
RESEARCH ARTICLE Open Access

Time series prediction of under-five
mortality rates for Nigeria: comparative
analysis of artificial neural networks,
Holt-Winters exponential smoothing and
autoregressive integrated moving average
models
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Abstract

Background: Accurate forecasting model for under-five mortality rate (U5MR) is essential for policy actions and
planning. While studies have used traditional time series modeling techniques (e.g., autoregressive integrated moving
average (ARIMA) and Holt-Winters smoothing exponential methods), their appropriateness to predict noisy and non-
linear data (such as childhood mortality) has been debated. The objective of this study was to model long-term U5MR
with group method of data handling (GMDH)-type artificial neural network (ANN), and compare the forecasts with the
commonly used conventional statistical methods—ARIMA regression and Holt-Winters exponential smoothing models.

Methods: The historical dataset of annual U5MR in Nigeria from 1964 to 2017 was obtained from the official website of
World Bank. The optimal models for each forecasting methods were used for forecasting mortality rates to 2030 (ending
of Sustainable Development Goal era). The predictive performances of the three methods were evaluated, based on root
mean squared errors (RMSE), root mean absolute error (RMAE) and modified Nash-Sutcliffe efficiency (NSE) coefficient.
Statistically significant differences in loss function between forecasts of GMDH-type ANN model compared to each of the
ARIMA and Holt-Winters models were assessed with Diebold-Mariano (DM) test and Deming regression.
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Results: The modified NSE coefficient was slightly lower for Holt-Winters methods (96.7%), compared to GMDH-type ANN
(99.8%) and ARIMA (99.6%). The RMSE of GMDH-type ANN (0.09) was lower than ARIMA (0.23) and Holt-Winters (2.87).
Similarly, RMAE was lowest for GMDH-type ANN (0.25), compared with ARIMA (0.41) and Holt-Winters (1.20). From the DM
test, the mean absolute error (MAE) was significantly lower for GMDH-type ANN, compared with ARIMA (difference = 0.11,
p-value = 0.0003), and Holt-Winters model (difference = 0.62, p-value< 0.001). Based on the intercepts from Deming
regression, the predictions from GMDH-type ANN were more accurate (β0 = 0.004 ± standard error: 0.06; 95% confidence
interval: − 0.113 to 0.122).

Conclusions: GMDH-type neural network performed better in predicting and forecasting of under-five mortality rates for
Nigeria, compared to the ARIMA and Holt-Winters models. Therefore, GMDH-type ANN might be more suitable for data
with non-linear or unknown distribution, such as childhood mortality. GMDH-type ANN increases forecasting accuracy of
childhood mortalities in order to inform policy actions in Nigeria.

Keywords: Sustainable Development Goals, Time series, Under-five mortality rate, Forecasting, Artificial intelligence, Deep
learning, GMDH neural network, Autoregressive integrated moving average, Holt-Winters exponential smoothing, Nigeria

Background
Childhood mortality has traditionally been used as an im-
portant health indicator for assessing population well-
being and consistently gained visibility in the Millennium
Development Goals (MDGs) and Sustainable Develop-
ment Goals (SDGs) [1]. It is a major public health threat
in Nigeria and other low-middle-income countries
(LMICs). Despite government efforts, the high under-five
mortality rate (U5MR)—100 deaths per 1000 live births in
2017 [2], continues to burden the economic and health
system of Nigeria.
In the absence of reliable vital registration system of

under-five mortalities in most of LMICs, it is difficult for
stakeholders to track progress towards achieving the
child survival targets of SDG-3, which is aimed at redu-
cing U5MR to 25 deaths per 1000 live births by 2030.
To adequately plan for child survival programmes in
Nigeria, large investment is required. In the face of the
current economic situation of Nigeria, accurate forecasts
of childhood mortalities will guide effective use of the
limited health resources. On this note, sound modeling
approach to improve childhood mortality estimates is
needed in Nigeria. Considering the applicability of the
traditional time series models for forecasting U5MR,
there is little evidence to guide future planning of child
health programmes in Nigeria. The argument is that, it
is challenging for researchers to choose appropriate time
series modeling techniques that can detect non-linear
patterns of mortality rates [3–5]. However, some authors
have proposed artificial intelligence such as deep learn-
ing techniques (e.g., artificial neural networks (ANN),
convolution neural networks (CNN), recurrent neural
networks (RNN)) [5–8] and machine learning techniques
(e.g., support vector machine, random regression forest)
[9–11] to improve accuracy of predictive models, while
other studies have failed to demonstrate their suitability
[12–14]. Unlike the conventional statistical/

