatment) design, in which the
group represents a between-subjects factor and the time
represents a within-subjects factor. Additionally, a con-
tinuous predictor was included in the design which pre-
dicts the success of the treatment in the experimental
group (e.g. age which has been identified as a predictor
of CT success [11]). We also included a continuous pre-
dictor in our simulations which was not related to the
success of the treatment (e.g. education [13, 20]).
We simulated the data in two steps. First, we randomly

generated data derived from the true model as described
below (see Model Specifications). Second, we added
noise to these data given that measurements are never
exact and measurement instruments always show a
measurement error. We assumed that the noise is nor-
mally distributed and that the expected value of the
noise is zero. These assumptions are based on the Clas-
sical Test Theory [21]. The extent of the noise thus de-
pends on the standard deviation (SD) of the noise

distribution, which is directly related to the reliability of
the measurement instruments. Therefore, for our basic
simulations, we determined the noise SD by setting the
reliability for all measures to .80, reflecting good reliabil-
ity [22, 23]. In a further step, we systematically varied
the reliability of the measures and generated additional
data assuming a reliability of .60 (acceptable reliability),
.70 (moderate reliability), and .90 (excellent reliability).
Furthermore, we varied the sample size in our simula-

tions: We ran simulations with a sample size of n = 50,
100, 150, 200, 250, 300, 400 and 500 participants, to in-
vestigate the impact of sample size on the detection of a
desired effect.
For each sample size, we generated n = 1000 data sets

as described above. We provide the simulated data and
the R code here: www.osf.io/p54j3

Model specifications
We determined a true model that we used to generate
sample data. The model was as follows (see Fig. 1 for a
summary): At time 1, i.e. before the treatment, both the
experimental group (E1) and the control group (C1) had
the same mean and standard deviation on the measure
that we simulated (e.g. the score on a cognitive test). We
used the norms of the T-scale as the values for the pre-
treatment condition, i.e. ME1/C1 = 50 and SDE1/C1 = 10.
At time 2, i.e. after the treatment, the mean in the ex-
perimental group (E2) was higher than at time 1 with a
medium effect size of dzE1-E2 = 0.50, reflecting a success-
ful treatment. Furthermore, we set the SDE2 to 13, i.e. a
bit higher than at time 1, reflecting the common finding
that the variance is larger in groups that were submitted
to a treatment compared to groups that were not given
an intervention. The SD of the control group (C2), how-
ever, was set to the same value as at time 1, i.e. SDC2 =

Fig. 1 Overview of the simulated data. The mean X of E2 was computed depending on the level of reliability such that the desired effect size
dz = 0.50 emerged given the mean and standard deviation of E1, the standard deviation of E2 and the correlation between E1 and E2. The same
applies to the mean Z of C2. Accordingly, the effect size Y of d was variable across the levels of reliability. Note. Depicted arrows do not indicate
causality or any direction of influence
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10. To account for the common observations that a
given measure also increases in the control group from
time 1 to time 2 despite the lack of treatment, we set the
effect size dzC1-C2 to 0.05, reflecting a negligible
increase.
Furthermore, we simulated two predictors (e.g. age (P-

I) and education (P-II) in years, as frequently used as
predictors in CT studies). Both predictors (P-I and P-II)
had a mean of 50 and a standard deviation of 10. Im-
portantly, P-I was correlated with the increase in the ex-
perimental group, r(P-I, ΔE1-E2) = .30, reflecting a
medium effect. However, P-I was not correlated with the
change from time 1 to time 2 in the control group, r(P-I,
ΔC1-C2) = .00. The second predictor was not related to
any change from time 1 to time 2, r(P-II, ΔC1-C2) = .00
and r(P-II, ΔE1-E2) = .00. We included this predictor in
the simulations to examine whether the statistical
models we tested (see Analyses) were able to discrimin-
ate between predictors that have a true effect and pre-
dictors that do not.
Note that the observed effect sizes (dz and r) also de-

pend on the reliability [23]. In general, the higher the re-
liability is, the larger the observed effect sizes are given a
constant true effect size. To account for this, we kept
the true effect size constant. To this extent, we com-
puted the true effect sizes in a scenario with medium ef-
fect sizes, i.e. r = .30 and dz = 0.50, and a good reliability,
i.e. rtt = .80. These true effect sizes were subsequently
used as a basis for the true model for which we gener-
ated data as described above and on which we imposed
different levels of noise reflecting the respective reliabil-
ity. Accordingly, the observed effect sizes vary as a func-
tion of reliability while the true effect sizes remain
constant, as can be assumed in a real-world setting.

Analyses
After generating n = 1000 data sets for each sample size
from the true model and imposing noise reflecting the
respective reliability for all measures (E1, E2, C1, C2, P-
I, P-II), we ran five different regression analyses on each
individual data set (Aim 1, see Table 1). The different

regression models differed in terms of the predictors in-
cluded in the model (Aim 1). In Model 1, the dependent
variable was predicted by the external predictors which
might be associated with the treatment success, i.e. P-I
and P-II. In Model 2, the score measured at time 1, i.e.
the pre-test score, was added. Model 2 thus consisted of
P-I, P-II and the pre-test score (i.e. E1 and C1) as the
predictors of the dependent variable. In Model 3, we
additionally added the treatment Group as a binary pre-
dictor (dummy-coded: 0 = control group, 1 = experimen-
tal group). Even though the treatment Group as a binary
predictor is fundamental when calculating training suc-
cess, we did not include it in Models 1 and 2 as not inte-
grating this predictor is commonly observed in recent
prediction research. Therefore, we want to show how
not integrating the Group variable in the regression can
influence the results and lead to misleading interpreta-
tions. In Model 4, the dependent variable was predicted
by P-I, P-II, the pre-test score, Group and the inter-
action between P-I and Group, and P-II and Group. Fi-
nally, in Model 5, we removed the pre-test score from
the model, such that Model 5 contained the predictors
P-I, P-II, Group and the interaction between P-I and
Group, and P-II and Group (see Table 1 for an over-
view). All continuous predictors (i.e. P-I, P-II, and pre-
test score) were centered prior to entering them in the
regression model to allow for a better interpretability. In
Models 1 to 3, usually the regression coefficients for the
predictors P-I and P-II are interpreted to investigate the
prediction of CT success. In Models 4 and 5, the regres-
sion coefficients for the interaction term between the
Group and the predictors P-I and P-II are of interest.
In addition to varying the predictors in the regression

model, we also varied the dependent variable in order to
investigate the consequences of the different measures
used in the literature to quantify treatment success (Aim
2). Specifically, we used the following measures as
dependent variables: (1) the measure at time 2 (E2, C2),
i.e. the post-test score, (2) the absolute change from time
1 to time 2 (E2 minus E1, C2 minus C1), (3) the relative
change from time 1 to time 2 (E2 minus E1, divided by
E1; C2 minus C1, divided by C1), and (4) the residuals
of the post-test score (E2, C2) after controlling for the
pre-test score (E1, C1). We not only ran the regression
analyses for the observed data, but also for the true data.
This allowed us to compute a bias by subtracting the
true regression coefficients from the observed regression
coefficients (see below). Furthermore, we varied the
sample size in our simulations: We ran simulations with
a sample size of n = 100, 150, 200, 250, 300, 400 and 500
participants, to investigate the impact of sample size on
the detection of a desired effect (Aim 3). We also varied
the reliability for all measures with reliabilities of .60,
.70, .80, and .90, to examine how the results are affected

