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Joint modeling of multivariate longitudinal
data and survival data in several
observational studies of Huntington’s
disease
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Abstract

Background: Joint modeling is appropriate when one wants to predict the time to an event with covariates that
are measured longitudinally and are related to the event. An underlying random effects structure links the survival
and longitudinal submodels and allows for individual-specific predictions. Multiple time-varying and time-invariant
covariates can be included to potentially increase prediction accuracy. The goal of this study was to estimate a
multivariate joint model on several longitudinal observational studies of Huntington’s disease, examine external
validity performance, and compute individual-specific predictions for characterizing disease progression. Emphasis
was on the survival submodel for predicting the hazard of motor diagnosis.

Methods: Data from four observational studies was analyzed: Enroll-HD, PREDICT-HD, REGISTRY, and Track-HD. A
Bayesian approach to estimation was adopted, and external validation was performed using a time-varying AUC
measure. Individual-specific cumulative hazard predictions were computed based on a simulation approach. The
cumulative hazard was used for computing predicted age of motor onset and also for a deviance residual
indicating the discrepancy between observed diagnosis status and model-based status.

Results: The joint model trained in a single study had very good performance in discriminating among
diagnosed and pre-diagnosed participants in the remaining test studies, with the 5-year mean AUC = .83
(range .77–.90), and the 10-year mean AUC = .86 (range .82–.92). Graphical analysis of the predicted age of
motor diagnosis showed an expected strong relationship with the trinucleotide expansion that causes Huntington’s
disease. Graphical analysis of the deviance-type residual revealed there were individuals who converted to a diagnosis
despite having relatively low model-based risk, others who had not yet converted despite having relatively
high risk, and the majority falling between the two extremes.

Conclusions: Joint modeling is an improvement over traditional survival modeling because it considers all
the longitudinal observations of covariates that are predictive of an event. Predictions from joint models can
have greater accuracy because they are tailored to account for individual variability. These predictions can
provide relatively accurate characterizations of individual disease progression, which might be important in
the timing of interventions, determining the qualification for appropriate clinical trials, and general genotypic
analysis.

Keywords: Joint modeling (JM) - survival analysis - linear mixed modeling (LMM) - external validation - proportional
hazards model - Huntington’s disease (HD)
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Background
Survival analysis is used to predict the timing of an event
of interest, such as the death of a patient or the onset of
dementia. Survival methods can handle the common
situation of right-censoring, which arises when an indi-
vidual experiences the event after the window of obser-
vation due to dropout or study termination (other types
of censoring are possible). The usual endpoint or out-
come of survival data consists of the two random vari-
ables of the time to the event and a censoring code (0 if
censored, 1 if event).
Research questions in survival analysis often involve

examining the extent to which covariates are valuable in
prediction. If the covariates are repeatedly measured
over time then it is most informative to use all the longi-
tudinal data for prediction. Traditional survival analysis
can be extended to incorporate time-dependent covari-
ates [1], as long as the covariates have certain qualities.
The covariates are required to be external, meaning their
future values are known in advance and unaffected by
the occurrence (or non-occurrence) of the event under
study [2]. In addition, the covariates are assumed to be
measured without error and measured at every event
time to be analyzed [3]. Calendar date is an example of
an external variable, as it can possibly be measured with-
out error and measured at every event time. Once the
date is assessed at study entry, it elapses in a perfectly
predictable fashion and it is unaltered by an event.
In many longitudinal datasets, the covariates appear to

be internal, reflecting changes of the intrinsic state of
the patients under study. Future values of internal covar-
iates are not pre-determined and their change is often
related to the event. An example is disease signs and
symptoms, which might increase over time to the extent
that a diagnosis event occurs. Moreover, it seems regular
for interval covariates to be measured with error and to
be measured intermittently (not necessarily at every
event time).
In order to properly incorporate internal covariates in

prediction, it is desirable to use a joint model (JM) for
the simultaneous analysis of the survival data of the
event and the longitudinal data of the covariates. The
foundations of JM can be approached from different per-
spectives, such as a special case of latent class analysis
[4]. Another approach is the shared parameter frame-
work [5], in which a survival submodel and a longitu-
dinal submodel are interdependent through a set of
shared random effects. Random effects are individual-
specific model terms, and their inclusion in the JM
provides a means of producing tailored predictions [6].
The tailored predictions are consistent with the concept
of precision medicine [7] that considers individual
variability in the predictions for a specific patient. The
individual-specific information can be important for

describing disease course, designing interventions, and
phenotyping for subsequent genetic analysis.
The JM survival submodel can take a number of

forms, with the proportional hazards model being a
common choice. In this scenario, the goal of JM is to
predict the hazard (or the log hazard) of the event in
question. Covariates can be time-varying (i.e., longitu-
dinal) or time-invariant. A time-invariant covariate is
directly specified in the survival submodel similar to the
traditional model. Each time-invariant covariate has a
corresponding regression coefficient that indicates the
strength of the covariate in predicting the hazard, adjust-
ing for the other covariates. Rather than include a
time-varying covariate directly in the survival submodel,
the longitudinal information is specified through a func-
tion of a separate but interdependent longitudinal sub-
model for the covariate. A popular choice of function is
the underlying or “true” value of the covariate that
occurs contemporaneously with the hazard. Each true
value predictor has a regression coefficient indicating its
effect on the hazard.
The JM longitudinal submodel is a linear mixed model