mathematical techniques such as Box-Jenkins approach
of autoregressive integrated moving average (ARIMA)
and Holt-Winters exponential smoothing method, ANN
combines both linear and non-linear modeling proper-
ties [4, 5]. ANN closely follows the structure and func-
tionality of the human brain and its neurons to solve
complex problems faster with minimal human interven-
tions, hence reducing error rates [6]. As ANN is evolving
with newer algorithms, few studies [9–11, 15–18] have
considered their applicability in population health stud-
ies. As far as we know, most of the studies in the fields
of population health and medicine have used different
deep learning techniques to optimize classification of
health outcomes and medical data [19, 20], and disease
screening/diagnosis [21, 22]. However, application of
deep learning algorithm to forecast long-term childhood
mortality is yet to be demonstrated in many LMICs (in-
cluding Nigeria). Since childhood mortality data from
resource-limited countries are often non-linear, noisy,
and associated with large degree of uncertainties [2],
forecasting with conventional statistical methods is
somewhat difficult.
In the fields of engineering, agriculture, finance, and

urban planning, group method of data handling
(GMDH)—a type of artificial neural net—was observed
to improve forecasting, compared with other neural net-
works. In a recent study, Ghazanfari et al [23] evaluated
the performance of multilayer perceptron network
(MLP)—a popular ANN algorithm, and GMDH-type
ANN in predicting comprehensiveness and workability
of concrete. Their study showed more accurate results
with GMDH-type ANN. Also, other studies (outside of
medicine and population health) have demonstrated the
superiority of GMDH-type ANN compared with adap-
tive neuro fuzzy inference system (ANFIS) and long
short-term memory (LSTM) [24, 25]. On this basis, our
study focuses on generating accurate estimates and
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observing the patterns of U5MR for Nigeria during the
SDG-implementation era. This study is in line with the
2014 United Nations’ call for data revolution of newer
technologies that would improve data for sustainable de-
velopment [26]. As new approaches are needed for child
health programming in resource-limited countries like
Nigeria, identifying and demonstrating the use of an ap-
propriate model will ease application of long, time series
data for monitoring the attainment of global framework
indicators such as SDGs.
GMDH algorithm is a self-organizing inductive model-

ing and forecasting technique that extracts important in-
formation from the data to build a multilayered model
through supervised learning [27]. A well-known problem
with all time series methods, is that inadequately prepro-
cessed input data can result in poor forecasting. Unlike
the traditional statistical methods, no a priori knowledge
of series stationarity and randomness is required for
GMDH algorithm [28]. GMDH neural network can
automatically learn from the data and uncover hidden
processes not detectable by the conventional methods
[29]. On the other hand, implementation of GMDH
ANN turns out to be tricky because there is currently no
theoretical guidelines for designing GMDH architectural
layers in order to improve prediction accuracy [7]. Since,
it is important to generate more accurate U5MR for
Nigeria during the SDG-era, this study aimed to model
long-term U5MR with GMDH-type ANN, and compare
the forecasts with the most commonly used conven-
tional statistical methods—ARIMA regression and Holt-
Winters exponential smoothing models.

Methods
This study was exempted from ethical review by the
University of Saskatchewan Behavioural Ethics Commit-
tee (ID# 904) as it relied on a publicly available aggre-
gated de-identified dataset [30]. The dataset used is the
historical aggregated yearly U5MR of Nigeria for 1964–
2017 (Supplementary file 1). The dataset was obtained
from the official website of the World Bank [31]. The
dataset was based on the reconciled country-level esti-
mates from different data sources by the United Nations
Inter-agency Group for Child Mortality Estimation team
(UN IGME) [31].
We applied ARIMA regression, Holt-Winters expo-

nential smoothing, and GMDH neural nets to predict
annual U5MR. The historical mortality data span from
1964 to 2017, giving a total of 54 observations, which
was adequate to fit ARIMA regression (i.e., at least 50
non-missing data points) [32]. Furthermore, we gener-
ated long-term forecasts to determine U5MR for Nigeria
by 2030 (to coincide with attainment of SDGs). GMDH-
type ANN was purposefully selected from the class of
deep learning algorithms because of its robustness

against incorrect, noisy, and small dataset [33]. Also, re-
cent studies in other disciplines have demonstrated its
superiority over RNN and LSTM [24, 25, 34, 35]. P-value
< 0.05 and 95% confidence intervals (CI) were used to
assess statistical significance.

