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Abstract

Background: Mendelian randomization (MR) has been widely applied to causal inference in medical research. It
uses genetic variants as instrumental variables (IVs) to investigate putative causal relationship between an exposure
and an outcome. Traditional MR methods have mainly focussed on a two-sample setting in which IV-exposure
association study and IV-outcome association study are independent. However, it is not uncommon that participants
from the two studies fully overlap (one-sample) or partly overlap (overlapping-sample).

Methods: We proposed a Bayesian method that is applicable to all the three sample settings. In essence, we
converted a two- or overlapping- sample MR to a one-sample MR where data were partly unmeasured. Assume that
all study individuals were drawn from the same population and unmeasured data were missing at random. Then the
missing data were treated au pair with the model parameters as unknown quantities, and thus, were imputed
iteratively conditioning on the observed data and estimated parameters using Markov chain Monte Carlo. We
generalised our model to allow for pleiotropy and multiple exposures and assessed its performance by a number of
simulations using four metrics: mean, standard deviation, coverage and power. We also compared our method with
classic MR methods.

Results: In our proposed method, higher sample overlapping rate and instrument strength led to more precise
estimated causal effects with higher power. Pleiotropy had a notably negative impact on the estimates. Nevertheless,
the coverages were high and our model performed well in all the sample settings overall. In comparison with classic
MR, our method provided estimates with higher precision. When the true causal effects were non-zero, power of their
estimates was consistently higher from our method. The performance of our method was similar to classic MR in
terms of coverage.

Conclusions: Our model offers the flexibility of being applicable to any of the sample settings. It is an important
addition to the MR literature which has restricted to one- or two- sample scenarios. Given the nature of Bayesian
inference, it can be easily extended to more complex MR analysis in medical research.
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Background
Many questions in medical research address putative
causal nature of the relationship between a clinical out-
come and a corresponding risk factor or exposure. Ran-
domised controlled trials (RCTs) are ideal for this pur-
pose, but are often infeasible due to cost or ethical consid-
erations. With the aid of proper statistical methodology,
causal inference can be made from observational studies.
This is a context where Mendelian randomization (MR)
[1–3] can play an important role. MR uses genetic variants
as instrumental variables (IVs) to estimate the causal effect
of an exposure on an outcome of interest [4, 5]. Without
loss of generality, we assume the IVs are single nucleotide
polymorphisms (SNPs).
MR analysis requires data from two association stud-

ies: IV-exposure and IV-outcome. Most of MR methods
[6–9] have focussed on a two-sample scenario where the
IV-exposure and IV-outcome associations were estimated
separately from independent studies. In other words,
there were no shared individuals between these two stud-
ies. A limited number of one-sample MR methods, if
a single group of individuals come with a complete set
of measurements (IVs, exposure and outcome), are also
available in the literature [5, 10–12]. Little attention has,
however, been devoted to overlapping samples where
the two studies have a subset of individuals in com-
mon. For example, an investigator has identified a number
of SNPs associated with diabetes from a genome-wide
association study. Her interest is in whether expression
levels of certain genes are causal risk factors of dia-
betes. But gene expression can be measured only from
a subset of participants of the SNP-diabetes association
study due to cost. Another example is that the inves-
tigator has collected data from two small independent
IV-BMI and IV-diabetes association studies, with the aim
to estimate the causal effect of BMI on diabetes using
MR. To enhance statistical power, a natural way is to
incorporate previous studies that have complete sets of
observed data on IV, BMI and diabetes into her current
studies.
To the best of our knowledge, few studies have inves-

tigated overlapping-sample MR. Burgess et al. [13] have
shown that sample overlap increases type I error and leads
to bias in classic MR methods. LeBlanc et al. [14] have
developed a correction method of overlapping samples by
decorrelation. There is a pressing need for the develop-
ment of a flexible MR approach that can be used for one-,
two- as well as overlapping- samples. Here we propose a
novelMRmethod based on the Bayesian framework intro-
duced by Berzuini et al [5]. Our method preserves data
information while avoiding bias. It exploits two simple,
but powerful, ideas: (i) the overlapping-sample problem is
a special case of the more general situation where some or
all the individuals have missing values in exposure or in

outcome; and (ii) a Bayesian approach can coherently deal
with missing data by treating them as additional parame-
ters which can be estimated from the data. In this paper
we introduce our method and assess its performance by
comparing it with classic MR in a simulation study. A fur-
ther advantage of Bayesian MR is freedom to elaborate
the model in various directions of interest. This feature
we illustrate by moving away from the standard single-
exposure MR model and considering multiple exposures
instead.

