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Abstract

Background: A downwards secular trend in the incidence of cardiovascular disease (CVD) in England was identified
through previous work and the literature. Risk prediction models for primary prevention of CVD do not model this
secular trend, this could result in over prediction of risk for individuals in the present day. We evaluate the effects of
modelling this secular trend, and also assess whether it is driven by an increase in statin use during follow up.

Methods: We derived a cohort of patients (1998–2015) eligible for cardiovascular risk prediction from the Clinical
Practice Research Datalink with linked hospitalisation and mortality records (N = 3,855,660). Patients were split into
development and validation cohort based on their cohort entry date (before/after 2010). The calibration of a CVD
risk prediction model developed in the development cohort was tested in the validation cohort. The calibration
was also assessed after modelling the secular trend. Finally, the presence of the secular trend was evaluated under
a marginal structural model framework, where the effect of statin treatment during follow up is adjusted for.

Results: Substantial over prediction of risks in the validation cohort was found when not modelling the secular
trend. This miscalibration could be minimised if one was to explicitly model the secular trend. The reduction in risk
in the validation cohort when introducing the secular trend was 35.68 and 33.24% in the female and male cohorts
respectively. Under the marginal structural model framework, the reductions were 33.31 and 32.67% respectively,
indicating increasing statin use during follow up is not the only the cause of the secular trend.

Conclusions: Inclusion of the secular trend into the model substantially changed the CVD risk predictions. Models
that are being used in clinical practice in the UK do not model secular trend and may thus overestimate the risks,
possibly leading to patients being treated unnecessarily. Wider discussion around the modelling of secular trends in
a risk prediction framework is needed.
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Background
Cardiovascular disease (CVD) risk prediction models
such as QRISK are developed on longitudinal data
spanning a long period of time (QRISK3 runs from 1998
to 2015 [1]). These models are updated each year to in-
clude the most recent data and at times remove old data.
However, any secular trend in the outcome itself occur-
ring within the time span of the development dataset is
not modelled. Pate et al. [2] found a large downwards
secular trend in CVD incidence over this time period in
England. Downwards secular trends in the incidence of
coronary heart disease, myocardial infarction, and stroke
have also been reported in the literature [3–6]. Not
including this trend in the prediction modelling could be
resulting in the miscalibration of risk scores for patients
in the present day, while including it would cause a large
reduction in the predicted risks of these patients. Further
research around this is needed, to quantify the impact of
modelling this secular trend, and identify what is driving
it and whether it should be modelled or not. In particu-
lar, it is important to clarify if the secular trend is being
driven by an increase in statin use over time. In this
scenario it should not be modelled, as it would result in
risks predictions becoming lower and patients would be
subsequently advised not to initiate statin treatment,
despite this being the cause for the drop in risk.
In this paper we evaluate the effects of developing a

model using the same methodology as QRISK3 (in the
presence of the secular trend) and producing risk scores
for patients in a time period after that of model develop-
ment. We then propose an approach to incorporate
secular trends in prediction models from longitudinal
data, accounting for changes in treatment during follow
up. This is formalised in four sequential analyses: A)
quantifying the miscalibration in risk predictions of
patients in the present day caused by this secular trend,
B) assessing the sensitivity of the risk prediction model
created to changes in patient characteristics, which could
explain any miscalibration, C) an attempt to model the
secular trend to remove miscalibration, D) developing a
marginal structural model (MSM) to assess secular trend
after adjusting for statin use during follow up.

Methods
All analyses are carried out separately for male and fe-
male cohorts, as they have separate CVD risk prediction
models in practice.

Data source
A ‘CVD primary prevention cohort’ was defined from a
Clinical Practice Research Datalink (CPRD) [7] dataset
linked with Hospital Episode Statistics [8] (HES) and
Office for National Statistics [9] (ONS) using the same
criteria as QRISK3 [1]. The study period was 1st Jan

1998 to 31st Dec 2015 and the cohort entry date defined
as the latest of: date turned 25; one year follow up as a
permanently registered patient in CPRD; or 1st Jan
1998. Patients were excluded if they had a CVD event
(identified through CPRD, HES or ONS) or statin
prescription prior to their cohort entry date. The end of
follow up was: the earliest date of patient’s transfer out
of the practice or death; last data collection for practice;
31st Dec 2015 or five years follow up. Patients were
censored after five years as five year risk predictions are
used throughout this study. All predictor variables in-
cluded in the QRISK3 [1] risk prediction model were
extracted at cohort entry date. Code lists and detailed
information on how variables were defined is provided
in Additional file 1.