(LMM) for a continuous covariate, or a generalized
LMM for a discrete covariate (e.g., binary variable). Our
focus will be on the LMM, for which the aforementioned
underlying value of the covariate is the linear predictor
from the LMM that omits the random error term. That
is, the linear predictor is a composite of both fixed and
random effects, but not measurement error. Note that a
time-varying covariate is the outcome in the LMM, but
the true value of the covariate is a predictor in the JM
survival submodel. It is in this manner that the two sub-
models are linked, with random effects being shared
among the submodels.
When there is more than one time-varying covariate,

then the LMM is said to be multivariate. Multivariate re-
fers to multiple interdependent LMMs with different out-
comes (the predictors in each LMM might or might not
be the same). The different LMMs are interdependent
through a shared random effects structure. In the JM sur-
vival submodel each true covariate is a predictor and has
an associated regression coefficient indicating its strength
of relationship with the hazard, adjusting for the other
predictors in the model (whether they be other true covar-
iate values or time-invariant covariates).
A fruitful area of application for JM is Huntington’s

disease (HD). Several HD observational studies provide
both survival endpoints as well as longitudinal internal
covariates. HD is an inherited progressive neurodegener-
ative disease characterized primarily by motor distur-
bances, such as chorea. There is high interest in
predicting the age of motor diagnosis and identifying co-
variates that are important in this prediction. The recent
availability of data from several studies allows for
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external validation that can boost confidence that a par-
ticular JM might be applicable to a new HD sample. Tai-
lored predictions from such validated models can be
useful for characterizing the disease course of an individ-
ual and providing personalized phenotyping for subse-
quent genetic analysis.
In what follows, several practical issues of JM are

discussed with HD as the area of application. We first
consider model setup and estimation with two longitu-
dinal covariates. Then external validation is discussed
with focus on discrimination among those who are diag-
nosed and those who are not. Finally, we discuss
individual-specific prediction and present types of pre-
dicted scores that are useful for HD research.

Methods
Huntington’s disease background and datasets
HD is caused by a mutation expansion of the cytosine-
adenine-guanine (CAG) trinucleotide in the HTT gene
of chromosome 2. Full penetrance occurs with CAG
≥ 40, but there is risk of developing HD with expansions
as short as 36 [8]. HD is inherited in an autosomal domin-
ant manner, meaning the mutation can be transmitted
when at least one parent is a gene mutation carrier. The
disease is characterized primarily by motor disturbances
(e.g., chorea, rigidity), but cognitive deterioration (to even-
tual dementia) and behavioral disturbances (e.g.,
aggression) also occur. A landmark event in HD progres-
sion is motor diagnosis, which constitutes a very high con-
fidence that the individual has sufficient manifest motor
signs that can be fully attributed to the progression of HD.
Motor diagnosis is determined by a trained rater (e.g., a
neurologist) after a standard motor examination. There is
a reliable genetic test for the CAG mutation expansion,
which means that gene mutation expansion carriers can
be identified pre-diagnosis, meaning prior to the manifest-
ation of HD signs.
Four HD datasets were used in the analysis. Neuro-

biological Predictors of Huntington’s Disease (PRE-
DICT-HD) [9–13] is a longitudinal observational study
of pre-diagnosis HD with 32 sites in six countries (AUS,
CAN, DEU, ESP, GBR, USA). Data for the analysis was
collected 2002–2014. Track-HD [14–16] is a longitu-
dinal prospective observational study of pre-diagnosis
and early HD with four sites in four countries (CAN,
FRA, GBR, NE) with data collected 2008–2011. Enroll-
HD [17] is a longitudinal observational study with par-
ticipants who are pre-diagnosis, diagnosed with HD, and
non-HD relatives and community controls. Data for the
analysis was collected 2012–2016 from 61 sites in North
America, Latin America, Europe, and Australasia. REGIS-
TRY [18, 19] is a longitudinal observational study that
includes pre-diagnosis participants, diagnosed participants,

and at-risk individuals, with 89 European sites and data col-
lected 2004–2012.
The analysis included individuals with a lab-verified

HD gene mutation expansion who did not have a motor
diagnosis at study entry. Additional inclusion criteria
were ≥18 years of age (REGISTRY did not exclude
Juvenile HD), a CAG ≥40 (CAG range among studies
was 36–66), and complete data on the variables for the
analysis. Sample sizes and descriptive statistics for key
variables at study entry are shown in Table 1.
All the studies had annual visits. At each visit a motor

exam was conducted, the standard HD assessment bat-
tery was administered (Unified Huntington’s Disease
Rating Scale [20]), and a determination of motor diagno-
sis was made (coded as 0 = no diagnosis, 1 = diagnosis).
Enroll-HD is an on-going and open-ended study.

Some participants from the other studies were known to
transition to Enroll-HD. In order to make the studies as
independent as possible, the data from participants
known to transition were omitted from Enroll-HD. That
is, only data from the participants' originating study
were used in the analysis.

Joint model setup
The JM considered here is an extension of a traditional
proportional hazards model previously used in HD
research [21]. For purposes of simplicity, HD survival
models often use the time metric of years from study
entry to motor diagnosis, with covariates measured only
at entry [22]. In one such model [21], the hazard of
motor diagnosis (instantaneous rate of motor diagnosis)
was a function of an unspecified baseline hazard, a CAG
and age at study entry expression (see below), total
motor score (TMS), and the symbol digit modalities test
(SDMT). The TMS and SDMT are clinical variables
collected as part of the standard HD battery. The TMS
indexes the extent of motor impairment (e.g., chorea,

Table 1 Descriptive statistics for variables measured at study
entry. Mean (SD) for quantitative variables and proportion for
categorical variables

Enroll-HD PREDICT-HD REGISTRY Track-HD

N 643 873 481 150

Nobs 1.44(0.67) 4.16(2.73) 2.09(1.43) 3.80(1.85)

Age at Entry 40.23(11.40) 39.69(9.75) 40.60(11.14) 40.57(8.34)

Age at Event 41.77(11.38) 44.64(10.28) 43.61(11.01) 44.47(8.57)

Diagnosis 0.16 0.26 0.40 0.33

Female 0.61 0.64 0.56 0.54

CAG 42.54(1.94) 42.51(1.98) 42.76(2.00) 42.99(1.94)

TMS 4.37(5.75) 4.83(5.13) 4.72(6.89) 2.89(2.16)

SDMT 48.86(13.01) 51.02(11.69) 45.11(13.82) 51.93(9.95)