Methods
Model
Let U denote a set of unobserved confounders which
could possibly distort the causal relationship between the
exposure X and the outcome Y. Let Z be an instrumen-
tal SNP (multiple instruments are considered later) which
satisfies the following three assumptions ([10]):

A1: Z is associated with X;
A2: Z is independent of U;
A3: Z is independent of Y, conditioning on (X,U).

These assumptions are graphically expressed in Fig. 1.
The Z → X arrow represents a non-zero association
between the IV and the exposure, in accord with A1.
Assumption A2 follows from the graph (it would not if
there were an arrow directly connects Z and U). A3 is also
satisfied (it would not if an arrow pointed directly from Z
to Y ). The X → Y arrow represents the putative causal
effect of X on Y, which is our primary interest.
Consider a study with multiple exposures and each

instrumental SNP associated with at least one exposure.
Without loss of generality, we shall hereafter restrict
attention to the case where there are three exposures
X = (X1,X2,X3) and three IVs Z = (Z1,Z2,Z3). Figure 2
depicts our model and parameter notations, with β1, β2
and β3 representing the putative causal effects of the expo-
sures X1, X2 and X3 on the outcome Y, respectively; δ1,
δ2, δ3 and δ4 representing the effects of the confounder U
on the three exposures and Y, respectively. For simplicity,
we assume that there are no direct associations between
the exposures and that the IVs are mutually independent.
The Z1 → X1 association is quantified by parameter α1
and the Z2 → X2 association by α2. Both Z2 and Z3 are
associated with X3, and the strengths of these associations
are quantified by parameters α3 and α4 respectively. Z1
and Z3 are “valid instruments” as they satisfy all the above
stated MR assumptions. However, Z2 violates assumption
A3 because the effect of Z2 on Y is mediated by both X2
and X3 - a problem of horizontal pleiotropy [15].
By assuming linearity and additivity of the conditional

dependencies, and in accord with the graph of Fig. 1, we
specify our model as follows.
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Fig. 1 Schematic representation of the three assumptions required in Mendelian randomization. 1) Instrumental variable Z is associated with the
exposure X ; 2) Z is independent of the confounder U ; 3) Z is independent of the outcome Y, conditioning on X and U

U ∼ N(0, 0.1), (1)
X1|Z1, U ∼ N

(
ω1 + α1Z1 + δ1U, σ 2

1
)
, (2)

X2|Z2, U ∼ N
(
ω2 + α2Z2 + δ2U, σ 2

2
)
, (3)

X3|Z2,Z3, U ∼ N
(
ω3 + α3Z2 + α4Z3 + δ3U, σ 2

3
)
,
(4)

Y |X1,X2,X3, U ∼ N (ωY + β1X1 + β2X2 (5)
+β3X3 + δ4U, σ 2

Y
)
,

where N(a, b) stands for a normal distribution with mean
a and variance b. The ω parameters are unknown inter-
cepts and the σ s are standard deviations of independent
random noise terms. The parameters of primary infer-
ential interest are the βs, each representing the causal
effect of a particular exposure on the outcome. The α

parameters quantify the strengths of pairwise associa-
tions between the instruments and the exposures. They
are often referred to as “instrument strengths”, and should

Fig. 2 Diagram of our model and parameter settings. There are three instrumental variables (Z1, Z2, Z3) and three exposures (X1, X2, X3). Z1 is
associated with X1 only. Z3 is associated with X3 only. Z2 is associated with both X2 and X3. For simplicity, we assume there is no direct associations
among the exposures and the instrumental variables are mutually independent
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be significantly different from zero to attenuate weak
instrument bias [16]. Finally, U denotes a sufficient scalar
summary of the unobserved confounders, which is set to
be drawn from a N(0, 0.1) distribution with its param-
eters not identifiable from the likelihood. This model is
built on the basis of the Bayesian approach developed by
Berzuini et al. [5], with an extension to multiple exposures
and allowing for an IV to be associated with more than
one exposure.