Quantifying the miscalibration in risk predictions of
patients in the present day
The first step was to quantify the miscalibration induced
by developing a model over a time period in which a
secular trend in CVD was present, and using it to calcu-
late risk predictions for patients after this time period.
Missing data for body mass index (BMI), systolic blood
pressure (SBP), SBP variability, cholesterol, high density
lipoprotein (HDL), smoking status and ethnicity in the
CVD primary prevention cohort was imputed using
multiple imputation by chained equations. The imput-
ation model included all predictor variables from QRIS
K3, the Nelson Aalen estimation of the cumulative base-
line hazard at the point of censoring or an event, and
the outcome indicator. The package used to do this was
mice [10]. Only one imputed dataset was produced, as
running the analysis across multiple datasets and com-
bining estimates was not essential to answering our
hypotheses, and the computational time to do so was
significant. Also the bespoke imputation procedure car-
ried out on the data for developing the MSM (described
later) resulted in a single dataset, so the decision was
made across all analyses for consistency.
Patients were then split into two cohorts defined by

their cohort entry date. Those with a cohort entry date
prior to 1st Jan 2010 were put into the development
cohort, with the remaining patients making up the valid-
ation cohort. Patients in the development cohort were
then censored at 1st Jan 2010 if their follow up extended
beyond this point. The data was split like this because if
QRISK3 was replicated exactly using data from 1998 to
2015 for model development, it would not have been
possible to assess the calibration of risk scores for
patients after 2015, as they would have no follow up.
A Cox proportional hazards model using the same

predictor variables as QRISK3 was then fit to the devel-
opment cohort. Fractional polynomials of age, BMI and
SBP were tested for using the mfp package [11]. Five
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year risk predictions were then generated for both the
development and validation cohort using this model,
and the calibration of these risks was assessed. Calibra-
tion was assessed by splitting individuals from the cohort
into 10 groups by their predicted risk (deciles). The
Kaplan Meier estimate of risk (observed risk) was then
plot against the average predicted risk (predicted risk)
within each decile. Eq. (1) corresponds to this model,
where h(t) denotes the hazard function, h0(t) the
baseline hazard at time t, X0 the vector of predictors at
cohort entry date and βX a vector of the associated
coefficients .

h tð Þ ¼ h0 tð Þ� exp βX :X0ð Þ ð1Þ

Attempt to model the secular trend to remove
miscalibration in validation cohort
Given the miscalibration that was found in the validation
dataset (see results), this indicated that the secular trend
could not be explained by changes in predictor variables
between the development and calibration dataset. This
provided support for modelling the secular trend in the
development cohort, to try and remove the miscalibra-
tion in the validation cohort. The same Cox model
defined by eq. (1) was fitted to the development cohort,
but with cohort entry date included as a variable, re-
ferred to as calendar time. This is denoted by T0 in Fig. 1
(DAG-1) and eq. (2). Unmeasured confounding is left off
the DAGs to reduce the number of arrows and maintain
clarity (particularly for DAG-2), however it may be
present. The implications of unmeasured confounding
are discussed in the limitations section (see exchange-
ability assumption).
All DAGs were generated using the dagitty software

[12]. Fractional polynomials for this variable were tested
using the mfp package [11]. Five year risks were

generated for validation cohort and the calibration of the
models was assessed.

h tð Þ ¼ h0 tð Þ� exp βT :T 0 þ βX :X0ð Þ ð2Þ

Developing an MSM to assess secular trend after
adjusting for statin use during follow up
MSM – overview
A major concern was that an increase in statin use over
time may have caused some of the reduction in CVD
incidence. If the secular trend was driven by statin use,
then modelling it (which would result in lower predicted
risks) would make lots of patients whose risk if they
remained untreated was > 10%, ineligible for treatment.
Statin use at baseline could not have been driving this
secular trend as the development cohort only considered
patients who were statin free at baseline, however
patients could initiate statins during follow up. The aim
of this section was therefore to assess the presence of
the secular trend when adjusting for statin use during
follow up.
It is possible to adjust for changes in predictor