Fitting ARIMA model
We utilized Stata™ version 15.1 software [36] to fit
ARIMA regression model. The model construction is in
four iterative steps: model identification, parameter esti-
mation, diagnostic checking, and prediction. As the first
step, data preprocessing geared towards understanding
the underlying patterns in the data and data transform-
ation was ensured. The stationarity of the aggregated
U5MR was assessed by plotting line graph (Fig. 1a). It
was observed that the assumption of stationarity for time
series analysis was violated as evident by the non-
seasonal downward trend of the overall under-five mor-
tality rates. After different calibrations, third-order dif-
ferencing was appropriate in removing the observed
trend (Fig. 1b). Next, Dickey-Fuller (DF) test with drift
was used to assess the stationarity of the differenced data
(DF = − 9.02, lag order = 2, p-value< 0.001), and the ab-
solute value of t-statistic was greater than the critical
value at 5% level (9.02 vs. 1.68, p-value< 0.001).
The autocorrelation function (ACF) and partial auto-

correlation (PACF) plots were also checked to determine
the structure of the correlation between time lags of the
differenced data (Fig. 1c and d). The ACF plot had a sig-
nificant spike at the second lag, indicating second order
moving averages (MA (2)) or ARIMA (0,3,2). Further-
more, ARIMA (0,3,2) model had the lowest Akaike’s In-
formation Criteria (AIC) and Bayesian Information
Criteria (BIC), hence it was considered suitable for fit-
ting the actual under-five mortality rates. The model
with smallest possible number of parameters (principle
of parsimony) was selected to represent the distribution
of the data. Also, the model comparison with AIC and
BIC is valid, because the candidate models fitted the
same data (U5MR) [37]. Following this principle, the
specified ARIMA (0,3,2) model is expressed as:

Δ3yt¼b1�εt − 1 þ b2�εt − 2 ð1Þ
Δ3yt ¼ yt − yt − 3 ð2Þ
yt and εt were the actual value and random error
at time period t; respectively: b1 and b2 where the
model parameters of moving averages at lag 1
and lag 2 ð − 0:35 and 0:62 respectivelyÞ with
standard deviation δ ¼ 0:22:

The adequacy of the fitted model was determined by
the randomness of the model residuals (Fig. 2). Also, all
the eigenvalues for stability of estimates were less than
one and the inverse roots of MA polynomial visually
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Fig. 1 (a) Time series plot of under-five mortality rates in Nigeria for ARIMA modeling, 1964–2017 (B) Third order difference of yearly under-five
mortality rates (c) Autocorrelation function plot of third order differenced under-five mortality rates (d) Partial autocorrelation function plot of
third order differenced under-five mortality rates. D3: third order differencing, U5M: under-five mortality, grey color in plots C and D: 95%
Confidence Interval

-.
6

-.
4

-.
2

0
.2

.4
re

si
du

al
,o

ne
-s

te
p

1960 1980 2000 2020
Year

A.

0.788

0.788

-1
-.

5
0

.5
1

Im
ag

in
ar

y

-1 -.5 0 .5 1
Real

Points labeled with their moduli

Inverse roots of MA polynomial
B.

-.
5

0
.5

1
A

ut
oc

or
re

la
tio

ns

0 10 20 30
yearly lag

Parametric autocorrelations of D3.U5Mtotal
with 95% confidence intervals

C.

-.5

0

.5

1

0 10 20 30 0 10 20 30

nonseasonal, D3.U5Mtotal, D3.U5Mtotal seasonal, D3.U5Mtotal, D3.U5Mtotal

95% CI impulse-response function (irf

step

Graphs by irfname, impulse variable, and response variable

D.

Fig. 2 Diagnostic plots for ARIMA (0,3,2) of under-five mortality rates, Nigeria (1964–2017) (a) Residual plot (b) Inverse roots of MA polynomial (c)
Autocorrelations of differenced rates (d) Impulse-response function plot

Adeyinka and Muhajarine BMC Medical Research Methodology          (2020) 20:292 Page 4 of 11



indicates that the eigenvalues were within the unit circle
(modulus of 0.79). This suggests that the MA parameters
satisfied invertibility condition (Fig. 2b). This was further
confirmed with Portmanteau (Q) test for white noise
(Q = 32.3, p-value = 0.095).