Our method
We propose a Bayesian MR method that works in all
the sample settings (whether one-sample, two-sample or
overlapping-sample), and therefore is more flexible than
existing non-Bayesian methods in this respect. In essence,
our method treats two- or overlapping- samples as one
sample where the data of some (or all) of the individuals
are incomplete, in the sense that these individuals have Z
and X (but not Y ) measured or Z and Y (but not X) mea-
sured. Clearly our method allows for quite general pat-
terns of missingness, although it is not our purpose here
to explicitly explore their full repertoire. In addition, for
simplicity, we illustrate our method by restricting atten-
tion to the special case of a continuous outcome variable
Y. We assume that all individuals are drawn from the same
population and unmeasured data are missing at random.
Then whatever are the unobserved variables X or Y, they
are treated au pair with themodel parameters as unknown
quantities, and thus, can be imputed iteratively from their
distributions conditioning on the observed variables and
estimated parameters using Markov chain Monte Carlo
(MCMC) [17] - the best Bayesian tradition.
We start with introducing three disjoint datasets as

follows (see Fig. 3a):

• Dataset A : all individuals with observed values of Z,
X and Y;

• Dataset B : all individuals with observed values of Z
and X only;

• Dataset C : all individuals with observed values of Z
and Y only.

No individuals are common in A, B and C but they
are drawn independently from the same population. As
discussed earlier, A may be collected from a previous
study; B and C may represent data from two indepen-
dent IV-exposure and IV-outcome association studies. If
we combine A with B

D1 = A ∪ B

and A with C

D2 = A ∪ C,

the two resulting datasets, D1 and D2, will not be disjoint
as they have dataset A in common- a typical overlapping-
sample problem. If A is empty, B and C will form a two-
sample problem.
Our method treats missing data as all other unknown

quantities in the model. That is, we impute the missing
values of Y in B by randomly drawing a value from the
conditional distribution of Y given observed exposures
and the estimated parameters at each iteration. Likewise,
the missing values of X in C will be imputed by a ran-
domly draw from the conditional distribution of X given
the observed instruments Z and the estimated parame-
ters at each iteration. Let Y ∗ be imputed values of Y and
X∗ = (X∗

1 , X∗
2 , X∗

3 ) be imputed values of X. Given all
the datasets A,B and C, we proceed with the following
Markov chain scheme.

1. Set initial values for all the unknown parameters in
the model. We also fix the desired number of Markov
iterations, with iteration index t.

2. At the tth iteration, in accord with Fig. 3b, we
replace the missing values of Y in B with Y ∗ which is
drawn from a Normal distribution with mean
ω

(t)
Y + β

(t)
1 X1 + β

(t)
2 X2 + β

(t)
3 X3 and standard

deviation σ
(t)
Y , where (X1, X2, X3) are observed values

in dataset B. Similarly, we replace the missing values
of X in C with (X∗

1 , X∗
2 , X∗

3 ) which are drawn from a
Normal distribution with mean ω

(t)
1 + α

(t)
1 Z1,

ω
(t)
2 + α

(t)
2 Z2 and ω

(t)
3 + α

(t)
3 Z2 + α

(t)
4 Z3 respectively,

where (Z1, Z2, Z3) are observed values in dataset C.
We use superscript (t) for the random parameters at
the tth iteration, with t = 0 representing their initial
values. Because both U and the random errors have
zero mean, they have vanished in this step.

3. Merge all the data, imputed and observed, into a new
complete dataset (Fig. 3c).

4. Estimate model parameters based on the complete
dataset obtained in Step 3 using MCMC and set
t ← t + 1.

5. Repeat Steps 2-4 until t equals the number of
iterations specified in Step 1.

The priors
Here we discuss our choice of prior distributions of the
unknown parameters involved in Models (1)-(5). Let the
priors for β = (β1,β2,β3) be independently normally
distributed with mean 0 and standard deviation 10

⎛

⎝
β1
β2
β3

⎞

⎠ ∼ N

⎡

⎣

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
102 0 0
0 102 0
0 0 102

⎞

⎠

⎤

⎦ ,

and the IV strength parameters α = (α1,α2,α3,α4) be
independently normally distributed withmean 1 and stan-
dard deviation 0.3
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Fig. 3 Flowchart of imputations and merge of datasets A, B and C into a single complete dataset. Solid rectangles in Steps (a) and (b) denote
observed data. Dashed rectangles with Y∗(t) and X∗(t) in Step (b) represent imputed values of Y and X respectively in the specific tth iteration. By
merging all the observed and imputed data in A, B, C, we obtain a single complete dataset in Step (c)

⎛
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U has been assumed to follow a normal distribution U ∼
N(0, 0.1) in Model (1). The priors of the standard devia-
tion parameters σ1, σ2, σ3 and σY are assumed to follow
a same inverse-gamma distribution σ(·) ∼ Inv-Gamma(3,
2).