variables and statin use post baseline using standard
regression techniques (such as an interval censored Cox
model). This would result in an estimate of the direct
effect of calendar time on CVD incidence, the portion of
which is not explained through changes in the predictor
variables and statin use during follow up. Such a model
would be sufficient for assessing whether the secular
trend remained after adjusting for statin use during
follow up in the development cohort. However the
model could not be used in a risk prediction setting, as
future values of predictor variables would be required to
generate risk scores. When generating a risk score for a
new individual, you would not know the future values of
their predictor variables. Furthermore, the coefficient of
statin use during follow up would not be causal, and the
risk of a patient if they did/did not initiate statins during
follow up could therefore not be estimated [13]. There-
fore the proposed method to answer our question was
an MSM.
MSMs were developed to calculate the causal effect of

a time dependent exposure on an outcome in an obser-
vational setting, where the treatment and outcome are
confounded by time varying covariates [14, 15]. Sperrin
et al. [13] have shown how MSMs can be used to adjust
for ‘treatment drop in’, the issue of patients starting
treatment during follow up in a dataset being used for
risk prediction. Consider DAG-2 (Fig. 2), where k = 0
denotes baseline, and k = 1, 2 two time points during
follow up (this could be extended to any number of time
points). Ak denotes the statin treatment status at time k,

Fig. 1 DAG-1
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Xk covariate information prior to time k, and Tk calendar
time at time k. Note A0 is not included in DAG-2 as
A0 = 0 by definition of the CVD primary prevention
cohort. In the absence of unmeasured confounding,
MSM’s allow for the estimation of E½Y ðA ¼ 0ÞjX0� ,
where A denotes the entire treatment course during
follow up, as opposed to E[Y(A0 = 0)| X0]. The strategy
involves adjusting for variables at baseline as normal and
then re-weighting the population by variables that may
be on the treatment causal pathway, breaking the links
from Xk to Ak. In the resulting pseudo population the
allocation of treatment during follow up happens at
random (within the levels of the variables defined at
baseline). This allows the generation of risk scores using
data at baseline only, but also accounting for statin use
during follow up (the risk scores developed in a counter-
factual scenario that no-one receives statin treatment).
Importantly for this study, if calendar time only effected
the outcome Y through increasing statin use in follow
up, when using an MSM the direct effect of T0 on Y
would be zero, and adjusting for calendar time at base-
line would not result in a drop in the average risk score
of patients in the validation cohort.
The estimator of E½Y ðA ¼ 0ÞjX0� is only valid under

the three identifiability assumptions of causal inference
(exchangeability, consistency and positivity) and correct
specification of the marginal structural model, and the
model used to calculate the weights. The viability of these
assumptions in this study is discussed in the limitations.

MSM - data derivation
The CVD primary prevention cohort was used as a start-
ing point. However in order to derive the MSM, patient
information was extracted at 10 time points, at 6 month
intervals from the cohort entry date, denoted as Xk and
Ak for k = 0, 1, 2,…, 9. The variable Xk contained all the
QRISK3 predictors evaluated at time k (for test data this
was the most recent value prior to time k). Ak = 1 if a pa-
tient had initiated statin treatment prior to k, and Ak = 0
otherwise. As patients were excluded from the cohort if
they have had a statin prescription prior to their cohort
entry date, A0 = 0 for all patients. If a CVD event
happened within 6 months of a statin initiation, the
statin initiation was ignored. This was to stop any effects
of poorly recorded data (start of statins may have been
triggered by the CVD event).
A key issue in deriving the dataset was missing data. A

combination of imputation techniques were implemented
to maintain consistency in variable information within
each patient across the 10 time points. First, where
possible, last observation carried forward imputation was
implemented within each patient. Then, where possible,
next observation carried backwards imputation was used
to impute the remaining missing data. However, there was
still missing data for patients who had no entries across all
10 time points for a given variable. The data at baseline
was then extracted and missing values were imputed using
one stochastic imputation. All predictor variables, Nelson
Aalen estimate of baseline hazard and the outcome indica-
tor were included in the imputation model (same process
that was used to impute the data for the standard Cox
model). These imputed baseline values were then used at
each following time point (last observation carried forward
imputation).

MSM - calculation of weights and specification of model
The MSM was fitted as a weighted interval censored
Cox model using the coxph function from the survival
package [16]. The weights themselves were calculated
using the IPW package [17]. Stabilised weights were
calculated as is common practice to provide more precise
estimation of the weights. For individual i, the formula for
the weight of interval/time period K was defined as:

swi ¼
YK

k¼0

p̂�ki
� �Aki 1 − p̂�ki

� �1 − Aki=
YK

k¼0

p̂kið ÞAki 1 − p̂kið Þ1 − Aki

ð3Þ
where p̂�ki ¼ P½Ak ¼ 1jAk − 1;X0� and p̂ki ¼ P½Ak ¼ 1j
Ak − 1;Xk ;X0�, and Ak and Xk denote treatment history
and covariate history respectively up time point k for indi-
vidual i. More simply put, the denominator is the probabil-
ity that the individual received the treatment they did,
based on time varying predictors and predictors at baseline.