Note. Nobs number of observations per participant, CAG cytosine-adenine-
guanine expansion, TMS total motor score, SDMT symbol digit modalities test
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bradykinesia) based on the standard motor exam, and it
ranges from 0 (normal) to 124 (severest impairment).
The SDMT is a timed symbol-matching task that mea-
sures working memory, complex scanning, and processing
speed, with higher scores indicating better performance,
and 0 indicating the worst possible performance.
To set up the proportional hazards model, we rep-

resent survival data in the following manner. Let T �
i

be the true time of motor diagnosis for the ith patient
(i = 1, …, N), and let Ci be the right-censoring time.
The observed time is Ti ¼ minðT�

i ;CiÞ, and the cen-
soring indicator is δi ¼ IðT �

i ≤CiÞ , which takes the
value of 1 for motor diagnosis and 0 for censoring.
The proportional hazards model from previous re-

search is

hi t
⋆ð Þ ¼ h0 t⋆ð Þ exp γ1CAPi þ γ2TMSi þ γ3SDMTi

� �
;

ð1Þ

where t⋆ is time on study in years, with t⋆ = 0 being
study entry (the time origin); h0(t

⋆) is the unspecified
baseline hazard, with “baseline” here referring to the
situation in which all the covariates are 0; and CAP
is the CAG-Age Product (CAP), a well-established
progression index in HD [23], defined as CAPi

¼ AGEiðCAGi−33:66Þ , with age measured only at
study entry. CAP was included rather than separate
terms for CAG and age in order to be consistent with
previous research [13, 21].
In a past analysis, the proportional hazards model of

Eq. 1 was validated on multiple HD datasets, and it
showed a relatively strong ability to discriminate among
patients with different times of diagnosis [21]. Though
discrimination has some drawbacks, such as not using
all the data when there is censoring [24], the ability to
correctly distinguish among patients with different tim-
ings of diagnosis is highly desirable in HD research [25].
The model of Eq. 1 has years on study as the time

metric. A goal of the current analysis is to predict the
age at motor diagnosis, with age being the natural time
metric for this purpose. A second issue regarding Eq. 1
is that only the covariate values at study entry are
considered. Because the TMS and SDMT are well-known
indexes of disease progression, it is desirable to use the
complete longitudinal record of these covariates in pre-
diction. The covariates are internal because their change
is related to a higher probability of motor diagnosis,
which is a condition that is favorable for the use of a JM.
We sought to translate Eq. 1 to a JM. The first step in

this translation was specifying the longitudinal model for
the covariates. The LMM for each covariate was guided
by previous work in HD. It is known that when tracking
the TMS and SDMT prior to motor diagnosis, they each
tend to display a non-linear but monotonic trajectory,

with their levels being steady through younger ages and
accelerating as the time of motor diagnosis approaches.
For this reason, splines with few knots (i.e., one) have
been suggested for modeling the longitudinal trajectories
of these variables [26]. An example of observed data and
fitted non-linear trajectories are illustrated in Figure 1.
Age plots are paneled by study for participants with
CAG = 42, which is the most frequently occurring
expansion in every study. The top row shows observed
TMS scores (circles) by age with an individual’s repeated
measures connected by a thin line, and the cubic spline
fit is shown by a thick line (the spline had a single knot
at the median of the age distribution). The bottom row
shows similar plots for SDMT.
In HD research it is important to model age interac-

tions with CAG expansion, as the timing of motor diag-
nosis is negatively related to CAG expansion. Non-linear
trends can occur at different ages for patients with
different CAG expansions [13]. Thus, age and CAG
expansion were disentangled from the CAP score in
building the LMM.
For the LMM, suppose that yij,k denotes the outcome

of the kth variable (k = 1, 2) for the ith patient (i = 1, …,
Nk) at the jth time (j = 1, …, ni,k). To align the LMM no-
tation with the survival notation, an outcome score can
be denoted as yi,k(tij,k). More abstractly, let yi,k(t) denote
the outcome of a given patient at time t for a given vari-
able (TMS or SDMT). The LMM is then,

yi;k tð Þ ¼ β0;k þ b0i;k
� �

þ β1;k þ b1i;k
� �

f 1 AGEi tð Þð Þ

þ β2;k þ b2i;k
� �

f 2 AGEi tð Þð Þ þ β3;kCAGi

þβ4;kCAGi f 1 AGEi tð Þð Þ þ β5;kCAGi f 2

AGEi tð Þð Þ þ ϵi;k tð Þ;
ð2Þ

where f1(·) and f2(·) are the piece-wise polynomials of the
natural cubic spline with a single knot at the median of
the age distribution; βl,k is a fixed effect; bli,k is a random
effect; and ϵi,k(t) is random measurement error. The ran-
dom effects of the two outcomes, bli,1, bli,2 are assumed
to have a joint-normal distribution with zero-means. It
is further assumed that the random effects are uncorre-
lated with the random error.
A key to the JM interpretation is the partitioning

yi,k(t) =mi,k(t) + ϵi,k(t), where mi,k(t) is the true or under-
lying value of the kth covariate at time t. We focus on
the true value function, but there are additional func-
tions of the longitudinal process that could be specified
based on the research question of interest. For example,
the instantaneous rate of change of the variables at time
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t could be the summary, or the cumulative process his-
tory of the covariates (i.e., the integral up to time t), or
combinations of these functions [6].
Having specified the LMM, we now consider the sur-

vival submodel of the JM. As mentioned, CAG expan-
sion has a well-established negative correlation with
age of motor diagnosis [27]. Therefore, CAG expansion
was specified as a time-invariant predictor in the sur-
vival submodel (CAG expansion was treated as fixed at
birth). In addition to CAG expansion, the true value of
each covariate (TMS and SDMT) at time t was included
in the survival submodel. Assume that the hazard of
motor diagnosis is conditional on CAG expansion and
the true longitudinal processes of TMS and SDMT up
to t. With this in mind, the survival submodel can be
written as,

hi tð Þ ¼ h0 tð Þ exp γ1CAGi þ α1m
TMSð Þ
1i tð Þ þ α2m

SDMTð Þ
2i tð Þ

n o
;

ð3Þ

where mðTMSÞ
1i ðtÞ is the true (unobserved) value of TMS,

and mðSDMTÞ
2i ðtÞ is the true value of SDMT.

