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Abstract

Background: In patient-based studies, biomarker data are often subject to left censoring due to the detection
limits, or to incomplete sample or data collection. In the context of longitudinal regression analysis, inappropriate
handling of these issues could lead to biased parameter estimates. We developed a specific multiple imputation (MI)
strategy based on weighted censored quantile regression (CQR) that not only accounts for censoring, but also missing
data at early visits when longitudinal biomarker data are modeled as a covariate.

Methods: We assessed through simulation studies the performances of developed imputation approach by
considering various scenarios of covariance structures of longitudinal data and levels of censoring. We also illustrated
the application of the proposed method to the Prospective Study of Outcomes in Ankylosing spondylitis (AS) (PSOAS)
data to address the issues of censored or missing C-reactive protein (CRP) level at early visits for a group of patients.

Results: Our findings from simulation studies indicated that the proposed method performs better than other MI
methods by having a higher relative efficiency. We also found that our approach is not sensitive to the choice of
covariance structure as compared to other methods that assume normality of biomarker data. The analysis results of
PSOAS data from the imputed CRP levels based on our method suggested that higher CRP is significantly associated
with radiographic damage, while those from other methods did not result in a significant association.

Conclusion: The MI based on weighted CQR offers a more valid statistical approach to evaluate a biomarker of
disease in the presence of both issues with censoring and missing data in early visits.

Keywords: Limit of detection, Left-censoring, Missing early visits, Quantile regression, Multiple imputation

Background
With advances in biotechnology, biological markers
(biomarkers) continue to play an important role in an
increasing number of biomedical studies. Biomarkers
have led to a better understanding of the natural history
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and development of acute and chronic diseases, provid-
ing insights of the mechanism of treatment effects to
identify and classify patients into different risk categories,
and potential biological pathways that can be used to
guide the therapeutic strategies for future treatment tar-
gets. Biomarker data are often measured over a period of
time in biomedical studies to determine if the temporal
changes differ between the patients who develop disease
and those who do not. For example, C-reactive protein
(CRP) is one of the primary biomarkers known to reflect
the degree of inflammation in the body and it has been
widely used for studies of Ankylosing spondylitis (AS)
to monitor disease activity, assess response to treatment
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and predict radiographic progression. However, in a lon-
gitudinal study, biomarker data may not be collected in
certain time points for some patients. Furthermore, the
biomarker data may be subject to censoring due to limits
of detection (LOD). For example, in the Prospective Study
of Outcomes in Ankylosing Spondylitis (PSOAS) [7], CRP
data not only were censored due to limits of detection
but also were incompletely collected at early study vis-
its because blood sample collection was not a part of the
original study design.
Compared to single imputation, it has been shown

that model-based imputation techniques such as multiple
imputation (MI) methods can account for the uncer-
tainty about the prediction of the unknownmissing values
[21] and provide more valid statistical inference (Lubin
[15]). Likelihood-based MI approaches have been pro-
posed to address censoring issues due to limits of detec-
tion when the biomarker data are considered as covariates
in a model. For example, Lee et al. [8] proposed MI
for the multiple-censored correlated covariates based on
the Gibbs sampling method. However, these methods
focus on estimation of mean of biomarkers and assume
normality of the distribution of biomarker data, which
may not be valid as most biomarker data are highly
skewed even after log-transformation. These limitations
prompted development of alternative methods for non-
normal biomarker data. For example, Powell [19, 20]
proposed using quantile regression models for censored
data (i.e., censored quantile regression) with detection
limit and it has been extended for longitudinal data using
improved computational methods (Wang and Fygenson
[27]; Lee and Kong [9]; Sun et al. [23]). As an impor-
tant alternative to the mean regression models, quantile
regression models are increasingly used in longitudinal
study due to its robustness to non-normality or het-
eroscedasticity and minimal assumption imposed on the
quantiles of data. Estimating different quantiles should
be of more practical interest especially in the presence
of censoring issue, providing a broader picture of data
distribution; specifically, it is common that some quan-
tiles of biomarker data show significant effects that are
not significant in other quantile. MI approaches that are
based on censored quantile regression to handle censored
covariates have been also proposed. For example, Wang
and Feng [28] developed a multiple imputation approach
for M-regression models. However, these approaches
cannot handle multiple imputation in the presence of
both censored and missing covariates in longitudinal
data setting.
Lee and Kong [10] proposed an estimation approach