Fig. 2 DAG-2
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The numerator is the probability that the individual re-
ceived the treatment they did, based on predictors at base-
line only. The models used to estimate the probability of
treatment when deriving the weights were interval censored
Cox models. If calendar time at baseline, T0, was being
included in the MSM, it was also included as a stabilising
factor in the calculation of the weights as part of X0.
Detailed information on how to calculate weights is also
given in the literature [15, 17, 18] and the formula for
calculating weights (and notation for variables) matches
that from the work by Sperrin et al. [13]
Two MSM’s were created, one that adjusted for calen-

dar time at baseline and one that did not:

h tð Þ ¼ h0 tð Þ� exp βA:At þ βX :X0ð Þ ð4Þ

h tð Þ ¼ h0 tð Þ� exp βA:At þ βX :X0 þ βTT 0ð Þ ð5Þ
The same fractional polynomials of age, BMI, SBP and

calendar time that were found to be optimal in the
standard Cox models were used in the MSM, and in the
models used to calculate the weights. Ideally we would
have re-calculated the optimal fractional polynomials for
the weighted model fitted to the interval censored data,
however software was not available to do this. Using the
same fractional polynomials from the standard Cox ana-
lysis was preferred to having no fractional polynomials,
as removing them led to poorly calibrated models. The
coefficient βA is the average causal effect of initiating
statin treatment after adjusting for all other variables. It
is quite common to allow the effect of statin treatment
to be modified by baseline variables, which could be
achieved by including interaction terms AtX0. However
the primary aim was to account for statin use in follow
up, rather than calculate the effect of statin treatment in
different subgroups, so we did not feel this was necessary.
As a comparison, unweighted interval censored Cox

models using only data at baseline (i.e. equation (1) and
eq. (2) were fitted to the same data as the MSM. The ef-
fect of modelling the secular trend could then be
assessed when using (interval censored) Cox regression,
as well as under the MSM framework. This was pre-
ferred to re-using the standard Cox models directly,
which were fitted to a different dataset.

MSM – analysis of interest
The MSM was used to generate risk predictions assum-
ing no statin treatment at baseline or during follow up,
E½Y jX0;A ¼ 0� , the estimator of E½Y ðA ¼ 0ÞjX0� . The
interval censored Cox model only produced risk predic-
tions based on no statin treatment at baseline, E[Y| X0,
A0 = 0], the estimator of E[Y(A0 = 0)| X0, ]. The outcome
of interest was the risk ratio of the average predicted risk

of patients in the validation cohort, before and after
adjusting for calendar time at baseline in the MSM
framework, E½Y ðA ¼ 0ÞjX0;T0�=E½Y ðA ¼ 0ÞjX0� . This
was compared to the risk ratio after adjusting for calen-
dar time at baseline in the unweighted interval censored
Cox models, (E[Y(A0 = 0)| X0, T0]/E[Y(A0 = 0)| X0]).

Results
Description of data
Differences between the development and validation
cohorts are shown in Table 1. In the validation cohort,
patients were generally younger and healthier (lower
prevalence of comorbidities). The levels of missing data
are reported in Table 2. The amount of missing data was
lower in the validation cohorts compared to the develop-
ment cohorts, and in the female cohorts compared to
the male cohorts. The variables with highest levels of
missing data (> 50% in some cases) were SBP variability,
cholesterol/HDL ratio and ethnicity.

Quantifying the miscalibration in risk predictions of
patients in the present day
Figure 3 shows the calibration of the model in the devel-
opment and validation cohorts. While the model was
well calibrated in the development cohort, as expected,
there was a large under prediction of risks in the valid-
ation cohort. Statin prevalence and incidence rates in
the primary prevention cohort are provided in Supple-
mentary Tables 1 and 2 in Additional file 2.

Attempt to model the secular trend to remove
miscalibration in validation cohort
The calibration in the validation cohort after including
secular trend into the model is shown in Fig. 4. There
was still an under-prediction in the second highest risk
group for both the female and male cohorts, but overall
there was a substantive improvement in calibration com-
pared to not modelling the secular trend.