The predictors in Eq. 3 are correlated through the
shared random effects in the longitudinal submodel
(CAG expansion is also in the longitudinal submodel).
The regression coefficients have the same interpretation
as the log hazard ratios in the traditional proportional
hazards model, with γ1 indexing the association of CAG
expansion with the log hazard adjusting for the other
predictors, α1 indexing the association of the TMS true
value and the log hazard adjusting for the other predic-
tors, and α2 indexing the association between the SDMT
true value and the log hazard adjusting for the other
predictors. Our focus will be on the survival submodel
of Eq. 3, though there are applications in which the lon-
gitudinal submodel of Eq. 2 might be of prime interest.
Figure 2 shows diagrams for the proportional hazards

model (left) and the JM survival submodel (right). In
both diagrams, the down-stream log hazard is depicted
as the sum of the log baseline hazard and the covariates,
weighted by the regression coefficients labeled on the ar-
rows. The dotted lines denote correlations among the
covariates. As the figure indicates, both models have the
same number of covariates, but the JM submodel ex-
changes CAG for CAP (both measured at study entry),

Fig. 1 Age plots by study for participants with CAG = 42. Top row is observed total motor score (circles) by age with cubic spline curve (solid
line), and the bottom row is the observed symbol digit modalities test with cubic spline curve
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and the longitudinal information of TMS and SDMT is
used rather than the study-entry values of the covariates.
The time metric of the proportional hazards model is
time on study, denoted as t⋆, whereas the time metric
the JM survival submodel is age, denoted as t.

Estimation and inference
For the datasets of the analysis, none of the participants
were observed from the time origin of birth. Rather, par-
ticipants came under observation at their age of entry
into their respective studies. Thus, there was a delayed
entry into the risk set (delayed relative to birth), which is
also known as left-truncation [28]. Let T0i represent the
age at which an individual comes into the study, with
T0i < Ti. We assume the entry age of T0i is not inform-
ative regarding HD progression.
In order to have participants enter the risk set at their

proper times, a counting process approach was adopted
for the survival submodel [1]. We coded the interval
between the observed ages for two consecutive visits in
a participant’s longitudinal series according to whether
motor diagnosis occurred at the end of the interval or
not (1 = motor diagnosis, 0 otherwise).
Estimation and inference for the JM rests on condi-

tional independence assumptions [5]. For our analysis,
the submodels of Eqs. 2 and 3 constitute the JM, along
with the additional variance-covariance parameters of
the random effects. It is assumed that conditional on the
random effects, the submodels are independent (i.e., the
event times and longitudinal outcomes), as are the
repeated measures of the longitudinal submodel, and the
longitudinal outcomes of TMS and SDMT. In addition
to the independence assumptions, we further assume
that given the observed history, the right-censoring
mechanism and the mechanism that generates the

longitudinal visits are independent of the true event
times and future longitudinal measurements [5].
Maximizing the log-likelihood function of the JM

can be accomplished using standard (i.e., frequentist)
algorithms, with software such as the joinRML pack-
age [29]. An alternative adopted for our analysis is a
Bayesian approach using the JMbayes package [30].
JMbayes offers flexibility in that it can accommodate
non-continuous longitudinal covariates (e.g., a binary
outcome) and diverse types of association structures
for the longitudinal covariates (e.g., rate of change can
be used as a predictor in the survival submodel). But
the main motivation for adopting JMbayes is the exten-
sive methods available for deriving individual-specific
predictions.
In Bayesian analysis, the priors and the data likelihood

are combined to yield posterior distributions for the
parameters. These posterior distributions are the basis of
all inference. For our JM, the posterior probability dens-
ity is comparable to

p θ; bð Þ∝
QN

i¼1

QK¼2
k¼1

Qni;k
j¼1p yij;k jbi;k ; θ

� �
p Ti; δijbi;k ; θ
� �

p bi;k jθ
� �

p θð Þ
S T 0ijθð Þ ;

ð4Þ

where θ is the combined longitudinal, survival, and ran-
dom effects parameters vector, and b is the random
effects vector. The denominator is the adjustment for
left-truncation consisting of the joint density of the
delayed-entry survival function and the random effects
(for details, see [31, 32]).
Our preoccupation is with the probability density

relating to survival, which under the proportional haz-
ards model is,

Fig. 2 Diagram for the proportional hazards model (left) and the joint model survival submodel (right). The down-stream variable is the log hazard, which
is a weighted combination of the up-stream variables, with the weights being the arrow labels. The dotted lines indicate correlation among the covariates;
t* is time on study (t* = 0 is study entry), and t is age (t = 0 is birth)
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with the second expression being the survival function.
The integral in Eq. 5 does not have a closed-form solu-

tion and numerical methods are needed for its evalu-
ation. For the analysis we used the JMbayes Markov
Chain Monte Carlo (MCMC) algorithm to sample from
the posterior conditional distributions. We adopted
standard diffuse priors, and the baseline hazard was esti-
mated using a B-spline approach [30]. To facilitate con-
vergence to the target posterior distributions, the
MCMC procedure used an initial burn-in of 600 itera-
tions. After burn-in, every 300th simulated value was
retained until 1000 values were accumulated. For each
posterior distribution we report the mean of the 1000
values as the parameter estimate, the SD as the measure
of parameter variability (uncertainty), and the 2.5 and
97.5 quantiles as the 95% credible interval (CI). Graph-
ical MCMC diagnostics (results not presented) included
trace plots that showed reasonable consistency with
steady states, lagged autocorrelation plots with very
small values, and posterior density plots that were rea-
sonably symmetric.
Each dataset was analyzed separately and the com-

bined data was also analyzed. The combined study JM
included a main effect for study in the survival submo-
del. This allowed for a study-specific effect with the
baseline hazard being arbitrarily defined for Enroll-HD.
CAG expansion was limited to the range of 40 to 48

because 40 is the boundary of full penetrance and the
data were sparse above 48. Individual variables had very
little missing data among the studies, and complete
cases were used for the analysis. The value of 42 was
subtracted from CAG expansion (the mode among the
studies) in order to avoid large discrepancies in the re-
gression coefficients.