Table 1 Illustration of the predictors included in the regression
models

P Time 1 Group P x Group

Model 1 X

Model 2 X X

Model 3 X X X

Model 4 X X X X

Model 5 X X X

Note: P = external predictors potentially associated with the treatment success
(P-I, P-II); Time 1 =measurement score before the treatment (E1, C1); Group =
treatment group (experimental vs. control); P x Group = Interaction between
external predictors and treatment group
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by measurement accuracy (Aim 4). Importantly, we fully
crossed the set of predictors and the dependent vari-
ables, i.e. we computed each regression model for each
dependent variable. This resulted in 20 regression ana-
lyses for each of the 1000 individual data sets generated
for each of the eight sample sizes and each for the four
levels of reliability.
We then aggregated the regression coefficients for

each predictor by computing the mean of the coeffi-
cients for each set of predictors, each dependent vari-
able, each level of reliability, and each sample size.
Furthermore, we computed the standard deviation of
these coefficients which is an estimate for the standard
error (SE) of the regression coefficient, i.e. the precision
with which the regression coefficient was estimated.
To evaluate the success of each model and each

dependent variable of detecting a true effect while simul-
taneously controlling for the alpha error and to also
highlight the specific role the performance of partici-
pants at study entry as a predictor (Aim 5), we pro-
ceeded as follows: for each set of predictors, each
dependent variable, each level of reliability, and each
sample size, we counted the number of times a given
predictor yielded a significant relationship with the
dependent variable (i.e. p < .05) and divided it by the
total number of analyses (i.e. 1000). The resulting value
P thus represents the proportion of significant effects of
the given predictor in all analyses. If there is no true re-
lationship between the given predictor and the
dependent variable, P indicates the alpha error, i.e. the
probability of finding an effect even though no true ef-
fect exists. If, however, there is a true relationship be-
tween the given predictor and the dependent variable, P
indicates the power, i.e. the probability of detecting an
effect when the true effect exists.
Furthermore, we computed the bias, i.e. the difference

between the true regression coefficient and the observed
regression coefficient. To compare the bias across differ-
ent regression coefficients and different models with dif-
ferent units of the dependent variable (raw units for the
post-score, the residuals and the absolute change; rela-
tive scores for the relative change), we studentized them.
The unit of the studentized biases is “standard devia-
tions”. To studentize a variable, its values are divided by
its standard deviation. However, in our simulations, the
standard deviation of the regression coefficient estimates
is in fact the standard error of the estimates. Dividing by
this SE would results in a larger studentized bias for
large sample sizes given the smaller SE for large sample
sizes. Accordingly, in our case, the regression coefficient
estimates need to be divided by the product of their SD
(i.e. their SE) and the square root of the sample size.
This product is the actual SD of the estimates. In total,
we ran 1,280,000 regression analyses (five models of four

dependent variables and eight sample sizes, four reliabil-
ity levels in 1000 datasets, for each data the true and the
observed data).

Results
Aim 1: the choice of an adequate multiple regression
model including all relevant predictors
The choice of the adequate regression model, i.e. the an-
swer to the question which predictors should be in-
cluded in the model, can be derived theoretically. First,
it is obvious that the external predictor P-I needs to be
included in the regression model since its prognostic
performance is to be evaluated. Second, we need to ac-
count for the treatment that is applied to the experimen-
tal group, but not the control group. To this extend, we
also need to include the binary predictor Group in the
regression model.
Importantly, however, the external predictor P-I can

only predict the outcome in the experimental group, but
not in the control group, given that the control group is
unaffected by the treatment and no systematic variations
in the outcome variable (Aim 2) should be observed in
this group. This relationship has to be modelled expli-
citly which is achieved by including the interaction of P-
I and Group P-I × Group in the regression model. If
this interaction term is not included in the regression
model, a true relationship between P-I and the outcome
variable might be overseen because it only exists in the
experimental group but not in the control group. Jointly,
this might lead to an insignificant main effect of P-I.
Note, for instance, that the power to detect a significant
effect of P-I in the Models 1 to 3 is much lower than the
power to detect a significant effect of the P-I × Group
interaction in the Models 4 and 5 (Table 2). Alterna-
tively, a significant main effect of P-I in a regression
model which does not include the interaction term P-I ×
Group cannot be interpreted as the ability of P-I to pre-
dict the intervention success because such an interven-
tion success can only be observed in the experimental
group. In this case, the significant main effect might just
reflect a general relationship between P-I and the out-
come variable (depending on which criterion is used, see
Aim 2) which does not reflect the ability of P-I to pre-
dict the intervention success. To examine this, it is cru-
cial to include the interaction term P-I × Group in the
regression model.
Finally, we recommend also including the pre-test

scores as a predictor in the regression model. This con-
trols for differences in the variable of interest that were
present prior to the intervention, similar to a covariate
in an analysis of covariance. Our simulations show that
models including the pre-test score as a predictor yield a
better power to unveil a significant P-I main effect or P-
I × Group interaction effect than models that do not
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include the pre-test score as a predictor. For example,
Table 2 shows that for a reliability of rtt = .80 and a sam-
ple size of n = 200, Model 5 without the pre-test score as
a predictor yields a power of 0.63 to detect a significant
P-I × Group interaction effect for the absolute change.
Model 4, which does include the pre-test score as a pre-
dictor, yields a much higher power of 0.71. A similar
pattern is found for the other criteria. An exception to
this observation are models that use the residual score
as the criterion because the residual scores are defined

as the post-test score after controlling for the pre-test
score. Consequently, the pre-test score can never signifi-
cantly predict the residual test score and including or
excluding the pre-test score in the model does not im-
pact the regression coefficients of the other predictors.
In the section on Aim 5, we discuss the special role of
the pre-test scores as a predictor in the regression
models in more detail.
Apart from the power to detect the desired effect, the

interpretation of the regression coefficients also varies

Table 2 Results of simulations for reliability of .80, and sample size of n = 200

Coefficient Model 1 Model 2 Model 3 Model 4 Model 5

M SE P M SE P M SE P M SE P M SE P

Post-test score

Intercept 53.29 1.03 1.00 53.29 1.03 1.00 50.49 1.24 1.00 50.48 1.24 1.00 50.47 1.36 1.00