Developing an MSM to assess secular trend after
adjusting for statin use during follow up
The average predicted risks of patients in the validation co-
hort before and after adjusting for calendar time, in the
interval censored Cox and MSM setting, are presented in
Table 3. The risk reduction caused by accounting for secu-
lar trend was marginally smaller under the MSM frame-
work compared to the standard Cox. This means the effect
of secular trend was slightly smaller when adjusting for sta-
tin use during follow up. However the difference would not
be clinically significant, and there was still a large drop in
risks. The hazard ratios from the two MSM’s are provided
in Table 4, the coefficient of statin initiation is a causal esti-
mate and can be used to help verify if the model has been
derived correctly. Calibration of the interval censored Cox
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model and the MSM are presented in Supplementary
Figs. 1 to 4 in Additional file 2, both are well calibrated.

Discussion
This results in this paper show that not modelling the
secular trend in CVD incidence in England causes over
prediction of risks for patients in the present day. Also,

the secular trend in CVD incidence cannot be explained
by changes in statin use over time, because when adjust-
ing for calendar time in the MSM framework the risk
predictions of patients in the validation cohort still
dropped substantially.
These findings support the need to adjust for calendar

time in prediction models used to drive clinical decision

Table 1 Baseline variables in development and validation cohorts

Male development Male validation Female development Female validation

N 1,497,511 393,071 1,555,010 410,068

Age 43.07 (14.84) 37.18 (12.42) 44.56 (16.22) 37.4 (13.41)

BMI 26.07 (4.43) 26.3 (4.8) 25.54 (5.47) 25.78 (5.96)

Cholesterol/HDL ratio 4.51 (1.4) 4.32 (1.37) 3.76 (1.21) 3.52 (1.1)

SBP 130.67 (17.04) 127.71 (14.07) 125.15 (19.04) 119.53 (14.43)

SBP variability 10.37 (6.92) 9.39 (6.37) 9.66 (6.21) 8.87 (5.17)

Atrial fibrillation 0.61% 0.44% 0.48% 0.28%

Atypical anti-psychotic medication 0.25% 0.62% 0.23% 0.58%

Corticosteroid use 0.31% 0.22% 0.51% 0.36%

CKD stage 3/4/5 0.25% 0.57% 0.33% 0.95%

Diabetes (type 1) 0.26% 0.36% 0.19% 0.27%

Diabetes (type 2) 1.56% 0.93% 1.26% 0.78%

Ethnicity = Asian other 1.56% 2.84% 1.49% 2.88%

Bangladesh 0.34% 0.79% 0.24% 0.48%

Black 2.93% 5.80% 3.12% 5.90%

Chinese 0.45% 0.87% 0.56% 1.17%

Indian 2.49% 4.18% 2.21% 3.63%

Mixed 0.69% 1.47% 0.75% 1.64%

Other 1.53% 2.72% 1.45% 2.84%

Pakistan 0.92% 1.94% 0.76% 1.64%

White 89.09% 79.39% 89.42% 79.81%

Family history of CHD 10.67% 12.36% 14.89% 15.80%

HIV/AIDS 0.06% 0.19% 0.04% 0.13%

Migraine 2.71% 3.85% 6.73% 9.30%

Rheumatoid arthritis 0.28% 0.17% 0.74% 0.47%

Severe mental illness 4.59% 4.55% 9.07% 6.95%

SLE 0.01% 0.01% 0.09% 0.11%

Smoking = Never 47.37% 44.77% 57.03% 53.30%

Smoking = Ex 16.09% 20.59% 14.97% 22.49%

Smoking = Yes 36.53% 34.63% 28.00% 24.21%

Townsend = 1 (least deprived) 22.79% 17.30% 23.08% 17.70%

Townsend = 2 22.32% 18.38% 22.76% 19.03%

Townsend = 3 20.77% 20.82% 21.19% 21.17%

Townsend = 4 20.23% 22.85% 19.91% 22.53%

Townsend = 5 13.89% 20.65% 13.06% 19.57%

Treated hypertension 4.82% 3.28% 6.81% 3.81%

Mean (sd) is given of continuous variables, and proportions for categorical variables. BMI body mass index, CKD chronic kidney disease, HDL high-density
lipoprotein, SBP systolic blood pressure, SLE systemic lupus erythematosus
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making in England. However the drop in risk caused by
accounting for this secular trend is drastic and changes
should not be made in practice without the generation of
more evidence. Most importantly, these findings should
be reproduced in a different dataset. This should not be
difficult as QRISK3 has been developed in the QResearch
database, and QRISK2 has been externally validated in the
Health Improvement Network database [19]. This means
analysis ready datasets exist and could be tested for
secular trends in CVD with minimal extra work.