Fitting Holt-Winters exponential smoothing model
Holt-Winters non-seasonal smoothing (often referred to
as triple exponential smoothing) was used to predict the
overall under-five mortality rates. According to Chatfield
[38], it is the most advanced method in the category of
smoothing methods. The smoothing parameters were
automatically generated with Stata™ version 15.1 software
[36] prior modeling with Holt-Winters method. The α
(level) and β (slope) of trend should lie between 0 and 1,
with values closer to 0 implying that the estimates at the
current/future time points are based on recent observa-
tions [38]. The optimal smoothing weights were computed
as α=0.91 and β=0.51. The residual plots after fitting
under-five mortality rates for Nigeria, using Holt-Winters
exponential model are shown in Fig. 3.

Fitting GMDH-type artificial neural network model
The time series artificial neural network was imple-
mented by the GMDH-type neural network core algo-
rithm in GMDH Shell DS version 3.8.9 software [39].
We used the built-in time series pre-processing features
of GMDH-type algorithm [40] to automatically remove
the under-five mortality trend. The target variable
(U5MR) was automatically transformed into cube root,
with a minimum of zero lag and maximum of 6 lags.
The input variables included time and lags of the trans-
formed mortality rates. The polynomial neuron function
of GMDH-type model is as follows:

f xi; x j
� � ¼ ao þ a1:xi þ a2:x j þ a3:xi:x j ð3Þ

where x ¼ xi; x2…ð Þ; the input variables vector; and A
¼ a0; a1; a2; ::ð Þ the vector of weights:

To avoid under/over-fitting of U5MR arising from im-
proper training of dataset, the network was implemented
with the dataset randomly partitioned using Pareto
principle [41, 42]—80% was used for training and 20% was
the test dataset for evaluating model accuracy. We designed
an optimal neural-type time series model based on best
performing hyper parametrization with polynomial neural
networks of GMDH-type [43] (Fig. 4). Following the rule of
thumb that the number of hidden neurons should be less
than twice the input layer size, we developed the neural
architecture [44, 45]. After different calibrations of neural
architecture, the parameters for the network was config-
ured with maximum number of network layers of 60 and
initial neurons of 25. Similar to a method used by Banica
et al. [46], we stopped creating new neural layers when: (1)
the new layer failed to improve the model accuracy, com-
pared with preceding layer, (2) changes in testing error was
less than 1%, and (3) configuration limit for the number of
layers has been reached. Adequacy of the model was further
confirmed with criterion value and residual plots (Fig. 4).
With low criterion value of 1.01е-5, the final neural archi-
tecture adequately fits the data. The parameters and coeffi-
cients of equation for GMDH-type model are given as:

Y ½t� ¼ 5:206e − 05 −N25�0:077þ N2�1:07734 ð4Þ

Where Y corresponds to year of forecast; and N
indicates neurons 2 and 25:
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Fig. 3 Residual plots for Holt-Winters exponential smoothing for overall under-five mortality rates, Nigeria (1964–2017)
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Model comparison
The foremost problem with measuring prediction accur-
acy is the identification of key performance indicators.
Although mean absolute percentage error (MAPE),
mean squared error (MSE) and RMSE are the commonly
used accuracy metrics, they are prone to asymmetrical
distribution of errors [47]. MAPE is generally not con-
sidered as a good performance indicator because of its
disadvantages— (1) only accurate for ratio-scaled data,
and (2) it disfavors models when the predicted values
are more than the actual (historical) values [48]. On the
other hand, a benefit of using RMSE is that it is more
appropriate if large errors are anticipated. Even though
strength of performance measurements vary, we selected
root mean absolute error (RMAE) because of its robust-
ness against outliers [49]. In addition, RMSE was chosen
because it minimizes the effects of bias, and measures
dispersion of prediction errors (i.e., model stability) [49].
The model with the lowest RMAE and RMSE values
provides good fit for U5MR in Nigeria.
Furthermore, modified Nash-Sutcliffe model efficiency coef-

ficient (NSE) was calculated to address the challenges of over-
estimating extreme values, arising from squared differences of
actual and predicted values in original Nash-Sutcliffe efficiency
equation [50]. Efficiency coefficient of ≥0.9 implies highly ac-
curate prediction, and < 0.8 implies inaccurate prediction [51]..