P-I 0.18 0.09 0.57 0.15 0.06 0.65 0.15 0.06 0.71 0.00 0.07 0.02 0.01 0.10 0.02

P-II −0.00 0.08 0.04 0.00 0.06 0.05 0.00 0.06 0.05 −0.00 0.08 0.03 −0.01 0.10 0.03

Pre-test score 0.80 0.07 1.00 0.80 0.07 1.00 0.79 0.06 1.00

Group 5.61 1.77 0.96 5.61 1.78 0.96 5.64 2.09 0.87

P-I x Group 0.30 0.11 0.71 0.36 0.17 0.59

P-II x Group 0.01 0.12 0.04 0.01 0.16 0.05

Absolute change score

Intercept 3.26 0.89 0.99 3.26 0.89 0.99 0.46 1.13 0.19 0.45 1.12 0.20 0.46 1.13 0.18

P-I 0.14 0.06 0.57 0.15 0.06 0.65 0.15 0.06 0.71 0.00 0.07 0.02 0.00 0.08 0.02

P-II 0.00 0.06 0.05 0.00 0.06 0.05 0.00 0.06 0.05 −0.00 0.08 0.03 0.00 0.08 0.04

Pre-test score −0.20 0.07 0.85 −0.20 0.07 0.87 −0.21 0.06 0.89

Group 5.61 1.77 0.96 5.61 1.78 0.96 5.60 1.80 0.96

P-I x Group 0.30 0.11 0.71 0.28 0.12 0.63

P-II x Group 0.01 0.12 0.04 0.00 0.12 0.04

Relative change score

Intercept 7.74 1.94 1.00 7.74 1.94 1.00 2.35 2.42 0.32 2.35 2.41 0.33 2.36 2.44 0.30

P-I 0.28 0.14 0.50 0.31 0.13 0.62 0.31 0.12 0.67 0.00 0.16 0.02 0.00 0.18 0.02

P-II 0.01 0.14 0.05 0.01 0.13 0.05 0.01 0.13 0.05 −0.00 0.16 0.03 0.00 0.18 0.04

Pre-test score −0.61 0.18 0.97 −0.62 0.17 0.98 −0.63 0.17 0.99

Group 10.77 3.80 0.93 10.77 3.81 0.93 10.75 3.91 0.92

P-I x Group 0.61 0.24 0.66 0.57 0.26 0.55

P-II x Group 0.01 0.25 0.04 0.01 0.26 0.04

Residual score

Intercept 0.00 0.00 0.00 0.00 0.00 0.00 −2.80 0.89 0.90 −2.81 0.88 0.90 −2.79 0.88 0.90

P-I 0.15 0.06 0.65 0.15 0.06 0.65 0.15 0.06 0.71 0.00 0.07 0.02 0.00 0.07 0.02

P-II 0.00 0.06 0.05 0.00 0.06 0.05 0.00 0.06 0.05 −0.00 0.08 0.03 0.00 0.08 0.03

Pre-test score −0.01 0.01 0.00 −0.01 0.02 0.00 −0.01 0.03 0.00

Group 5.61 1.77 0.96 5.61 1.78 0.96 5.58 1.77 0.96

P-I x Group 0.30 0.11 0.71 0.29 0.11 0.71

P-II x Group 0.01 0.12 0.04 0.00 0.11 0.04

Note. The investigated regression models are displayed in the columns and the investigated dependent variables are displayed in the rows. The results of all other
reliabilities and sample sizes (with reliability scores .60, .70, .80, and .90, and sample sizes of n = 50, 100, 150, 200, 250, 300, 400, 500) are displayed in the
Supplementary Material Tables 1–32
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between the different regression models. In the Models
1 to 3, the coefficients of the continuous predictors indi-
cate how the outcome variable changes when the corre-
sponding predictor increases by one unit. For example,
in Model 2 for the absolute change score as the criter-
ion, an increase of one unit of P-I would lead to an in-
crease of 0.15 units in the absolute change (Table 2).
Additionally, in Model 3, the coefficient for the binary
Group variable indicates the mean difference in the out-
come variable between the experimental group and the
control group. Since the Group variable was dummy-
coded (0 = control group, 1 = experimental group), the
coefficient informs about the deviation of the experi-
mental group from the control group in terms of the
outcome variable. The intercept indicates the predicted
mean of the outcome variable for mean values of all
continuous predictors (Models 1 to 3) and in the control
group (only for Model 3). This explains why the inter-
cept is lower in Models 1 and 2 than in Model 3. In the
first two models, the Group variable is not accounted
for, thus the intercept represents the overall mean in the
sample. In Model 3, the Group variable is taken into ac-
count. Since the control group was modelled to have
lower values on the outcome variable than the experi-
mental group, the intercept is lower compared to the
other two models (see also Fig. 2).
The interpretation is slightly different for the Models 4

and 5 which include interaction terms. Specifically, the
interpretation for the continuous predictors is limited to
the control group, i.e. the regression coefficients for P-I,
P-II (and the pre-test score) indicate the change in the
outcome variable for the control group if the predictors
increase by one unit. Ideally, these should be zero (ex-
cept for the pre-test score) because the predictor P-I is
expected to predict the intervention success and there
was no intervention in the control group. The regression

coefficients for the interaction terms indicate how much
more (or less) the outcome variable changes in the ex-
perimental group compared to the control group when
the continuous predictor increases by one unit. Take
Model 4 for the absolute change score as the criterion
for example: If P-I increases by one unit, the absolute
change score does not change at all in the control group
(Group = 0) because the regression coefficient for P-I is
0.00. In the experimental group (Group = 1), the abso-
lute change score would change by 0.00 + 0.30 = 0.30
units, i.e. the sum of the regression coefficient for P-I
and regression coefficient for the P-I by Group inter-
action. Finally, the regression coefficient for the binary
group variable indicates the mean difference in the out-
come variable between the experimental and control
group for mean values on the continuous predictors, i.e.
if the predictors are zero.
Fig. 2 illustrates how the interpretation of regression

coefficients changes depending on whether the regres-
sion model only comprises a continuous predictor (Ex-
ample 1; Models 1 and 2), a continuous predictor and
the binary group variable (Example 2; Model 3), or a
continuous predictor, the binary group variable and their
interaction (Example 3; Models 4 and 5). In Example 1,
there is only one regression line for the entire sample,
ignoring the assignment to the experimental or control
group and thus weakening the power to detect the effect.
In Example 2, there are two regression lines – one for
the experimental group and one for the control group –
that are parallel to each other and have the same slope
as the regression line as in Example 1 (but different in-
tercepts) which also weakens the power to detect the ef-
fect. Finally, in Example 3, the slopes of the regression
lines differ between the experimental and the control
group. Ideally, the slope of the control group is zero, in-
dicating that the predictor cannot predict the

Fig. 2 Illustration of different regression models. The Figure illustrates the relationship between a continuous predictor and an outcome variable
depending on whether the regression model only comprises the continuous predictor (Example 1), the continuous predictor and the binary
group variable (Example 2), or the continuous predictor, the binary group variable and their interaction term (Example 3). The solid line indicates
the relationship in the experimental group. The dotted line indicates the relationship in the control group, and the dashed line represents the
relationship regardless of the group assignment
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intervention success in the control group (because there
was no intervention). The slope of the experimental
group should be larger in Example 3 than in Example 2,
because the impact of the predictor in the experimental
group can now be isolated from the impact in the con-
trol group which is why the power to detect the effect is
overall higher than in the other two examples.
To conclude, we strongly favor a regression model

with the following predictors: P-I, Group, pre-test score,
and P-I × Group. For an overview of all calculated
models for the different dependent variables, reliability
scores, and sample sizes see Supplementary Material Ta-
bles 1–32.