Simulations
In our simulations, according to Models (1)-(5), we con-
sider a total of 72 configurations including

• 6 sample overlapping rates (100%, 80%, 60%, 40%,
20%, 0%)

• 2 IV strengths: α = (α1,α2,α3,α4) = 0.5 and 0.1
• 3 levels of the confounding effects of U on X:

(δ1, δ2, δ3) = 1, 0.5 and 0.1
• 2 levels of causal effects of X on Y:

β = (β1,β2,β3) = 0.3 and 0.
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The effect of U on Y is set to 1 (δ4 = 1). In each
configuration, we simulated 200 datasets, step by step, as
follows.

1. Generate a datasetH which contains observed IVs
(Z), exposures (X) and outcome (Y) from 1000
independent individuals.

2. Randomly sample nA individuals without
replacement fromH and take their observations of
(Z,X,Y ) as dataset A ;

3. Randomly Sample nB individuals without
replacement fromH − A = {x ∈ H, x /∈ A} and take
their observations of (Z,X) as dataset B ;

4. Randomly sample nC individuals without
replacement fromH − A − B = {x ∈ H, x /∈ A ∪ B}
and take their observations of (Z,Y ) as dataset C.

The sample size of B was set to be the same as that of C
(i.e., nB = nC) and the sample size of bothD1 = A∪B and
D2 = A∪C to 400. The overlapping rate was defined as the
percentage of the number of individuals from A (nA) inD1
(or equivalently, in D2). For example, if overlapping rate
was 80%, then nA = 320 and nB = nC = 80. Similarly, for
an overlapping rate of 60%, nA = 240 and nB = nC = 160.
When overlapping rate was 100%, we only used dataset A
of sample size 400 (or equivalently, D1 = D2 = A where
nA = 400). For an overlapping rate of 0%, we only used
datasets B and C (i.e., D1 = B with nB = 400 and D2 = C
with nC = 400). Imputations of missing data and causal
effect estimations were then performed simultaneously
using MCMC in Stan [18, 19].

Assessments of the performance of our method
The performance of our method was evaluated using 4
metrics:

• mean (posterior mean)
• standard deviation
• coverage (the proportion of the times that the 95%

credible interval contained the true value of the
causal effect)

• power (the proportion of the times that the 95%
credible interval did not contain value zero when the
true causal effect was non-zero).

The causal effects of X1, X2 and X3 on the outcome Y
(denoted as β̂ = (β̂1, β̂2, β̂3)) were estimated from data
simulated under the alternative hypothesis that β = 0.3,
and from data simulated under the null hypothesis that
β = 0. Note that the metric power was only applica-
ble under the alternative hypothesis when β �= 0, by
its definition. A high value of power indicates high sen-
sitivity of the model to deviations of the data from the
null or, equivalently, a low expected probability of false
negatives.

We compared our method with the two-stage least
squares (2SLS) regression [10] for one-sample MR (100%
overlap) and with the inverse-variance weighted (IVW)
estimation [8] for two-sample MR (0% overlap). For over-
lapping samples, our method was compared with IVW,
and in the latter, we only included data of non-overlapping
samples to make it a two-sample MR.

Results
Table 1 displays a summary of results obtained from the
simulated data under the alternative hypothesis (β = 0.3).
Each row of the table corresponds to a configuration of
specified sample overlapping rate, instrument strength α

and degree of confounding δ. Columns are values of the
four metrics of the estimated causal effects β̂s obtained
from our method and classic MR. Let us first focus on
our method (grey columns “Bayesian”). If overlapping rate
was high (80% or over), both the coverage and the power
of the β̂s were consistently high (≥0.93). When the sam-
ple overlap was 60% or under, strong IVs (α = 0.5)
resulted in high statistical power (=1) while the impact
of reduced IV strength (α = 0.1) became detrimental,
even more so when overlapping rate was reduced. When
IVs were relatively weak (α = 0.1), power increased as
confounding effects δ decreased. Overall, where there was
pleiotropy (in estimating β2 because there were two com-
peting paths from Z2 to Y via X2 and X3) the results were
notably worse than those without pleiotropy (in estimat-
ing β1 and β3). As α increased, the averages of β̂s (mean)
became closer to the true value 0.3 and the variations (sd)
decreased, concluding that higher IV strength reduced
bias and resulted in more precise estimates. We note that
despite the greater posterior uncertainty for β2 across all
the configurations (indicated in the “sd” column), the pos-
terior mean for this parameter remained relatively close to
the true value. This is evidence that our model is reliable
and “honest about uncertainty”. Compared with the clas-
sic MR, our method showed higher precision in estimated
causal effect in all configurations (“sd” columns). When
IV strength became weaker (α = 0.1), our method led
to higher power throughout.With highly overlapped sam-
ples (80%), even for strong IVs, power of the estimates in
classic MR (IVW) was relatively low, partly due to smaller
sample size after removing data of overlapping samples.
Table 2 shows the results of the simulated data under