Individual-specific predictions
Once the posterior of the JM was estimated, predicted
survival probabilities for each individual were computed.
For our data, each participant had pre-diagnosis (pre-
risk) longitudinal data measured from their age of study
entry up to (but not including) their age of diagnosis or
censoring. The last pre-diagnosis age was associated
with a survival probability of 1 because it was the last

known age of no risk for diagnosis (if a participant was
censored, then the last value was the censoring age).
Suppose the last known age of no risk for diagnosis is
denoted as t. We were interested in the probability of
survival beyond an age older than t, say u (conditional
on the data and the covariates). The notation πi(u| t) is
used to indicate the ith person’s probability of diagnosis
being greater than or equal to age u, given they were not
diagnosed up to age t.
An estimate of πi(u| t) was computed by resampling from

the posterior distributions produced from the MCMC pro-
cedure discussed above using the survfitJMðÞ function. For
each resampling iteration, there was a single random draw
from each relevant posterior distribution, including the ran-
dom effects, and then the individual-specific survival prob-
ability was computed (for details see [5, 32]). The process
was repeated 500 times and the mean survival probability
among the resamplings for a given age was taken as the
predicted individual-specific survival probability. The
standard error was the SD among the resamplings, which
was then used to compute the 95% CI for the survival
curves.
There were two predicted scores of interest: (1) age at

which the model predicted diagnosis, and (2) a residual
indicating the discrepancy between an individual’s ob-
served diagnosis status at time of diagnosis or censoring
and their model-predicted status. Both types of predicted
scores were based on the individual-specific predicted
cumulative hazard.
Once the survival probabilities were obtained by

the resampling method, the predicted cumulative
hazard for an individual was computed assuming a

unit exponential failure process. Suppose Λ̂iðujtÞ is
the predicted cumulative hazard up to time u for
the ith participant (assuming they were undiagnosed
up to t). Then the cumulative hazard was computed

as Λ̂iðujtÞ ¼ − logðπ̂iðujtÞÞ . Individual-specific predic-
tions for one of the participants are illustrated in
Figure 3. The top two panels show TMS (left) and
SDMT (right) observed scores (filled points) and the
individual-specific predicted curves (see below). The

pðTi; δijbi;k ; θÞ ¼
�
h0ðTiÞexp

	
γ1CAGi þ α1m

ðTMSÞ
1i ðTiÞ þ α2m

ðSDMTÞ
2i ðTiÞ


�δi
�

exp

�
−
Z Ti

0
h0ðsÞexp

	
γ1CAGi þ α1m

ðTMSÞ
1i ðsÞ þ α2m

ðSDMTÞ
2i ðsÞ



ds

�
;

ð5Þ
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bottom panel shows the predicted survival probabil-
ities (left) and the cumulative hazard (right) along
with the 95% CI. The top panels span the pre-diagnosis
age range of t ∈ [40.51,50.78] for the participant in which
TMS and SDMT were observed and there was no risk of
diagnosis (looking retrospectively). Conversely, the bottom
panels span the age range of t > 50.78, in which there was
a risk for diagnosis (the participant in question was diag-
nosed in the risk period).
Under a counting process approach to survival analysis

[1], Λ̂iðujtÞ represents the number of diagnoses that occur
up to time u, assuming that diagnoses can be accumulated

for an individual. Less formally, we refer to Λ̂iðujtÞ as the
accumulated risk up to age u. Then, Λ̂iðujtÞ ¼ 1 repre-

sents the model-based diagnosis event, Λ̂iðujtÞ < 1 repre-
sents accumulated risk that has not yet reached the

threshold of diagnosis, and Λ̂iðujtÞ > 1 represents “excess”
risk that accumulates after diagnosis.

Age at the model-predicted diagnosis was taken to be

the age associated with Λ̂iðujtÞ ¼ 1, or equivalently, the
age associated with π̂ðujtÞ ¼ expð−1Þ ¼ :3679 . A grid
search was conducted for each individual to find their
predicted age. The lower right panel of Figure 3 shows
that the cumulative hazard reached the diagnosis thresh-
old of 1 for the participant at age 57.35. The lower left
panel shows the same in terms of survival probability,
with the middle vertical dashed line indicating the age
associated with the model-predicted diagnosis (with
threshold of π̂iðujtÞ ¼ :3679), and the outer dashed lines
indicating the CI bounds.
A martingale-like residual [33] was computed for the

time at diagnosis or censoring, Ti. The residual is defined
as ri(Ti| t) = δi −Λi(Ti| t), where δi is the diagnosis indica-
tor mentioned previously. The residual range is (−∞, +1],
and the residual indicates the agreement between the
observed diagnosis status and the status predicted by the
model. Unlike the traditional martingale residual, the

Fig. 3 Joint modeling results for one participant of the analysis. Upper panels show observed longitudinal variable scores (points) and model-based
predictions (lines). Lower panels show predicted survival curve with credible interval (left) and predicted cumulative hazard (right)
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ri(Ti| t) do not sum to 0 in general due to their
individual-specific nature. The residual is always a nega-
tive value for a censored participant, but the more nega-
tive the value the greater the discrepancy between the
observed status and the model-predicted status (in the
form of accumulated risk). Diagnosed participants can
have negative or positive values. The bottom right panel
of Figure 3 shows the observed diagnosis status of δi = 1
at Ti = 51.78 with a filled circle. The residual is the verti-
cal distance between the filled circle and the cumulative
hazard, which is denoted by a vertical dashed line.
To help induce the residual distribution to be more

symmetric, the transformation for the deviance residual
was used [33],

di T ijtð Þ ¼ sign ri T ijtð Þ½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ri T ijtð Þ þ δi log δi−ri T ijtð Þð Þ½ �

p
;

where sign(·) takes the value of + 1 if the martingale re-
sidual is positive and − 1 otherwise.
We close this section by noting that individual-specific

predictions can also be made for the longitudinal covari-
ates. For our analysis the method was to use the mean
posterior fixed effects and the mean posterior random
effects from the LMM submodel. We highlight that the
MCMC algorithm generates a multivariate posterior ran-
dom effects distribution for each participant, so that the
means of the posterior random effects are specific to an
individual (though the fixed effects are not). The poster-
ior means were used with the observed design matrices
for the fixed effects and random effects to compute pre-
dicted values. For example, based on the LMM submo-
del in Equation 2, the predicted TMS values (k = 1) for
the ith participant were computed as

ŷi;1 tð Þ ¼ β̂0;1 þ b̂0i;1
� �

þ β̂1;1 þ b̂1i;1
� �

f 1 AGEi tð Þð Þ þ…

þβ̂5;1CAGi f 2 AGEi tð Þð Þ:

The smooth curves in the top panels of Figure 3 show
the predicted longitudinal covariate values for one par-
ticipant in the analysis.