Aim 2: the choice of an adequate criterion variable for
the regression model
As a recent systematic review on prognostic factors of
performance changes after memory training in healthy
older adults could show, the type of dependent variables
used for prognostic factor calculations differs across dif-
ferent studies [17]. Post-test scores, change scores, re-
sidual scores, and relative change scores were used to
measure performance changes. Yet, all these types of
dependent variables have different implications as
regards content and interpretation.
In a classical pre-post design, which underlies most

studies on CT, the post-test score seems to be an estab-
lished dependent variable in multiple regression analyses
measuring training success. However, using the post-test
score (that is performance after training/intervention)
answers the question “Is x a likely cause of y” [24], but
does not refer to gain. Furthermore, imagine an external
predictor such as P-I emerged as a significant predictor
of the post-test score in the experimental group. Would
that indicate that the external predictor can predict the
intervention success? Not necessarily, because the pre-
dictor might just be related to the construct captured by
the post-score. In this case, one would also find that P-I
is similarly related to the pre-test score in the experi-
mental group. Furthermore, an external predictor such
as P-I could be related to the post-test score in both the
experimental group and the control group. Thus, finding
a significant effect of P-I on the post-test score in the ex-
perimental group is necessary, but insufficient to draw
the conclusion that P-I can predict the intervention
success.
Absolute change scores (post-pre performance) an-

swer the question “whose score is most likely to in-
crease/decrease over time?”, therefore directly referring
to intervention gain [24]. Yet, change scores are under
high criticism due to the fact that subtracting pretest
scores from post-test scores are in discredit to lead to
fallacious conclusions, because they are systematically
related to random measurement errors [25] and are

sensitive to regression to the mean. However, these criti-
cisms are unfounded under a plausible regression model,
which does not integrate the dependent variable as an
independent variable [26]. Also, with the advent of struc-
tural equation modeling, which permits modeling of
error-free constructs, much of the criticism on change
scores in the literature has decreased further [27].
Change scores are easy to interpret (changes in the indi-
vidual’s level of performance [28]), may help to remove
unexplained variance, and change score models are ap-
propriate whenever pre-test scores can be assumed to
remain stable over time if no treatment occurs, that is,
when pre-test scores are useful baseline measures [29].
A further type of dependent variable, which may be

used in studies investigating intervention success, are
relative change scores. Relative change scores are
norm-referenced, which are inherent in traditional reli-
ability or generalizability coefficients [28]. They can be
interpreted in terms of how much progress an individual
in comparison to others has made. Therefore, the focus
is not on changes in the individual’s performance, but
on comparisons to others. Yet, our simulations demon-
strated that the relative change scores are more vulner-
able to the methodological artifact (described by 18)
than absolute change scores. The probability of detecting
a significant negative regression coefficient for the pre-
test score was consistently higher for relative change
scores than for absolute change scores, regardless of
sample size, regression model used, or level of reliability.
Keep in mind that we did not model a relationship be-
tween the pre-test score and the intervention success
when simulating the data. The indication of a significant
negative regression coefficient is thus an alpha-error.
Similarly, the power of detecting a significant P-I ×
Group interaction effect was consistently higher for ab-
solute change scores than for relative change scores, re-
gardless of sample size, regression model used, or level
of reliability. Consequently, our simulations have shown
that relative change scores are inferior to absolute
change scores as criteria in regression models.
Residual scores, which are calculated by regressing

dependent variable of a construct onto an assessment
measured at baseline, provide a simple change score ad-
justed for baseline variance [30] and are in literature
often referred to as a more appropriate method of meas-
uring change in constructs over time than post-pre
change scores [31]. Yet, residual score models ask
slightly different questions than the change score
models: Residual score models assume that post-test
scores are a linear function of pre-test scores and that
this function is not necessarily 1 [29].
Our simulations showed that when including the pre-

test score as a predictor in the regression model, the re-
gression coefficients for the other predictors are identical
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for post-test scores, absolute change scores and residual
scores. In other words, as long as the pre-test score is a
predictor in the regression model, it does not matter
whether post-test scores, absolute change scores or re-
sidual scores serve as the criterion because they yield the
same regression coefficients for the other predictors in
the model (for a more thorough discussion of this
phenomenon, see Aim 5).

Aim 3: the choice of an adequate sample size
We ran simulations with a sample size of n = 50, 100,
150, 200, 250, 300, 400 and 500 participants to investi-
gate the impact of sample size on the detection of a de-
sired effect of P-I or P-I x Group (if the interaction term
was included in the regression model). The results for
each dependent variable, each regression model and
each level of reliability are displayed in Fig. 3 (for P-II
and P-II x Group, see Supplementary Material Figure
S1). Obviously, due to the fact that sample size and
power are dependent on each other, as the sample size
increases, the power increases, regardless of which
dependent variable is used in the regression model. Fur-
ther, as an overall trend it can be stated that the power
is also dependent on the reliability; as the reliability in-
creases, a smaller sample size is needed to achieve the
same level of power.
As depicted in Fig. 3, not integrating the pre-test score

in our regression model leads to the need of a higher
sample size to achieve the same power as regression
models which integrate the pre-test score in the calcula-
tion. This is the case for all dependent variables except
one: when using the residual score as a dependent vari-
able, there is nearly no difference in power/sample size

increase between regression models that in- or exclude
the pre-test score, as the pre-test score is already in-
cluded in the dependent variable as a defining character
of the residual score.
Overall, Fig. 3 shows that, regardless which dependent

variable and which predictors (of the ones investigated
here) are used in the calculation, it is important to at
least use a sample size of n = 250 to n = 300 such that a
power of at least .50 (independent of the reliability) is
achieved. Due to the fact that often in experimental de-
signs and/or research on new clinical patient groups the
reliability of the used measures is either not known or
not well established, a sample size of n = 250 therefore
ensures an at least moderate power for the worst case
that your dependent measure is not as reliable as you
wish it would be.1 Yet, when using the change score as
the dependent variable in the calculation and the reli-
ability is rather low (.60/.70), a sample size of n = 300
seems even more appropriate to achieve a good power.
It is important to always calculate and report reliabilities
of the used instruments to ensure good scientific prac-
tice and help other researchers to better understand and
evaluate your results.