based on censored quantile regression using the inverse
probability weighting technique to handle longitudinal
response variable with both censoring and monotone
missingness [10] which is mainly caused by dropout; the

basic concept of this method is that an individual’s contri-
bution to the estimating equations is incorporated by the
inverse probability weights for dealing with missing data
at a dropout time. Since in PSOAS, CRP data for some
patients were not completely collected at early study vis-
its due to study design, this necessitated development of a
new approach to handle missing data while controlling for
censoring issue simultaneously.
In this paper, we propose a specific multiple imputation

strategy that not only account for censoring, but alsomiss-
ing data at early visits when longitudinal biomarker data
are modeled as a covariate. Assuming monotone miss-
ing pattern holds, we adopt the idea of Lee and Kong’s
estimation method to establish weighted censored quan-
tile models which are incorporated into our developed
multiple imputation process. The focus here is assessing
through simulation studies the performances of ourmulti-
ple imputation approach by comparing relative efficiency
of our method with that of complete case analysis and
other traditional multiple imputation methods. We also
illustrate application of the method to real life data from
PSOAS to achieve realistic situations while specifically
evaluating the association between CRP and radiographic
damage.

Methods
The prospective study of outcomes in Ankylosing
Spondylitis (PSOAS)
Ankylosing spondylitis is a chronic inflammatory dis-
ease characterized by inflammatory spinal pain usually
beginning in the second to fourth decades of life that
can result in chronic pain, that can result in functional
impairment and diminished quality of life, and, in some
patients, complete spinal fusion. In PSOAS, participants
meeting the modified New York (mNY) Classification
Criteria for AS [26] were enrolled from one of the five
study sites (Cedars-Sinai Medical Center in Los Ange-
les, California, the University of Texas Health Science
Center at Houston (UTH), the NIH Clinical Center, the
University of California at San Francisco (UCSF), and
the Princess Alexandra Hospital in Brisbane, Australia
(PAH)1 and were followed for up to 13 years (through
two cycles of NIH funding: 2002–2006 and 2007–2016).
At each study visit, spaced 6 months apart, the patients
underwent comprehensive clinical evaluation for disease
activity and functional impairment. Self-reported out-
comes were measured at 6-month intervals and radio-
graphic data, including AP pelvis X-rays, AP and lat-
eral lumbsacral spine films and lateral cervical spinal
films were collected every 2 years in order to assess
longitudinal radiographic damage which was defined
by scoring the Bath Ankylosing Spondylitis Radiology
Index (BASRI) [17] and the modified Stoke Ankylosing
Spondylitis Spine Score (mSASSS) [3]. C-reactive protein
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(CRP) levels and erythrocyte sedimentation rate (ESR) as
well as medication usage were also determined at each
clinical visit.

Analysis cohort
One of the objectives of PSOAS was to evaluate factors
associated with longitudinal radiographic severity and
rate of progression in AS patients. Specifically, we focused
on evaluating longitudinal association between CRP level
and radiographic damage which is assessed by mSASSS
values (range 0–72) at each X-ray visit. We considered
analysis cohort of 295 patients who were confirmed AS
by mNY criteria and had at least 4 years of radiologic
follow up data (as of August 2016). However, we faced
with two challenges in analyzing CRP data in relation to
mSASSS. First, we found that 13.3% of CRP values were
left-censored due to being below the limit of detection.
Another issue is related to unobserved CRP data during
early visits for some patients which was by study design.
Specifically, of the 295 patients with at least 4 years of
radiologic follow up, 37% have been followed since first
cycle of funding, i.e., Study I (enrolled from 2002–2006)2
and then consented to Study II (enrolled from 2007–2016)
for their continued participation. The inclusion of these
patients increases the study power by increasing the num-
ber of patients who have been followed for 10+ years.
However, CRP levels for 111 patients among our study
cohort were not collected for up to first two consecutive
X-ray visits because initially blood sample collection (e.g.,
CRP and ESR) was not a part of the protocol for some
patients in Study I. Different scenarios in which miss-
ing CRP data are generated are presented with detailed
descriptions in Fig. 1. An important feature of CRP data
was that it has a monotonic missing pattern; i.e., if a value