External validation
One indication of the usefulness of a model developed
in a single sample is the extent to which the model is
transportable to other data, or the extent to which we
can validly apply the model to external data [34]. Assess-
ment of external validity for the JM focused on how well
the model estimated in one study (the training dataset)
was able to discriminate among diagnosed and pre-diag-
nosed participants in the other studies (the test
datasets). Discrimination was estimated using a time-
dependent AUC statistic [35] computed with the func-
tion aucJMðÞ [30].

The most common AUC measure in proportional
hazards survival analysis is Harrell’s C [36], which is
the probability that a participant who is diagnosed at
an older age also has a higher predicted survival
probability than a second participant who is diag-
nosed at a younger age. For the proportional hazards
model there is one survival curve for a subgroup with
a particular combination of covariates (e.g., males
with CAG = 42). Two people of the subgroup with
different ages of diagnosis will have different survival
probabilities, with the older diagnosed having the
higher survival probability (lower probability of diag-
nosis). This strict ordering makes Harrell’s C relatively
straight-forward to compute and interpret in trad-
itional survival analysis [37].
Strict ordering does not hold under the JM scenario be-

cause the survival curves are individual-specific (the sub-
group is generally of size 1). The start age and slope of an
individual’s survival curve depend on the vector of longi-
tudinal TMS and SDMT observations, as well as the CAG
expansion. The result is a staggering of individual survival
curves with various start ages and rates of change. In this
situation the survival curves of two participants can cross,
meaning the ordering based on survival probabilities can
change depending on the window of evaluation, which
can result in an ambiguous interpretation.
Time-dependent AUC addresses the above issue by

aligning individuals to a common start age and com-
pares individuals in reference to a fixed age window.
Denote the start age of the window as v and the end age
as w. Consider participants who have a longitudinal co-
variate history up to v. A comparison is defined for a
pair of comparable participants, comparable here mean-
ing that the first participant (i) converts to a motor diag-
nosis within (v,w], and the second participant i′

converts after w. The pair is concordant if the survival
probability for participant i at w is less than the survival
probability of participant i′. That is, concordance occurs
when the model assigns a higher survival probability to
the participant who did not convert within the age win-
dow. AUC is defined as the probability of concordance,
and the AUC estimator of aucJMðÞ accounts for both
concordance and censoring. The AUC statistic is com-
puted as the sum of the proportion of concordant pairs
among the total number of comparable pairs and the
weighted proportion of pairs that cannot be compared
due to censoring [30, 32].
Time-dependent AUC constrains who can be analyzed

because individuals must have longitudinal data preced-
ing v. In order to include a wide variety of participants,
three windows were considered with start ages of v =
30,40,50. Because HD has a relatively slow progression,
5-year and 10-year windows were considered. For each
window, the estimates of one study (based on the
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posterior predictive distributions) were used for discrim-
ination in the remaining studies.

Results
Comparison of coefficients among studies
Estimated regression coefficients of the survival submo-
del are shown in Table 2, along with the posterior SDs
(in parentheses) and the 95% CI bounds (in brackets).
Results are shown for each study estimated in isolation,
and also for the combined data (last row). It was of
interest to examine whether a parameter could be 0
based on its posterior distribution. To this end, we eval-
uated if 0 was in the CI for each effect.
The estimates for CAG expansion were positive

among all the studies, indicating that larger lengths
were associated with greater hazard of motor diagnosis.
The CI did not contain 0 for any study, or for the com-
bined data.
The estimates for TMS were also positive, and none of

the CIs contained 0, except for Track-HD. The estimates
for SDMT were all negative, which indicated that a
lower value of SDMT (worse performance) was associ-
ated with greater hazard of motor diagnosis. The CIs for
Enroll-HD and REGISTRY contained 0, but the CIs for
the other two studies did not.

For the combined data, the sign of the coefficients were
positive for CAG and TMS, and negative for SDMT. The
CI for each effect did not contain 0.

AUC external validation
The AUC results are shown in Table 3. Results for
5-year and 10-year age windows are shown for each
study on which the model was trained (the other
studies provided the test data). The number of indi-
viduals at-risk for the age window is also indicated
(determined by the start age and the test data). The
mean 5-year AUC = .83 (range .77–.90), and the mean
10-year AUC = .86 (range .82–.92). The table indicates
that the AUC decreased as the start age increased,
and the 5-year AUC was smaller than the 10-year for
each start age. On average, the smallest AUCs were
trained on Enroll-HD, and the largest were trained on
Track-HD.

Predicted scores
The timing of motor diagnosis is of high interest in HD
research. Motor diagnosis indicates a major progression
event and it is important in determining eligibility for
clinical trials. Figure 4 shows boxplots of predicted age
of motor diagnosis as a function of CAG expansion and
diagnosis status (circle for censored and triangle for
diagnosis). As the figure shows, the median age of diag-
nosis decreased as CAG expansion increased, and there
was substantial age variability. Figure 4 is similar to the
pattern of results found by other researchers who ana-
lyzed only prospectively diagnosed individuals [27]. The
novelty here is that we include both prospectively diag-
nosed and censored individuals.
Another type of predicted score with applicability to

HD research is the deviance residual. Residuals are typ-
ically used to examine (in)consistency with statistical as-
sumptions, but in the present context they have an
alternative use for HD research. Since the discovery of
the HD genetic mutation, there has been a search for
additional genetic variants using genome-wide associ-
ation studies (see e.g., [38]). It is common in such stud-
ies to examine phenotypic extremes, with the motivation
being that those in the tails on either side of a distribu-
tion are most likely to provide an informative

Table 2 Parameter estimates (SD)[95% CI] for the multivariate joint model survival submodel

CAG Expansion Total Motor Score Symbol Digit

Enroll-HD 0.294(0.057)[0.188, 0.408] 0.041(0.011)[0.018, 0.063] −0.005(0.008)[− 0.023, 0.012]