the null (β = 0). Again, we first report results from our
method (grey columns “Bayesian”). The coverages of the
three estimated causal effects β̂s were high (>0.9) in all
the configurations, indicating that the method does not
produce a large number of false positives - an important
property of MR analysis. Therefore, none of the sam-
ple overlapping rate, IV strength and confounding effect
has had much negative influence on the results, although
there seemed to be an increasing trend in bias and varia-
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tionwhen IV strength decreased. In comparisonwith clas-
sic methods, our method provided estimates with higher
precision (smaller values of “sd”), but similar coverage.
Figures 4 and 5 depict, respectively, distributions of β̂s

for each of the IV-strength and overlapping rate configu-
rations when the confounding effects δ = 1, for β = 0.3
and β = 0. Each box represents distribution of the esti-
mated causal effect β based on 200 simulated datasets.
Higher overlapping rate led to a gain in precision from
our Bayesian method, which can be observed in all panels
across the figures as the blue boxes became narrower in
height as the sample overlap increased and reached min-
imum in the one-sample scenario (overlapping rate: 1).
It is also shown that estimates were more precise when
instruments were stronger (top panels vs bottom pan-
els). Blue boxes were narrower than red boxes in height
in all the panels, indicating that our method consistently
outperformed classic MR in precision. Interestingly, in
classic methods, variations of the estimates in one sample
were smaller than those in two- and overlapping- sam-
ples, which is probably because no data were excluded in
the one-sample 2SLSMR. For two- and overlapping- sam-
ples, we adopted two-sample IVW which used summary
statistics and required data removal of overlapping sam-
ples. Consequently, the sample size in IVW was reduced

to some extent for overlapping-samples, and the higher
the overlap rate, the lower the precision.
Power of β̂ for each IV-strength and overlapping rate

configurations when the confounding effects δ = 1 under
the alternative β = 0.3 is presented in Fig. 6. In Bayesian
method, power was always equal to 1 for strong IVs (top
panels) and gradually became lower as overlapping rate
decreased for weak IVs (bottom panels). Compared with
our method, estimates in classic MR had lower power,
especially when IVs were weak. In classic MR, similar to
the trend of precision in Fig. 4, power was the highest
for one sample and lowest for overlapping samples with
highest overlap 80%. Figure 7 displays the coverage of β̂

for the same configurations and confounding effects as in
Fig. 6 under the alternative β = 0.3. Overall, coverage was
high (>0.85) in both of theMRmethods. Bayesianmethod
performed better for high overlapping rate while classic
MR was better for low overlapping rate. Under the alter-
native hypothesis, however, it would be sensible to focus
on power rather than coverage. When β = 0, it is seen
from Fig. 8 that the coverage of β̂ was high (>0.91) in
both Bayesian and classic MR. Our method consistently
outperformed classic MR in power but not in coverage.
This is partly because our method provides very precise
estimates (narrow 95% credible intervals). Thus, even for

Fig. 4 Box plots of causal effects estimated from simulated data using our Bayesian method and classic methods (2SLS when sample overlapping
rate = 1 and IVW otherwise) when β = (β1,β2,β3) = 0.3 and δ = (δ1, δ2, δ3, δ4) = 1. Results with two instrument strengths (top panels:
α = (α1,α2,α3) = 0.5 and bottom panels: α = 0.1) are displayed, from left to right, for estimated causal effect of X1, X2 and X3 on Y, denoted as β̂1,
β̂2 and β̂3 respectively. Each panel consists results of six different sample overlapping rates ranging from 0 (leftmost) to 1 (rightmost) and each box
plot represents causal effect estimated from 200 simulated datasets
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Fig. 5 Box plots of causal effects estimated from simulated data using our Bayesian method and classic methods (2SLS when sample overlapping
rate = 1 and IVW otherwise) when β = (β1,β2,β3) = 0 and δ = (δ1, δ2, δ3, δ4) = 1. Results with two instrument strengths (top panels:
α = (α1,α2,α3) = 0.5 and bottom panels: α = 0.1) are displayed, from left to right, for estimated causal effect of X1, X2 and X3 on Y, denoted as β̂1,
β̂2 and β̂3 respectively. Each panel consists results of six different sample overlapping rates ranging from 0 (leftmost) to 1 (rightmost) and each box
plot represents causal effect estimated from 200 simulated datasets