was missing at visit t then the values for all previous visits
(i.e., k, 1 ≤ k ≤ t − 1) were also missing. This mono-
tonic pattern was found in 92% of 111 patients. We also
discovered that the number of patients who had CRP data
missing at their first visit only (73.9%) was higher than
the number of those who had missing data for both first
and second visits (26.1%). There were only 5 patients who
had CRP levels missing at all first three visits. Also we
noted that patients who were enrolled earlier had a higher
number of visits with unobserved CRP data.

Statistical approach
Our approach for assessing the longitudinal association
between CRP and radiographic damage (i.e., mSASSS)
includes four steps: Step (1) modeling missing data pro-
cesses, Step (2) applying the inverse weighting techniques
to censored quantile regression (CQR) using the proba-
bilities of missing early visits that are estimated from the
modeled missing data process, Step (3) employing mul-
tiple imputation process for both censored and missing
CRP data at early visits, based on quantile estimates from
established weighted CQR in Step (2), and Step (4) con-
ducting longitudinal regression analyses where imputed
CRP data are treated as an independent variable and
mSASSS as a response variable. Natural log-transformed
CPR was used in our analyses to reduce its highly right-
skewed distributions.

Step (1) Since the true probability of missing data is
unknown, we modeled missing data process for
each visit separately, through binary logistic
regression with a response variable which
indicates whether CRP data are observed or not
(i.e., 1 = observed; 0 = missing) and independent

Fig. 1 Patients’ X-ray visits (organized at ≥ 2-year intervals) over time with indication of unobserved and observed CRP data. Patients in the cohort
comprises three different groups of patients depending on the study that they were first enrolled in: Study I-A CRP data collection was not a part of
the protocol (Patient A and B); Study I-B The original protocol had a screening visit where X-rays were collected but no blood samples (Patient C),
but a protocol amendment led to a combining of the screening and baseline visit resulting in blood and X-rays collected at the first visit (Patient D);
Study II both blood samples and X-rays were collected starting from their first visit (Patient E)
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variables that include observed CRP data at later
times (i.e., the first available CRP) and other
variables that were associated with missingness
of CRP. Using the predicted probabilities (= ηit
for the i-th patient and the t-th visit) that were
estimated from these models, we derived the
patient-level probability weights (= πi) under
monotone missing data mechanism. Details
regarding derivation of probability weights are
shown in Appendix A.2. Although other reasons
may lead to informative missing, we predicted
the probability of missing CRP at early visits
conditional on the observed CRP data at the rest
of follow up visits (if censored, imputed by half of
detection limit (DL), i.e., DL/2), and a set of
covariates including study sites and the study
group that patients were first enrolled in.

Step (2) Censored quantile estimating equation
incorporated by inverse probability weights was
defined as a function of the variables that were
significantly associated with CRP. Details
regarding specific models and estimation
procedure are presented in Appendices A.1 and
A.2. In practice, it is important to use all
available information to build the best
imputation model [18, 21, 22]; we conducted the
weighted CQR model based on the variables that
include the covariates and the outcome of the
potential analysis models even if they have
limited predictive power. Once weighted CQR
model was established, parameter estimates of
different quantile levels were obtained by
implementing function ‘crq’ in the R package
quantreg for the existing optimization
algorithms [4, 21]. Specifically, we used the
option ‘Powell’ for method and ‘left’ for
censoring type (i.e., ctype). It is well known that
even if the missing data depend on the observed
data, the weighted estimating equations provide
unbiased estimation, when the missing data
process is modeled with correctly specified
probability [10, 12].