Aim 4: the role of reliability of the measurement
instruments
The simulations show that, in order to achieve adequate
power to detect a true effect, a relatively large sample

Fig. 3 Overview of the power for the P-I or P-I x Group regression coefficient. The different dependent variables are displayed in the columns.
The levels of reliabilities are displayed in the rows. The x-axis indicates the sample size. The different regression models are colour-coded as
indicated in the Figure legend

1Note that as a good scientific practice of course it is important to
ensure that all used tests and dependent measures have a moderate to
high reliability established for the participant or patient group you
investigate. See also “Aim 4: the role of reliability of the measurement
instruments”.
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size is required which is often difficult to achieve in sci-
entific practice. However, the simulations also illustrate
that an adequate power can not only be achieved by in-
creasing the sample size, but also by selecting more reli-
able measures. While increasing the sample size mostly
decreases the standard error which in turn leads to an

increased power, increasing reliability also increases the
estimates of the regression coefficient, i.e. the estimate
and its entire confidence interval is shifted away from
zero, making it more likely that a true effect is detected
(see Fig. 4 for the regression coefficients of P-I or P-I x
Group as a function of dependent variable, regression

Fig. 4 Overview of the regression coefficients of P-I or P-I x Group. The different regression models that were tested are displayed in the rows
(Model 1 to 5) and the different dependent variables are displayed in the columns. In each subplot, the x-axis indicates the sample size and the
y-axis the value of the regression coefficient for the predictor P-I or the P-I x Group interaction, depending on whether the respective model
comprised the interaction term or not. For each sample size, the reliability is colour-coded. The dot indicates the mean of the regression
coefficient distribution generated by simulating the data. The thick line covers the interval of the mean plus/minus one standard error and the
thin line represents the 95% confidence interval. Note: Red colour indicates a reliability of .60; blue colour indicates a reliability of .70; green colour
indicates a reliability of .80; purple colour indicates a reliability of .90. Model 1: P-I + P-II; Model 2: P-I + P-II + Pre-test score; Model 3: P-I + P-II +
Pre-test score + Group; Model 4: (P-I + P-II) x Group + Pre-test score; Model 5: (P-I + P-II) x Group
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model, sample size and reliability, and Supplementary
Material Figure S2 for P-II or P-II x Group).
Although at first sight, this observation might cause

confusion, it can easily be explained by the fact that im-
perfectly reliable measures limit the maximum correl-
ation that can be observed [32]. For example, assuming
a true correlation of r = .50 between two variables that
were measured with a reliability of rtt = .60, the observed
correlation will amount to r = .30, i.e. the true correl-
ation multiplied by the square root of the product of
both reliabilities [32]. Increasing the reliability to rtt =
.90, the observed correlation will amount to r = .45, ap-
proximating the true correlation of r = .50.
Employing more reliable measurements in research

thus not only increases the probability of detecting a
true effect, but also reduces the bias, because true effects
are estimated more precisely (see also Fig. 5 and Supple-
mentary Material Figure S3). Note that reliability can
not only be increased by employing more reliable mea-
sures, but also by repeating measures or by assessing a
construct of interest by multiple tests instead of only
one test [33, 34]. In other words, if a researcher wishes
to increase the power of their study, but it is hardly pos-
sible to increase the sample size, they could increase the
number of measures/measurements instead.

Aim 5: the special role of the pre-test score as a predictor
in a multiple regression
Studying Table 2 (or Tables 1–32 in the Supplementary
Material), a striking observation is that whenever the pre-
test score is included in a regression model, the regression
coefficients for the other predictors yield the exact same
results independent of the criterion, apart from the rela-
tive change because relative change is measured on an-
other scale than the other three criteria. This suggests that
whenever the pre-test score is a predictor in the model,
the choice of the criterion (among post-test score, residual
score, and absolute change score) is redundant.
Furthermore, the regression coefficient of the pre-test

score for the post-test score and the absolute change
score are a linear transformation of each other: the coef-
ficient for the post-test score equals the coefficient of
the absolute change score plus one. Note that although
we did not model a negative relationship between the
pre-test score and the absolute change, a negative re-
gression coefficient emerges consistently and even
reaches a high probability of reaching statistical signifi-
cance for larger sample sizes, giving way to the faulty in-
terpretation in favor of a compensation effect.
In the following, we briefly explain both observations

mathematically. The regression equation for a model
with the post-test score (T2) as the criterion and the
centered pre-test score (T1) and any other variable V as
predictors can be written as follows:

T2 ¼ b0 þ b1T 1 þ b2V ð1Þ
with b0 indicating the intercept, b1 the regression coeffi-
cient for the pre-test score, and b2 the regression coeffi-
cient for the additional predictor. Analogously, the
regression equation for a model with the absolute
change score (T 2 − ðT 1 þ T 1ncÞ) as the criterion and the
pre-test score and another variable as predictors can be
written as follows:

T2 − T 1 þ T 1nc

� � ¼ c0 þ c1T 1 þ c2V ð2Þ
with c0 indicating the intercept, c1 the regression coeffi-
cient for the pre-test score, and c2 the regression coeffi-
cient for the additional variable. Note that the absolute
change score is computed by subtracting the non-
centered pre-test score ( T1 þ T 1nc ) from the non-
centered post-test score T2 and that the non-centered
pre-test score consists of the centered pre-test score T1

plus the mean of the non-centered pre-test score (T1 nc ;
“nc” for “non-centered”). Resolving Eq. (2) for T2 and
combining Eqs. (1) and (2) results in

b0 þ b1T 1 þ b2V ¼ c0 þ c1T 1 þ c2V þ T 1 þ T1 nc ð3Þ
which equals

0 ¼ c0 − b0 þ T1 nc þ T 1 c1 − b1 þ 1ð Þ þ V c2 − b2ð Þ ð4Þ
For this equation to be true for all values of T1 and V,

the terms (c1 – b1 + 1) and (c2 – b2) each have to equate
to zero (assuming the absence of multicollinearity, a for-
mal prerequisite for a multiple regression analysis),
giving

b1 ¼ c1 þ 1 ð5Þ
and

b2 ¼ c2 ð6Þ
This also implies that the term c0 − b0 þ T 1 nc also has

to equate to zero, giving

b0 ¼ c0 þ T 1 nc ð7Þ
First, these mathematical equations show that when

the pre-test score is included as a predictor in the re-
gression model, the regression coefficients for the other
predictors are identical for the post-test score and the
absolute change score as criteria (assuming that formal
prerequisites for multiple regression analyses are met).
Second, the intercepts can be linearly transformed into

each other. The intercept for the post-test score as the
criterion equals the intercept for the absolute change
score as the criterion plus the mean of the non-centered
pre-test score. In case the continuous predictors are not
centered prior to entering them into the regression
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models, the intercepts will be identical for the post-test
score and the absolute change score as criteria.
Third and most importantly, the regression coefficients

of the pre-test score for both criteria are a linear transform-
ation of each other. Considering that the coefficient b1 re-
flects the relationship between the pre-test score and the

post-test score, it can be interpreted as an estimate of the
(test-retest) reliability. The coefficient c1 reflecting the rela-
tionship between the pre-test score and the absolute change
score is thus always negative, because the reliability can
never exceed 1 and because we have shown that c1 = b1–1.
Furthermore, this relationship paradoxically implies that