PREDICT-HD 0.342(0.050)[0.245, 0.436] 0.102(0.013)[0.077, 0.128] −0.025(0.008)[− 0.040, − 0.011]

REGISTRY 0.354(0.071)[0.211, 0.491] 0.064(0.015)[0.034, 0.095] −0.023(0.013)[− 0.048, 0.003]

Track-HD 0.572(0.128)[0.319, 0.822] 0.126(0.071)[−0.015, 0.274] − 0.026(0.013)[− 0.054, − 0.000]

Combined 0.350(0.031)[0.293, 0.410] 0.065(0.008)[0.051, 0.080] −0.016(0.005)[− 0.025, − 0.006]

Note. CAG cytosine-adenine-guanine expansion. Combined model added a study-specific main effect (see text)

Table 3 External validity results showing the 5-year and 10-year
area under the curve (AUC) by training study and start age

Training Study Start Age At-Risk 5-YearAUC 10-YearAUC

Enroll-HD 30 138 0.804 0.825

PREDICT-HD 30 72 0.842 0.861

REGISTRY 30 134 0.826 0.841

Track-HD 30 160 0.898 0.915

Enroll-HD 40 239 0.782 0.818

PREDICT-HD 40 113 0.822 0.865

REGISTRY 40 221 0.828 0.846

Track-HD 40 231 0.876 0.897

Enroll-HD 50 173 0.774 0.822

PREDICT-HD 50 58 0.827 0.872

REGISTRY 50 160 0.812 0.829

Track-HD 50 173 0.861 0.889
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Fig. 4 Predicted age at diagnosis (with boxplot) by CAG expansion and diagnosis status

Fig. 5 Deviance residual by age, CAG expansion, and event status
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comparison [39]. The phenotypic extremes are often
based on residuals from a prediction model that includes
risk factors. In the current context, extreme deviance re-
siduals index either deficient or excessive risk of motor
diagnosis. Comparing genetic information among the
extremes of the residual distribution might help account
for variability in the timing of motor diagnosis.
Figure 5 shows the deviance residual as a function of

age, CAG expansion, and diagnosis status. The closer a
residual is to 0, the greater the agreement between the
observed event status (diagnosis or censoring) and the
model-based risk. For the censored participants, the de-
viance residuals were very close to 0 for the younger
ages, but became increasingly more negative with age,
meaning older participants did not convert to a diagno-
sis even as their risk to do so increased. For the
prospectively diagnosed participants, the deviance resid-
uals were farthest from 0 in the positive value direction
for the younger ages, but decreased towards 0 with age
(resulting in some residuals being negative). Thus, the
younger diagnosed participants converted even though
their risk to do so was relatively low.
Based on the definition of the deviance residuals, certain

individuals in Figure 5 might be classified as being diag-
nosed “early” or “late”. In each CAG panel, the youngest
diagnosed participants at the upper left were diagnosed
early, in the sense that they converted to a diagnosis with
very low model-predicted risk. Conversely, the oldest
censored participants at the lower right were late to be di-
agnosed because they had relatively high risk but did not
convert to a diagnosis in the observed time period. We
also note that the censored participants who were young
tended to be “on time” for diagnosis in the sense that they
had low model-predicted risk and did not covert to a diag-
nosis. The diagnosed participants who were relatively old
tended to also be “on time”.

Discussion
We considered a JM for the prediction of the hazard of
HD motor diagnosis with two longitudinal clinical vari-
ables (TMS and SDMT) and one time-invariant genetic
variable (CAG expansion). The JM was initially esti-
mated separately on four studies, and then estimated on
the combined data with an enhanced JM that had a
study-specific effect. The results show that the external
validity performance of the JM was relatively strong, in
the respect that the time-dependent AUC values in the
test data were high by traditional standards.
Reference values for external validity AUCs are pro-

vided by a recent survey in oncology and cardiovascular
disease [40]. The survey found a mean AUC = 0.78
among studies, with 1st quartile AUC = 0.69 and 3rd
quartile AUC = 0.88. Our results show that the mean
time-dependent AUCs had values that were not much

smaller than the 3rd quartile of the survey. The relatively
high external values boost confidence that the JM con-
sidered in this study will have adequate discrimination
performance in a new HD sample from the same popu-
lation of pre-diagnosed patients
External validity performance was evaluated with the

time-dependent AUC because discrimination among
diagnosed and pre-diagnosed individuals is especially
meaningful in HD research, and AUC reflects a metric fa-
miliar to clinical researchers [25]. An alternative approach
is to evaluate predictive performance using a calibration
measure that quantifies the agreement between observed
outcomes and model-based predictions [41]. One example
of a calibration measure is the Brier score, which in the
survival context is defined as the expected squared
discrepancy between the diagnosis status and the
model-predicted survival probability [42]. In the JM con-
text, a Brier-type measure for a time window has been
proposed by Henderson et al. [43], which can be com-
puted using the prederrJMðÞ function of JMbayes [30].
A caveat regarding the external validity analysis is that

there may have been some participant overlap among
studies. Of the four studies analyzed, Enroll-HD is the
most recent and the only one currently active. After
termination of PREDICT-HD and Track-HD, a number
of participants were known to have transitioned to En-
roll-HD. Furthermore, there was a concerted effort to
transition all REGISTRY participants to Enroll-HD [17].
Through the use of a common ID number, most of the
participants who had transitioned were identified, and
only the data from their initial study was used. However,
it is possible that not all the participants that transi-
tioned had an ID that allowed for their identification. A
definitive analysis of overlap is not possible because ne-
cessary identifying information, such as birth dates, is
not available for purposes of anonymity. We highlight
that PREDICT-HD and Track-HD participants were
known to be exclusive to their studies [21], and REGIS-
TRY participants were transitioned over to Enroll-HD in
a careful manner suggesting that all overlap could be
successfully accounted for by the common ID. Thus, we
believe that any remaining data overlap among the stud-
ies was inconsequential regarding the overall findings.
The relatively strong external validation performance