The next step would then be to try and identify what
is causing this drop in CVD incidence. In this study, we
ruled out one potential cause, the use of statins during
follow up. The secular trend could also be driven by
increasing use of other CVD medications, such as
antihypertensives. We focused on statins as this is the
recommended treatment for primary prevention of
CVD, but the impact of other medications should also
be explored. This could be done on a simple level, by
assessing how many patients in the development cohort

Table 2 Amount of missing data in the development and validation cohorts

Male Development Male Validation Female Development Female Validation

SBP 41.49% 38.12% 20.18% 14.46%

SBP variability 80.18% 74.80% 51.92% 40.86%

BMI 49.56% 34.25% 34.36% 19.09%

Cholesterol/HDL ratio 59.13% 70.98% 56.59% 69.61%

Smoking 41.26% 10.32% 30.22% 4.37%

Ethnicity 69.42% 32.73% 65.60% 28.83%

Townsend 0.12% 0.07% 0.12% 0.06%

Fig. 3 Model calibration in the development (pre 2010) and validation (post 2010) cohorts
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initiate the medications of interest during follow up. If
the number of individuals doing so looks to be signifi-
cant, then the impact could be assessed formally using
the same techniques as this study. Another possible
cause of the secular trend could be changes in recording
practices. If this was the true cause this would be an-
other reason not to model the secular trend, as it would
not represent a true change in the underlying disease
process. Primary care records in particular may be sus-
ceptible to differential recording over time as monetary
incentives are given for recording specific things. How-
ever, a large portion of the events are identified in HES
and ONS which will not have suffered from the same
level of differential recording. This is backed up by the
trends reported in the literature, which are also not
based on primary care codes [3–6]. Further work in a
causal framework to establish what is causing this drop
would be really valuable and could provide a much
stronger argument for modelling the secular trend (e.g.

if its driven by lifestyle changes). However, given the
current evidence, there is still not a strong argument
against modelling it.
Risk scores should be based on current data; this is

why the series of QRISK models have used a rolling win-
dow for their development datasets. If there was a much
higher incidence of CVD in the 1990s due to various dif-
ferences in healthcare management, we would not want
to incorporate this into current risk scores as it would
inflate the risks. Therefore, there is also no reason to as-
sume the incidence of CVD has been the same through-
out the time window of data we are using. In this sense,
current approaches to risk prediction are contradictory.
We are happy to omit old data from our cohort period-
ically to reflect changes in the population; but we are
not willing to model changes in the population over the
time period in which we have defined our cohort. If
wanting to do so, dynamic models are what should be
used to model changes over time.

Fig. 4 Calibration in the validation cohort when adjusting for calendar time

Table 3 Average predicted CVD risk for patients in the validation cohort before and after secular trend was introduced, using an
MSM and an interval censored Cox model

Predicted CVD risk (average) Relative
reduction
in risk

Not adjusted for secular trend Adjusted for secular trend

Interval censored Cox

Female 1.284% 0.826% 35.68%

Male 1.911% 1.274% 33.31%

Marginal structural model

Female 1.287% 0.859% 33.24%

Male 1.941% 1.307% 32.67%
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With respect to the dynamic modelling methods out-
lined by Jenkins et al., [20] the current approach in Eng-
land implemented by QRISK series is discrete model
updating (models are re-calculated in a more recent
dataset each year). In this study we modelled the secular
trend by including a calendar time variable at baseline.
This effectively allowed the intercept (or baseline haz-
ard) to vary by calendar time, and is a special case of a
varying coefficient model. However, there are more
complex methods such as Bayesian model updating and
varying coefficient models that allow changes in pre-
dictor coefficients over time, and could give more con-
trol over how the secular trend is modelled. If a dynamic
model was to be developed for use in practice, these

methods should be considered, alongside how to use
these methods within an MSM framework. Arguably the
use of an MSM should be standard procedure in the
presence of ‘treatment drop in’ during follow up, as a
normal Cox model under predicts the risk of patients if
they were to remain untreated, which is what treatment
decisions should be based on [13]. If modelling a secular
trend in the outcome that was being partially driven by
this treatment drop in (which was not the case in this
study), it would be even more important to work under
an MSM framework. However, currently it is not clear
how the more complex dynamic modelling approaches
would be handled in an MSM framework. This is there-
fore a key area for future research.