Fig. 5 Overview of the studentized bias of the regression coefficients of P-I or P-I x Group. The different regression models that were tested are
displayed in the rows (Model 1 to 5) and the different dependent variables are displayed in the columns. In each subplot, the x-axis indicates the
sample size and the y-axis the studentized bias for the predictor P-I or the P-I x Group interaction, depending on whether the respective model
comprised the interaction term or not. For each sample size, the reliability is colour-coded. The dot indicates the mean of the bias distribution.
The thick line covers the interval of the mean plus/minus one standard error and the thin line represents the 95% confidence interval. A bias of zero
would indicate that the observed regression coefficient is identical to the true regression coefficient. Note: Red colour indicates a reliability of .60; blue
colour indicates a reliability of .70; green colour indicates a reliability of .80; purple colour indicates a reliability of .90. Model 1: P-I + P-II; Model 2: P-I +
P-II + Pre-test score; Model 3: P-I + P-II + Pre-test score + Group; Model 4: (P-I + P-II) x Group + Pre-test score; Model 5: (P-I + P-II) x Group
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the relationship between the pre-test score and the change
score is larger when the reliability of the measure is lower.
Smoleń et al. (2018) notes that many of the correlations

between pre-test scores and absolute change scores re-
ported in the literature to support the compensation ac-
count are suspiciously high, especially considering the
theoretical limit of observable correlations given the imper-
fect reliability of psychological measures [18]. Here, we have
demonstrated that these high correlations might in fact re-
flect low reliabilities of the measures used in the respective
studies, which is in line with Smoleń’s mathematical dem-
onstrations of why negative correlations between pre-test
scores and absolute change scores emerge naturally [18].

Discussion
As prognostic research and especially studies on the im-
pact of parameters predicting the success of CT (or in
general pharmacological and nonpharmacological inter-
ventions) have become of huge scientific interest over
the past few years, the present paper aimed at systematically
showing and discussing different types of regression models
and dependent variables used, as well as the influence of re-
liability of measures, sample sizes, and the specific role of
baseline measurements (pre-test scores) as predictors in
multiple regressions to account for changes after interven-
tions. With the help of simulation methods and mathemat-
ical derivations we could show that (Aim 1) a regression
model including P-I, Group, pre-test score, and P-I ×Group
as predictors seems most convenient when investigating
predictors of changes after interventions such as CT, as well
as (Aim 2) using the absolute change scores as the
dependent variable. Further, (Aim 3) studies should use at
least a sample size of n = 250 and (Aim 4) one should take
care of the reliability of used measures and their impact on
the calculations. Finally, (Aim 5), although the pre-test
score should be included as a predictor in the regression
model for reasons of statistical power, its coefficient should
not be interpreted because chances are high that even if
there is no true relationship, a negative and statistically sig-
nificant regression coefficient emerges.
In clinical research, especially when investigating spe-

cific patient populations, it is often difficult to recruit
large sample sizes. For some patient populations or
areas, a sample size of n = 250 is even utterly unrealistic.
Yet, one has to be aware of the fact that when conduct-
ing multiple regression analyses to detect possible pre-
dictors of interventions in a relatively small sample, the
power of the analysis is lacking. Therefore, it is even
more important to ensure a high reliability of the used
clinical tests and paradigms tested. This implies that
already established tests have to be validated regarding
their reliability norms when used in “new” clinical popu-
lations, in case that no test norms are available for this
population. Further, reliability scores of the used tests

should always be reported as they may help to inform
whether the regression coefficient for the pre-test score
is purely a statistical artefact or might reflect a relation-
ship that persists beyond the statistical artefact. In the
context of cumulative research evidence, it is also of
high importance to report and publish studies with small
sample sizes that only or mostly show non-significant
prognostic effects. These studies can also contribute to
cumulative research findings (e.g. in meta-analysis). This
cumulative gain of knowledge is further facilitated if a
joint methodological approach such as the one we sug-
gest here is used, as this makes statistical results more
comparable across separate studies.
Our simulations (and subsequent mathematical proof)

also showed that unless the measures are perfectly reli-
able, there will always be a negative regression coeffi-
cient for the pre-test score predicting the absolute
change score, even when there is no true relationship
between them. In fact, the regression coefficient is the
more negative, the less reliable the measures are. Thus,
the negative regression coefficient should never be inter-
preted in favour of the compensation hypothesis. Our
results support the concerns raised by Smoleń et al.
(2018) regarding the validity of the evidence reported in
the literature in favour of the compensation hypothesis.
In medical research, guidelines for prognostic research

exist [35], which focus in detail on the design, conduc-
tion, and reporting of prognostic factor research, hereby
differentiating between prognostic factor studies (a sin-
gle prognostic factor that aims to predict a future out-
come) and prognostic model studies (defined as a set of
multiple prognostic factors to predict a future outcome).
Yet, until now, there was no clear recommendation on
the specific statistical methods which should be used
when calculating multiple regressions to investigate
these predictors in the realm of CT. Our present paper
also emphasizes the need for the choice of the adequate
dependent variable for prognostic research on different
continuous outcomes after specific interventions and
gives recommendations regarding the choice of the ad-
equate regression model that should be used, as well as
adequate sample size, reliability of outcome measures,
and integration of baseline measurements. Therefore,
when conducting prognostic research, a clear statistical
rational should be provided. Furthermore, the present
recommendations as well as the already existing medical
guidelines on prognostic research should be adapted also
for studies conducted in other fields (e.g. neuropsych-
ology) to ensure a good practice and reporting of prog-
nostic studies and results.

Limitations
We are aware that the results of simulations strongly de-
pend on the input to the simulations. In our case, we
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explicitly modelled an effect of the external predictor on
the absolute change score in the experimental group.
This decision was based on profound theoretical consid-
erations. While it may not be surprising that the result
of simulations favoured the inclusion of the interaction
between P-I and the Group, and the absolute change
score as the criterion, the simulations demonstrated the
consequences of applying a range of statistical models
(different combinations of predictors and criteria) to
data that were generated by a different true model. Fur-
thermore, we hope to have conveyed why we believe the
true model we chose was the most reasonable of the
models we considered in our simulations.