Relative to the observed rates, statistically significant differ-
ences in loss function between forecasts of each of ARIMA
and Holt-Winters models were compared to GMDH-type
ANN, based on absolute value error from Diebold-Mariano
(DM) test [52]. DM test is a statistical test for comparing
two competing forecasts based on loss-differentials, given the
historical (observed) values. In estimating the predictive ac-
curacy, squared error was not used because of its tendency
to overestimate errors [53]. Also for the long-run variance of
the differenced series from its autocovariance function, a
maximum lag order of 9 was selected by Schwert criterion
and the weights of Bartlett kernel (i.e., zero autoregression).
The measurements are expressed as [54]:

RMAE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

j yi − by j
vuut ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yi − ŷð Þ2
vuut ð6Þ

modified NSE ¼ 1 −
Σ yi − ŷj j j
Σ yi − yj j j ð7Þ

Fig. 4 Residual plots for GMDH-type neural network for overall under-five mortality rates, Nigeria (1964–2017)
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Where ŷ ¼ predicted value of y; y
¼ mean value of y; j ¼ 1

To further test the equivalence of the in-sample predic-
tions (from the individual methods) with the observed histor-
ical values, Deming regression—an extension of errors-in-
variables regression was performed. Deming regression as-
sumes that forecasting errors are caused by the methods
used [55, 56], (sample size > 20) [56], and the measurement
error variance ratios (λ) are constant [55, 57]. When λ = 1,
Deming regression is like orthogonal regression. An inter-
cept (β0 or constant) with a confidence interval including 0
(i.e., intercept is not significantly different from zero) suggests
no systematic difference/ bias between the measurements
[56]. Also, slope coefficient (β1) with a confidence interval in-
cluding 1 (i.e., slope is not significantly different from 1) indi-
cates absence of proportional differences [56]. The Deming
regression model utilized jack-knife replications to estimate
the standard errors (SE) and 95%CI of the coefficients.

Results
The mean annual U5MR was 203.84 (standard devi-
ation: 58.02) deaths per 1000 live births, ranging be-
tween 324.8 deaths per 1000 live births in 1964 and
100.2 deaths per 1000 live births in 2017. From
Fig. 5a, the in-sample prediction of U5MR for 1964–
2017 from ARIMA, Holt-Winters and GMDH-type
ANN were close to the observed historical rates. Also,
similar out-of-sample rates were observed from 2018

to 2020 for the three models (Fig. 5b). However, the
out-of-sample forecasts from 2021 to 2030 for each
model were different (Fig. 5b). The difference is
greatest for Holt-Winters model compared to
GMDH-type ANN and ARIMA regression models.
The forecast obtained from GMDH-type ANN model
is higher than others—85.89 (95% prediction interval
(PI): 85.72–86.08) deaths per 1000 live births by 2030.
Holt-Winters method generated smallest mortality
rate for 2030, 51.20 (95%PI: 50.66–51.73) per 1000
live births. For 2030, ARIMA model generated a rate
closer to the rates for the GMDH-type ANN model—
80.17 (95%PI: 79.64–80.71) deaths per 1000 live
births. According to the GMDH-type model, U5MR
was observed to rise from 2028 to 2030 (Fig. 5b).
The modified NSE coefficient was slightly lower for

Holt-Winters methods (96.7%), compared to GMDH-
type ANN (99.8%) and ARIMA (99.6%). Further com-
parison between GMDH-type ANN and ARIMA with
RMSE, RMAE and DM test indicated that GMDH-type
ANN’s performance was better (Table 1). The RMSE of
GMDH-type ANN (0.09) was lower than ARIMA (0.23)
and Holt-Winters (2.87). Similarly, RMAE was lowest
for GMDH-type ANN (0.25), compared with ARIMA
(0.41) and Holt-Winters (1.20). From the DM test, the
mean absolute error (MAE) was significantly lower for
GMDH-type ANN, compared with ARIMA (difference =
0.11, p-value = 0.0003), and Holt-Winters model (differ-
ence = 0.62, p-value< 0.001).
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As shown in Table 2, the coefficients of slopes and inter-
cepts suggest there were no proportional and systematic
differences between the predicted rates for the three models
and the observed (historical) rates. While the slopes (pro-
portional difference) for the three methods were similar,
the intercepts (systematic difference) and standard errors
were different. The lowest coefficient of intercept and SE
were obtained with GMDH-type ANN (β0 = 0.004 ± SE:
0.06; p-value = 0.940)—implying that GMDH-type predic-
tions were closest to the observed (historical) rates than
ARIMA (β0 = 0.03 ± SE: 0.16; p-value = 0.865), and Holt-
Winters (β0 = 0.89 ± SE: 2.35; p-value = 0.706).