Table 4 Log hazard ratios (sd) of the categorical variables in the marginal structural model with and without secular trend included
as a predictor variable

Female Male

Secular trend
not accounted

Secular trend
accounted

Secular trend
not accounted

Secular trend
accounted

Statin initiation −0.34 (0.03) − 0.26 (0.03) − 0.29 (0.03) − 0.22 (0.03)

Ethnicity: Asian other − 0.05 (0.14) 0.07 (0.14) − 0.01 (0.12) 0.10 (0.12)

Bangladeshi 0.24 (0.33) 0.35 (0.33) 0.71 (0.19) 0.80 (0.19)

Black −0.11 (0.09) −0.01 (0.09) − 0.64 (0.10) −0.56 (0.10)

Chinese −0.22 (0.27) −0.13 (0.27) − 0.86 (0.30) −0.77 (0.30)

Indian 0.24 (0.09) 0.31 (0.09) 0.20 (0.07) 0.26 (0.07)

Other ethnic group −0.39 (0.16) −0.31 (0.16) − 0.19 (0.12) −0.11 (0.12)

Pakistani 0.21 (0.18) 0.33 (0.18) 0.66 (0.11) 0.75 (0.11)

Townsend = 2 0.10 (0.02) 0.09 (0.02) 0.01 (0.01) 0.01 (0.01)

Townsend = 3 0.12 (0.02) 0.12 (0.02) 0.08 (0.01) 0.08 (0.01)

Townsend = 4 0.18 (0.02) 0.18 (0.02) 0.14 (0.01) 0.15 (0.01)

Townsend = 5 (most deprived) 0.31 (0.02) 0.30 (0.02) 0.24 (0.02) 0.23 (0.02)

Atrial fibrillation 0.68 (0.03) 0.68 (0.03) 0.53 (0.03) 0.53 (0.03)

Atypical antipsychotic medication 0.38 (0.07) 0.52 (0.07) 0.40 (0.09) 0.55 (0.09)

CKD stage 3/4/5 0.02 (0.05) 0.14 (0.05) 0.27 (0.05) 0.33 (0.05)

Corticosteroid use 0.49 (0.04) 0.49 (0.04) 0.44 (0.04) 0.42 (0.04)

Type 1 diabetes 0.84 (0.09) 0.84 (0.09) 0.41 (0.08) 0.40 (0.08)

Type 2 diabetes 0.65 (0.02) 0.63 (0.02) 0.60 (0.02) 0.58 (0.02)

Erectile dysfunction NA NA 0.16 (0.04) 0.23 (0.04)

Family history CHD 0.15 (0.01) 0.15 (0.01) 0.25 (0.01) 0.25 (0.01)

HIV 0.20 (0.71) 0.27 (0.71) 1.00 (0.19) 1.08 (0.19)

Hypertension 0.18 (0.01) 0.20 (0.01) 0.20 (0.01) 0.22 (0.01)

Migraine 0.17 (0.02) 0.17 (0.02) 0.19 (0.03) 0.19 (0.03)

Rheumatoid arthritis 0.28 (0.03) 0.28 (0.03) 0.25 (0.05) 0.25 (0.05)

Severe mental illness 0.36 (0.01) 0.33 (0.01) 0.28 (0.02) 0.26 (0.02)

Smoking = Ex 0.11 (0.01) 0.13 (0.01) 0.09 (0.01) 0.11 (0.01)

Smoking = Current 0.44 (0.01) 0.44 (0.01) 0.45 (0.01) 0.46 (0.01)

SLE 0.40 (0.13) 0.41 (0.13) 0.26 (0.28) 0.23 (0.28)

CHD coronary heart disease, CKD chronic kidney disease, SLE systemic lupus erythematosus
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It is worth noting that it may not be necessary to build
an MSM in order to rule out treatment initiation as the
cause for a secular trend. The method was used in this
paper to highlight the potential for MSM’s to be used in
this manner. In practice, it would be sensible to look at
the overall rate of treatment initiation (and prevalence)
first. The incidence and prevalence rates of statin treat-
ment in this cohort are provided in Additional file 2. We
see that statin initiation rates range between 10 and 20
initiations per 1000 person years (which works out at
about 1–2% of the population each year). Given the haz-
ard ratios of statin initiation (between 0.7–0.8), even if
everybody stopped statin initiation, this would affect too
small of a proportion of the cohort to be driving the
drop in risk. Therefore in this particular scenario, the
use of an MSM may not have been required to rule out
statins as the cause for the secular trend. There are how-
ever strong arguments for MSM’s to be used in practice
regardless of the presence of secular trends, in order to
appropriately estimate patient risk if they were/were not
to initiate treatment.