Conclusion and recommendations
We systematically investigated the impact of different re-
gression models, dependent variables, sample sizes and
levels of reliability on the conclusions drawn from the
respective analyses. Extensive simulations allowed us to
derive well-considered recommendations for future ana-
lysis of data in one of the most common experimental
designs in research on CT and prediction of CT success.
Furthermore, we mathematically showed that the choice
of dependent variable is redundant if the pre-test score
is a predictor in the regression model, but that the cor-
responding regression coefficient should not be inter-
preted, preventing unjustified conclusions.
For future prognostic studies on predictors of changes

after an intervention, we thus recommend the following
analysis pipeline: Prior to data collection, determine the
required sample size by considering the effect sizes you
expect (e.g. based on previous findings) and the reliabil-
ity of the measures you employ. Compute the absolute
change scores and enter them as the criterion in a re-
gression model. Include the pre-test scores, the group
variable, the external predictor variables which you want
to investigate, and the interactions between the external
predictor variables and the group variable as predictors
in the regression model. If you find a significant inter-
action effect, perform a post-hoc analysis. If the external
predictor variable is able to predict the intervention suc-
cess, it should only be related to the outcome variable in
the experimental group, but not in the control group.
Do not interpret the regression coefficient of the pre-
test score, since it will always be negative (if your pre-
test and post-test scores correlate positively). Keep in
mind that less reliable pre- and post-test scores will pro-
duce a larger (negative) regression coefficient, regardless
of whether there is a true pre-test score effect on the
change score or not. Apart from reporting the sample
size, also report the reliability of the employed measures
as it has a considerable impact on the probability of de-
tecting a true effect and should thus be made accessible
to your readers.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12874-020-01176-8.

Additional file 1.

Abbreviations
CT: Cognitive Training; SD: Standard Deviation; SE: Standard Error

Acknowledgements
Not applicable.

Authors’ contributions
AM designed the simulations, generated the data sets, analysed the data
sets, interpreted the results, and wrote the manuscript. MR conceptualized
the research idea, interpreted the results, and wrote the manuscript. All
authors read and approved the final manuscript.

Funding
No funding was received for designing the study or collecting, analyzing or
interpreting the data or writing the manuscript. Open Access funding
enabled and organized by Projekt DEAL.

Availability of data and materials
The datasets generated and analysed during the current study are available
in the Open Science Framework (OSF) repository: www.osf.io/p54j3

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Individual Differences and Psychological Assessment,
University of Cologne, Pohligstraße 1, 50969 Cologne, Germany. 2Department
of Neurology, University Medicine Greifswald, Walther-Rathenau Str. 49,
17489 Greifswald, Germany.

Received: 14 July 2020 Accepted: 24 November 2020

References
1. Martin M, Clare L, Altgassen AM, Cameron MH, Zehnder F. Cognition-based

interventions for healthy older people and people with mild cognitive
impairment. Cochrane Database Syst Rev. 2011:CD006220. https://doi.org/
10.1002/14651858.CD006220.pub2.

2. Clare L, Woods RT, Moniz Cook ED, Orrell M, Spector A. Cognitive
rehabilitation and cognitive training for early-stage Alzheimer's disease and
vascular dementia. Cochrane Database Syst Rev. 2003:CD003260. https://doi.
org/10.1002/14651858.CD003260.

3. Bamidis PD, Vivas AB, Styliadis C, Frantzidis C, Klados M, Schlee W, et al. A
review of physical and cognitive interventions in aging. Neurosci Biobehav
Rev. 2014;44:206–20. https://doi.org/10.1016/j.neubiorev.2014.03.019.

4. Kallio E-L, Öhman H, Kautiainen H, Hietanen M, Pitkälä K. Cognitive training
interventions for patients with Alzheimer's disease: a systematic review. J
Alzheimers Dis. 2017;56:1349–72. https://doi.org/10.3233/JAD-160810.

5. Leung IHK, Walton CC, Hallock H, Lewis SJG, Valenzuela M, Lampit A.
Cognitive training in Parkinson disease: a systematic review and meta-
analysis. Neurology. 2015;85:1843–51. https://doi.org/10.1212/WNL.
0000000000002145.

6. Bherer L. Cognitive plasticity in older adults: effects of cognitive training
and physical exercise. Ann N Y Acad Sci. 2015;1337:1–6. https://doi.org/10.
1111/nyas.12682.

7. Altman DG, Lyman GH. Methodological challenges in the evaluation of
prognostic factors in breast cancer. Breast Cancer Res Treat. 1998;52:289–
303. https://doi.org/10.1023/A:1006193704132.

Mattes and Roheger BMC Medical Research Methodology          (2020) 20:296 Page 14 of 15

https://doi.org/10.1186/s12874-020-01176-8
https://doi.org/10.1186/s12874-020-01176-8
http://www.osf.io/p54j3
https://doi.org/10.1002/14651858.CD006220.pub2
https://doi.org/10.1002/14651858.CD006220.pub2
https://doi.org/10.1002/14651858.CD003260
https://doi.org/10.1002/14651858.CD003260
https://doi.org/10.1016/j.neubiorev.2014.03.019
https://doi.org/10.3233/JAD-160810
https://doi.org/10.1212/WNL.0000000000002145
https://doi.org/10.1212/WNL.0000000000002145
https://doi.org/10.1111/nyas.12682
https://doi.org/10.1111/nyas.12682
https://doi.org/10.1023/A:1006193704132


8. Lipkovich I, Dmitrienko A, B R. Tutorial in biostatistics: data-driven subgroup
identification and analysis in clinical trials. Stat Med. 2017;36:136–96. https://
doi.org/10.1002/sim.7064.

9. Sandberg P, Rönnlund M, Derwinger-Hallberg A, Stigsdotter NA. Memory
plasticity in older adults: cognitive predictors of training response and
maintenance following learning of number-consonant mnemonic.
Neuropsychol Rehabil. 2016;26:742–60. https://doi.org/10.1080/09602011.
2015.1046459.

10. Langbaum JBS, Rebok GW, Bandeen-Roche K, Carlson MC. Predicting
memory training response patterns: results from ACTIVE. J Gerontol B
Psychol Sci Soc Sci. 2009;64:14–23. https://doi.org/10.1093/geronb/gbn026.

11. O’Hara R, Brooks JO, Friedman L, Schröder CM, Morgan KS, Kraemer HC.
Long-term effects of mnemonic training in community-dwelling older
adults. J Psychiatr Res. 2007;41:585–90. https://doi.org/10.1016/j.jpsychires.
2006.04.010.

12. Mohs RC, Ashman TA, Jantzen K, Albert M, Brandt J, Gordon B, et al. A study
of the efficacy of a comprehensive memory enhancement program in
healthy elderly persons. Psychiatry Res. 1998;77:183–95. https://doi.org/10.
1016/S0165-1781(98)00003-1.

13. Neely AS, Bäckman L. Effects of multifactorial memory training in old age:
generalizability across tasks and individuals. J Gerontol B Psychol Sci Soc Sci.
1995;50:P134–40. https://doi.org/10.1093/geronb/50b.3.p134.

14. Matysiak O, Kroemeke A, Brzezicka A. Working memory capacity as a
predictor of cognitive training efficacy in the elderly population. Front
Aging Neurosci. 2019;11:126. https://doi.org/10.3389/fnagi.2019.00126.