Discussion
This study compared the predictive ability of artificial
intelligence technique with traditional statistical
methods in view of forecasting U5MR for Nigeria from
1964 to 2030. With lowest error rates of RMAE and
RMSE from this comparative analysis, we demonstrated
that deep learning algorithms such as GMDH-type
neural nets might be more suitable for long-term fore-
casting of U5MR than ARIMA regression and Holt-
Winters exponential smoothing methods. Similarly,
Deming regression suggests more accurate prediction of
U5MR with GMDH-type ANN. Using the high efficiency
coefficients (> 90%) and overlapping of the predicted
rates as the criteria, all three models performed well with
in-sample predictions of U5MR for Nigeria. For the
period from 1964 to 2017 (in-sampling prediction) and
out-of-sample forecasting from 2018 to 2020, all three
models had similar results, however, for the longer out-
of-sample forecasting period (2021–2030), the rates were
significantly different. Also, Nigeria will not achieve
child survival targets of SDG by 2030. Furthermore,

GMDH-type ANN showed that U5MR will start increas-
ing by 2028. Further analysis with age-specific mortality
rates suggests that the surge in U5MR from 2028 to
2030 is due to increasing trend in neonatal mortality
rates between 2028 and 2029, and child mortality rates
from 2029 to 2030 (results are not shown).
In line with other studies [58, 59], our findings showed

that ARIMA regression might not be suitable for long-
term forecasting of U5MR, in this case for Nigeria. Ac-
cording to Koutsoyiannis [58, 59], ARIMA regression
may not be ideal for data that exhibit long-range de-
pendencies because of its slow decay of autocorrelation
structure with lag time, making it less sensitive to
tipping-points. In addition, ARIMA and Holt-Winters
models assume normality of time series data, whereas
under-five mortality data for Nigeria showed a non-
linear trend. Also, unlike the two traditional approaches,
GMDH-type ANN avoids overfitting by dropping nodes
with insufficient predictive power (i.e., fully automatic
structural and parametric optimization) [33]. As opposed
to ARIMA and Holt-Winters methods, GMDH time
series also allows for detection of recent changes in data
(arising from natural behavior, policy changes and inter-
ventions), and weighs recent data more than past data
during model training [29]. These detailed patterns
might be easily missed by the conventional methods.
Given that more accurate results were obtained with

the GMDH-type algorithm, projecting childhood mortal-
ity rates based on neural network would provide better
evidence to guide prevention strategies to accelerate
gains in child survival for Nigeria. A similar pattern of
results was obtained from previous studies that pre-
dicted health outcomes with other artificial neural net-
works. Purwanto et al [60] and Zernikow et al [61]

Table 1 Performance measures of time series techniques for under-five mortality rates in Nigeria

Model GMDH-type ANN ARIMA Holt-Winters exponential smoothing

Best parameters Training set = 80%, testing set = 20% p = 0, d = 3, q = 2 α=0.91, β=0.51

RMSE 0.09 0.23 2.87

RMAE 0.25 0.41 1.20

Modified NSE 0.998 0.996 0.967

DM test statistic Reference −3.608* −4.474*
*significant at p-value < 0.05; p = number of autoregressive terms, d = number of differencing, q = number of moving average terms; RMSE: Root mean squared error;
RMAE: Root mean absolute error; α=coefficient for the level smoothing; β= coefficient for the trend smoothing; modified NSE: modified Nash-Sutcliffe model efficiency
coefficient; DM: Diebold-Mariano test

Table 2 Deming regression for comparing GMDH-type ANN, ARIMA and Holt-Winters models

Reference:
Observed
historical U5MR

Proportional difference (slope) Systematic difference (intercept)