Fig. 6 Power from simulated data using our Bayesian method and classic methods (2SLS when sample overlapping rate = 1 and IVW otherwise)
when β = (β1,β2,β3) = 0.3 and δ = (δ1, δ2, δ3, δ4) = 1. Results with two instrument strengths (top panels: α = (α1,α2,α3) = 0.5 and bottom
panels: α = 0.1) are displayed, from left to right, for estimated causal effect of X1, X2 and X3 on Y, denoted as β̂1, β̂2 and β̂3 respectively. Each panel
consists results of six different sample overlapping rates ranging from 0 (leftmost) to 1 (rightmost) and each box plot represents causal effect
estimated from 200 simulated datasets
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Fig. 7 Coverage from simulated data using our Bayesian method and classic methods (2SLS when sample overlapping rate = 1 and IVW otherwise)
when β = (β1,β2,β3) = 0.3 and δ = (δ1, δ2, δ3, δ4) = 1. Results with two instrument strengths (top panels: α = (α1,α2,α3) = 0.5 and bottom
panels: α = 0.1) are displayed, from left to right, for estimated causal effect of X1, X2 and X3 on Y, denoted as β̂1, β̂2 and β̂3 respectively. Each panel
consists results of six different sample overlapping rates ranging from 0 (leftmost) to 1 (rightmost) and each box plot represents causal effect
estimated from 200 simulated datasets

Fig. 8 Coverage from simulated data using our Bayesian method and classic methods (2SLS when sample overlapping rate = 1 and IVW otherwise)
when β = (β1,β2,β3) = 0 and δ = (δ1, δ2, δ3, δ4) = 1. Results with two instrument strengths (top panels: α = (α1,α2,α3) = 0.5 and bottom
panels: α = 0.1) are displayed, from left to right, for estimated causal effect of X1, X2 and X3 on Y, denoted as β̂1, β̂2 and β̂3 respectively. Each panel
consists results of six different sample overlapping rates ranging from 0 (leftmost) to 1 (rightmost) and each box plot represents causal effect
estimated from 200 simulated datasets
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a slightly biased estimate, it is likely the credible inter-
val does not include the true value, which will affect its
performance in coverage.

Discussion
In this paper we have proposed a Bayesian method that
effectively enables a one-sample MR whether there are
two overlapping samples or disjoint samples. It is note-
worthy that our method has the best performance in
one-sample setting, which is unsurprising because 1) our
method has been developed on the basis of a Bayesian
approach tailored for one-sample MR [5]; 2) the per-
centage of imputed data becomes lower as overlapping
rate increases, and consequently, the uncertainty in data
decreases. As discussed, our method provides the flexibil-
ity of combining data from previous studies with current
ones to enhance statistical power, which is particularly
advantageous because MR studies are often underpow-
ered partly due to small sample sizes. It is also shown
from our simulation results that pleiotropy (effect of Z2
on Y mediated by both X2 and X3) resulted in the worst
estimated causal effect, because it involves two complet-
ing paths which led to higher uncertainty in estimation.
This is, however, an issue commonly seen in MR studies
[20, 21].
The precision of the estimates from our proposed

method was higher than that from the classic MR. Our
method also resulted in higher power of the estimates
under the alternative hypothesis where the true causal
effects were different from zero. Coverage of the estimates
from both methods was similar under the null as well as
the alternative hypotheses.
Our method is limited by the fact that we have focussed

on a simple model with only three IVs and three expo-
sures and a moderate number of configurations, although
the configurations can never be exhaustive. In the real
world, we often encounter much more complex data in
which there are possibly many (weak and/or correlated)
IVs and (correlated) exposures and outcomes, which trig-
gers a research topic of variable selections in future MR
methodology [22]. Bayesian approach, however, is well
known for its flexibility of building various models to
address different scientific questions.

Conclusions
We have developed a Bayesian MR that can be applied
to any of the sample settings by means of treating miss-
ing data as unknown parameters which can then be
imputed using MCMC. This is an important addition to
the existing MR literature where some methods can only
be used for one-sample and others for two-sample set-
tings. Because of the nature of Bayesian inference, our
model can be easily extended to tackle more complex MR
analysis in medical research.
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