of the JM considered in this study does not suggest the
model is optimal. There could be alternative models
with similar or better performance. The estimated re-
gression coefficients of the survival submodel (Table 2)
show that CAG expansion was the most important pre-
dictor, followed by TMS and SDMT. It is unclear if a JM
having CAG expansion and only one or the other of the
longitudinal covariates would perform similar to the
multivariate JM considered here. Furthermore, CAG
expansion had both an indirect effect and a direct effect
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on the hazard of motor diagnosis. The indirect effect
resulted from including CAG expansion in the longitu-
dinal submodels, whereas the direct effect resulted from
including CAG expansion in the survival submodel. It
might be of interest to evaluate whether both types of
effects are required.
Future research might focus on several candidate

models, and there are a number of measures that can be
used for Bayesian model selection. We note that the AUC
and Brier-like measures of the JMbayes package are Bayes-
ian in nature because they use survival probabilities
estimated from the appropriate predictive posterior distri-
butions. In terms of model selection, AUC may not be a
desirable index. In the context of proportional hazards
modeling, AUC has been shown to be relatively insensitive
to model differences, unless the effect sizes are very large
[44, 45]. Brier-type measures tend to shown greater sensi-
tivity and might be preferred for model selection [46].
Additional tools for Bayesian model selection include the
deviance information criterion (DIC) [47], the conditional
predictive ordinate [48], and the log pseudo-marginal
likelihood (LPML) [49]. Recent extensions of the DIC
and LPML allow for separate model selection among
the survival and longitudinal submodels [50].
Our study illustrates types of predicted scores that might

be useful for individual-specific disease characterization.
The predicted scores consisted of predicted age of HD
motor diagnosis and a deviance-type residual indicating the
extent of agreement between observed and model-based
diagnosis status. Predicted age at diagnosis can be used to
help characterize an individual’s disease state. The number
of years from a person’s current age to their predicted age
of diagnosis offers an indication of the extent of progres-
sion, with a small difference representing relatively ad-
vanced progression and a large difference representing the
converse. Such indexing might be important for timing the
administration of interventions or identifying appropriate
participants for clinical trials. To date, most HD clinical tri-
als have targeted the period shortly after diagnosis [51].
However, new treatments are being developed to target the
period shortly before diagnosis. The difference between
current age and predicted age of onset can be used to iden-
tify individuals who might be appropriate for clinical trials
of such treatments.
Previous work has focused on observed age of motor

diagnosis only for those who prospectively convert to a
diagnosis [13, 27]. A potential advantage of the JM ap-
proach is that predicted age of motor diagnosis can be
computed for both censored and diagnosed participants.
Thus, all the gene-expanded individuals of a study can
be characterized in terms of their predicted progression,
whether they have reached motor diagnosis or not. Des-
pite a majority of censoring in the studies considered
here, the plot of predicted age of diagnosis by CAG

expansion (Figure 4) is very similar to plots using only
diagnosed individuals [13, 27].
One use for the deviance residual is to serve as a pheno-

type in a future genetic analysis. In the time since the HD
gene mutation discovery, there has been a continued
search for additional genetic modifiers of HD [38, 52]. A
common approach in genetic modifier discovery studies is
to compute a residual based on observed status and a
model-predicted risk score [53]. After computing a
residual for each person, all individuals are ranked, and
the upper and lower extremes are selected for analysis
(say, the upper/lower 20%). Use of the extremes is an en-
richment strategy that tends to improve power to discover
genetic modifiers and detect their association with a
phenotype [54]. The deviance-like residual can be used in
such a manner to potentially identify genetic modifiers of
the timing of diagnosis.
A complication of moving from a traditional propor-

tional hazards model to a JM is that predicted scores are
not simple to produce. In the case of the traditional pro-
portional hazards model, it is typical to use the esti-
mated linear predictor as a risk score formula [55] (see
the diagram at left in Figure 2). In fact, such a risk score
formula for HD motor diagnosis has been developed
[21]. The advantage of the linear predictor risk score is
that it is easily computed, given that a new or existing
participant has measured values for the variables in the
equation. In contrast, predicted scores of the JM cannot
be computed analytically, but rather require computer
simulation and a fitted model object. An additional com-
plication is that the MCMC method discussed above is
relatively time-intensive. The JM for the combined data
that served as the basis for the predicted scores took
approximately 3 h to run on a PC laptop with an Intel
Core i7 processor.
Despite the added complexity, predicted values from

the JM are preferable because they are likely to be more
precise for an individual. Predictions from the propor-
tional hazards model apply at the group level to those
who share common values of the study-entry covari-
ates. It is not surprising that such predictions can be
quite inaccurate at the individual level [56]. In contrast,
longitudinal covariate information and random effects
are considered in the JM, which are unique for each in-
dividual. The result is greater individual-level predic-
tion accuracy [6]. Thus, the complexity of computing
predicted scores with JM is thought to be worth the
gain in precision.
Joint modeling has previously been used in HD research

[13, 57]. The novelty of this study is that we considered
multiple longitudinal covariates, examined external valid-
ity performance, and proposed novel individual-specific
predictions. Another difference is that we used age as the
time metric (with origin at birth), rather than time on
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study (with origin at study entry). In the traditional sur-
vival setting, predictions from a model that uses time on
study can be equivalent or approximately so to a model
that uses age, provided the linear predictor is complex
enough (e.g., includes non-linear terms) [58]. There is no
such equivalence in the JM context due to the greater
complexity introduced by the random effects. Changing
the time metric in the longitudinal submodel will change
the variance components of the random effects, which
can result in quite different individual-level predictions.
Therefore, attention needs to be given to the selection of
the time metric prior to the analysis. We agree with the
argument made by other researchers that age is the nat-
ural metric for longitudinal observational studies [59–61],
including the HD studies considered here. Given the
non-equivalence of JM results under a change of time
metric, we recommend that age be used with adjustment
for delayed entry.

Conclusions
Joint models are an improvement over traditional sur-
vival models because they consider all the longitudinal
observations of covariates that are predictive of the
event of interest. Predictions from joint models have
greater accuracy because they are tailored to account
for individual variability. These predictions can provide
relatively accurate characterizations of individual dis-
ease progression, which might be important for the
timing of interventions, qualification for appropriate
clinical trials, and additional genotypic analysis. This
study illustrates the usefulness of JM for analyzing the
HD datasets, but the approach is applicable to a wide
variety of diseases.
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