15. Lövdén M, Brehmer Y, Li S-C, Lindenberger U. Training-induced
compensation versus magnification of individual differences in memory
performance. Front Hum Neurosci. 2012;6:141. https://doi.org/10.3389/
fnhum.2012.00141.

16. Zinke K, Zeintl M, Rose NS, Putzmann J, Pydde A, Kliegel M. Working
memory training and transfer in older adults: effects of age, baseline
performance, and training gains. Dev Psychol. 2014;50:304–15. https://doi.
org/10.1037/a0032982.

17. Roheger M, Folkerts A-K, Krohm F, Skoetz N, Kalbe E. Prognostic factors for
change in memory test performance after memory training in healthy older
adults: a systematic review and outline of statistical challenges. Diagn Progn
Res. 2020;4:7. https://doi.org/10.1186/s41512-020-0071-8.

18. Smoleń T, Jastrzebski J, Estrada E, Chuderski A. Most evidence for the
compensation account of cognitive training is unreliable. Mem Cogn. 2018;
46:1315–30. https://doi.org/10.3758/s13421-018-0839-z.

19. Rebok GW, Ball K, Guey LT, Jones RN, Kim H-Y, King JW, et al. Ten-year
effects of the advanced cognitive training for independent and vital elderly
cognitive training trial on cognition and everyday functioning in older
adults. J Am Geriatr Soc. 2014;62:16–24. https://doi.org/10.1111/jgs.12607.

20. Roheger M, Meyer J, Kessler J, Kalbe E. Predicting short- and long-term
cognitive training success in healthy older adults: who benefits?
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2020;27:351–69.
https://doi.org/10.1080/13825585.2019.1617396.

21. Novick MR. The axioms and principal results of classical test theory. J Math
Psychol. 1966;3:1–18. https://doi.org/10.1016/0022-2496(66)90002-2.

22. Hedge C, Powell G, Sumner P. The reliability paradox: why robust cognitive
tasks do not produce reliable individual differences. Behav Res Methods.
2018;50:1166–86. https://doi.org/10.3758/s13428-017-0935-1.

23. Nunnally JC Jr. Introduction to psychological measurement; 1970.
24. Lord FM. A paradox in the interpretation of group comparisons. Psychol

Bull. 1967;68:304–5. https://doi.org/10.1037/h0025105.
25. Cronbach LJ, Furby L. How we should measure "change": or should we?

Psychol Bull. 1970;74:68–80. https://doi.org/10.1037/h0029382.
26. Allison PD. Change scores as dependent variables in regression analysis.

Sociol Methodol. 1990;20:93. https://doi.org/10.2307/271083.
27. Castro-Schilo L, Grimm KJ. Using residualized change versus difference

scores for longitudinal research. J Soc Pers Relat. 2018. https://doi.org/10.
1177/0265407517718387.

28. Miller TB, Kane M. The precision of change scores under absolute and
relative interpretations. Appl Meas Educ. 2001;14:307–27. https://doi.org/10.
1207/S15324818AME1404_1.

29. Gollwitzer M, Christ O, Lemmer G. Individual differences make a difference:
on the use and the psychometric properties of difference scores in social
psychology. Eur J Soc Psychol. 2014;44:673–82. https://doi.org/10.1002/ejsp.
2042.

30. Prochaska JJ, Velicer WF, Nigg CR, Prochaska JO. Methods of quantifying
change in multiple risk factor interventions. Prev Med. 2008;46:260–5.
https://doi.org/10.1016/j.ypmed.2007.07.035.

31. Rowan AA, McDermott MS, Allen MS. Intention stability assessed using
residual change scores moderates the intention-behaviour association: a
prospective cohort study. Psychol Health Med. 2017;22:1256–61. https://doi.
org/10.1080/13548506.2017.1327666.

32. Spearman C. The proof and measurement of association between two
things. Am J Psychol. 1904;15:72. https://doi.org/10.2307/1412159.

33. Brown W. SOME EXPERIMENTAL RESULTS IN THE CORRELATION OF MENTAL
ABILITIES1. Br J Psychol, 1904–1920. 1910;3:296–322. https://doi.org/10.1111/
j.2044-8295.1910.tb00207.x.

34. Spearman C. CORRELATION CALCULATED FROM FAULTY DATA. Br J Psychol,
1904-1920. 1910;3:271–95. https://doi.org/10.1111/j.2044-8295.1910.tb00206.x.

35. Riley RD, Hayden JA, Steyerberg EW, Moons KGM, Abrams K, Kyzas PA, et al.
Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS
Med. 2013;10:e1001380. https://doi.org/10.1371/journal.pmed.1001380.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Mattes and Roheger BMC Medical Research Methodology          (2020) 20:296 Page 15 of 15

https://doi.org/10.1002/sim.7064
https://doi.org/10.1002/sim.7064
https://doi.org/10.1080/09602011.2015.1046459
https://doi.org/10.1080/09602011.2015.1046459
https://doi.org/10.1093/geronb/gbn026
https://doi.org/10.1016/j.jpsychires.2006.04.010
https://doi.org/10.1016/j.jpsychires.2006.04.010
https://doi.org/10.1016/S0165-1781(98)00003-1
https://doi.org/10.1016/S0165-1781(98)00003-1
https://doi.org/10.1093/geronb/50b.3.p134
https://doi.org/10.3389/fnagi.2019.00126
https://doi.org/10.3389/fnhum.2012.00141
https://doi.org/10.3389/fnhum.2012.00141
https://doi.org/10.1037/a0032982
https://doi.org/10.1037/a0032982
https://doi.org/10.1186/s41512-020-0071-8
https://doi.org/10.3758/s13421-018-0839-z
https://doi.org/10.1111/jgs.12607
https://doi.org/10.1080/13825585.2019.1617396
https://doi.org/10.1016/0022-2496(66)90002-2
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0029382
https://doi.org/10.2307/271083
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1207/S15324818AME1404_1
https://doi.org/10.1207/S15324818AME1404_1
https://doi.org/10.1002/ejsp.2042
https://doi.org/10.1002/ejsp.2042
https://doi.org/10.1016/j.ypmed.2007.07.035
https://doi.org/10.1080/13548506.2017.1327666
https://doi.org/10.1080/13548506.2017.1327666
https://doi.org/10.2307/1412159
https://doi.org/10.1111/j.2044-8295.1910.tb00207.x
https://doi.org/10.1111/j.2044-8295.1910.tb00207.x
https://doi.org/10.1111/j.2044-8295.1910.tb00206.x
https://doi.org/10.1371/journal.pmed.1001380

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Method
	Simulations
	Model specifications
	Analyses

	Results
	Aim 1: the choice of an adequate multiple regression model including all relevant predictors
	Aim 2: the choice of an adequate criterion variable for the regression model
	Aim 3: the choice of an adequate sample size
	Aim 4: the role of reliability of the measurement instruments
	Aim 5: the special role of the pre-test score as a predictor in a multiple regression

	Discussion
	Limitations

	Conclusion and recommendations
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