Limitations
There are several limitations to the study. The first is that
the estimate of E½Y ðA ¼ 0ÞjX0� is only valid if the as-
sumptions of exchangeability, consistency, positivity (iden-
tifiability assumptions) and correct model specification are
all met. The untestable assumption of exchangeability, or
no unmeasured confounding, represents the fundamental
problem with deriving causal estimates from observational
data. Specifically with regards to our model, this is violated
if there are any other variables which predict both treat-
ment exposure and the outcome of CVD. With respect to
DAG-2, this would be shown by another node with arrows
going into both Ak and the outcome Y. If violated the esti-
mate of statin treatment will be biased (and subsequently
the risk scores conditional on no statin treatment during
follow up will be biased too). Given the large number of
predictors available we hope that the unmeasured con-
founding is not too extensive. The consistency assump-
tion, that a subject’s counterfactual outcome under their
observed exposure history is precisely their observed
outcome, is generally considered a reasonable assumption
when estimating the effects of medical treatments [18].
This is maybe less true in our data as a patient could initi-
ate statins any time over a 6month period and be assigned
the same exposure value. However we did not believe that
initiating within a 6month interval would have a signifi-
cant impact on the outcome, and reducing the size of the
intervals would have been impractical. The positivity
assumption, that there were unexposed and exposed indi-
viduals at every level of the confounders, was reasonable
given the large size of the development dataset and the
resulting number of statin initiations.

The assumption of correct model specification, as is
the case with all models, will have been violated to some
extent in this study. For example, the fractional polyno-
mials of continuous variables calculated from the stand-
ard Cox models were used in the MSM. It was not clear
how to estimate optimal functional forms under the
MSM framework, but re-using the functional forms
from the Cox models provided better model perform-
ance than just having linear terms. Also, not all variables
and interaction terms from the MSM were used in the
model to calculate the weights. Doing so produced
extreme values weights, and therefore variables in the
weighting models were chosen to minimise this. This
follows the advice of Cole and Hernan, who state “one
may wish to omit control for weak confounders that
cause severe non-positivity bias because of a strong asso-
ciation with exposure” [18]. There is no clear-cut way to
do this, and therefore a more appropriate set of predic-
tors in the weighting model may have existed. Finally,
we only considered the effect of initiating statin treat-
ment. A more detailed MSM which also modelled dis-
continuation from treatment would allow the calculation
of a patients risk if they were to initiate treatment at
baseline and not discontinue (or discontinue after a fixed
period of time), as opposed to just the risk if they initiate
treatment at baseline. However, the density of data avail-
able in CPRD, or any other primary care electronic health
record is probably not sufficient for this. To model statin
initiation and discontinuation at that granularity, more
regular updates on predictor variables would be required.
The second limitation was that the results are not directly

applicable to the models used in practice in the UK, which
are based on 10-year risk scores. However, we have no rea-
son to think the results would not be generalizable because
a similar secular trend was found in previous work when
dealing with 10-year risks [2]. The third limitation was the
level of missing data. Changes in the time varying predictor
variables is what drives the weighting in the MSM in order
to calculate the effect of statin initiation. Therefore not hav-
ing predictor information at each time point, and re-using
predictor information from previous time points may have
led to a biased estimate of statin initiation.
One way to assess the potential impact of limitations 1

(violating assumptions) and 3 (missing data) was to check
the hazard ratio for initiating statin treatment (ranging be-
tween 0.71–0.81) was in a sensible range. We compared
this to the effect estimates of statins from trials reported
in the appendices of the NICE guidelines (see section
L.2.3.4), [21] and there is reasonable agreement. It should
be noted that they report relative rates for specific CVD
outcomes which are not directly comparable to our com-
posite definition. However, the similarities that exist still
ease concerns over limitations 1 and 3, and that the model
was well specified despite these limitations.
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Conclusions
In conclusion, inclusion of the secular trend into the
model substantially changed the CVD risk predictions.
Models that are being used in clinical practice in the UK
do not model secular trend and may thus overestimate
the risks, possibly leading to patients being treated
unnecessarily.
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