β1 (SE) 95% LCL, UCL P-value β0(SE) 95% LCL, UCL P-value

GMDH-type ANN 1.000 (0.0004) 0.999, 1.001 < 0.001 0.004 (0.058) −0.113, 0.122 0.940

ARIMA 1.000 (0.001) 0.998, 1.002 < 0.001 0.027 (0.160) −0.293, 0.348 0.865

Holt-Winters 1.000 (0.013) 0.969, 1.023 < 0.001 0.890 (2.349) −3.822, 5.602 0.706

LCL Lower Confidence Limit, UCL Upper Confidence Limit, SE Jack-knife standard errors
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showed that multilayer perceptron ANN was superior to
linear regression for predicting infant and preterm neo-
natal deaths, respectively.
More generally, this study indicates that, though

U5MR in Nigeria continues to decline from 100.2 deaths
per 1000 live births in 2017 to 85.9 deaths per 1000 live
births in 2030, Nigeria might not achieve the SDG-3 tar-
get that aims to reduce the U5MR to 25 deaths per 1000
live births by 2030 [62]. More importantly, the govern-
ment of Nigeria needs policy innovations to address the
observed rise in U5MR by 2028. On evidence such as in-
dicated in this paper, the government of Nigeria should
use reliable estimates to improve the design and acceler-
ate the implementation of child health programmes in
order to attain the SDG-3 targets for under-five mortal-
ity by 2030.
To our knowledge, this is the first published compara-

tive study of ARIMA, Holt-Winters and GMDH-type
neural nets on childhood mortality—in Nigeria. Also,
the time series used data that covered long period of
time—54 years, making the models more stable. Given
the high validation accuracy (93.9%) and low RMSE
(0.09) of GMDH-type ANN, there is no evidence to sug-
gest that the observed fluctuating patterns of U5MR
from 2026 to 2030 is due to overfitting. Although more
datapoints are needed to generate more stable models,
the forecasts from this GMDH-ANN model seem ad-
equate because of non-seasonality of the dataset [63]. As
more datapoints are available in the future, it is neces-
sary to fine-tune the GMDH-type ANN model. As often
encountered with ANN modeling, a major gap is paucity
of evidence for optimization of neurons for generating
ANN architecture [7]. We relied on calibrations that
could give maximum predictive power. Also, further as-
sessment of GMDH-type ANN model with leave-one-
out and multiple 3-fold cross-validations showed con-
sistent findings with Pareto principle, and no sign of
under/overfitting. To determine the robustness of
GMDH-type ANN, further sensitivity analyses with
RNN and LSTM models were performed in Jupyter
notebook for Python 3 with TensorFlow interface [64].
Using Adam optimizer to train the models at different
calibrations, error rates from RNN and LSTM were
higher (i.e., RMSE ranged from 14 to 20), compared with
GMDH-type ANN (RMSE of 0.09). In line with our ob-
servations, many studies [24, 25, 34, 35] have also dem-
onstrated the superiority of GMDH-type ANN over both
RNN and LSTM. In addition, we observed that RNN
and LSTM algorithms might be less suitable because of
the few data points available for this study, coupled with
the problems of gradient vanishing and gradient explo-
sion (i.e., accumulation of large error gradients leading
to unstable models). To ensure generalizability, the
GMDH-type ANN model was further tested on neonatal

mortality, and sex-specific mortality data for Nigeria, ob-
tained from World Bank [31]. There was no indication
to suggest under(over-fitting) of data. The unexpected
rise in U5MR from 2028 to 2030 warrants further inves-
tigation. It is also important to note that it is somewhat
challenging to accurately estimate data preprocessing
time for time series models because they are based on
trial and error approach. In addition, computational time
heavily relies on computer hardware efficiency such as
central processing unit (CPU) and random-access mem-
ory (RAM). To generate interventions for improving
child survival programmes in Nigeria, we prioritized
model accuracy over time.

Conclusions
The GMDH-type ANN predicted U5MR for Nigeria more
accurately, compared to ARIMA and Holt-Winters
smoothing models. Also, it does not require complicated
assumptions needed for traditional time series models.
The ARIMA regression and Holt-Winters methods might
not be suitable for long-term forecasting of U5MR for
Nigeria. Therefore, GMDH-type ANN might be more
suitable for data with non-linear or unknown distribution,
such as childhood mortality. GMDH-type ANN increases
forecasting accuracy of childhood mortalities to inform
policy actions in Nigeria and similar settings.
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