Step (3) Missing CRP data were imputed by the u-th
conditional quantiles based on quantile-specific
parameter estimates of aforementioned weighted
CQR, where random variable U was generated
from a uniform distribution between 0 and 1.
We can estimate quantile-specific parameters
using R function ‘crq’ with a function argument
called ‘tau’, the quantile level at which the model
is to be estimated. For censored CRP data, we
first estimated the conditional probability of
censoring, denoted by ω, using longitudinal
logistic regression model with adjustment of

potential predictors of censoring, such as study
sites (because censoring rates varied over study
sites from 2% to 29%), ESR levels, functional
outcomes [2], disease activity [6] and
medications usage. Then we used ω to randomly
generate values of v from a uniform distribution
between 0 and ω, which were used to impute the
censored value by the v-th conditional quantile.
Since the conditional probability of censoring
was estimated from logistic regression model and
the imputations are obtained from a separated
CQR, in few samples, the imputed values may not
be less than a desired detection limit. When this
situation occurs, we discarded the corresponding
cases and used another v value, sampled from a
uniform distribution between 0 and ω.

Step (4) After Step (3) was repeatedM = 5 times to
generate five imputed datasets, we conducted
longitudinal regression analyses to evaluate
association between CRP and dependent
variable, mSASSS for each of imputed datasets.
Details of analysis model are described
in “Analysis of PSOAS data” section. To obtain
the parameter estimates of interest, we defined
the combined MI estimator as a mean of five
estimates. Variance of MI estimators was
determined based on 500 bootstrap samples, by
resampling the observations with replacement
and p-values were calculated assuming the
normality of estimated parameters. Additional
details related to our imputation procedures are
discussed in Appendix A.3.

Simulation studies
We conducted simulation studies to investigate the per-
formance of our developed MI methods through different
scenarios. We considered the following four different sce-
narios of longitudinal data structures, as well as different
levels of censoring for generating biomarker data.

Scenario 1 Multivariate normal (MVN) distribution ;
exchangeable covariance structure

Scenario 2 Multivariate normal (MVN) distribution ;
unstructured covariance

Scenario 3 Multivariate exponential (MVE) distribution;
exchangeable covariance

Scenario 4 Multivariate exponential (MVE) distribution;
heteroscedastic covariance structure (i.e.,
covariance depends on a set of covariates)

In order to generate a longitudinal outcome variable that
mimics the distribution of mSASSS (= yit) in PSOAS, we
used the following regression model

yit = α0 + α1z∗it + α2wit + εit , (1)
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for the i-th patient and the t-th visit, where α0 = 5,
α1 = −4, α2 = −6, wit represents the longitudinal
structure variable time (t = 1,· · · ,4) and z∗it denotes com-
plete biomarker data which have been generated based on
the aforementioned four scenarios. An error term εit was
generated from multivariable normal distribution based
on exchangeable covariance structure with a correlation
coefficient ρ of 0.3. We then produced missing and cen-
sored values for biomarker data zit that mimic the missing
data pattern of CRP levels in PSOAS. We used a logis-
tic regression to model probability of observed biomarker
data ηit , based on variables wit , yit and the first observed
biomarker data after time t (i.e., zit′ , t < t′ ≤ 4). Based on
probability ηit , we calculated the patient-level probability
weights (= πi) under monotone missing data mechanism
through a specific function of ηij, as shown in Appendix B.
For generating censored data, we chose the detection limit
c, as the (100×r)-th percentile of the simulated biomarker
data, where r is the censoring rate (i.e., r = 0.1, 0.15,
0.2, 0.3). We simulated data for 75% of patients who had
missing data for up to first 3 visits (i.e., missing at first
visit only, first and second visits, or all first three vis-
its), and 25% of patients who had complete measurements
up to visit 4. For each scenario, three hundred simula-
tion datasets with sample size of 250 were generated.
Details regarding parameters used for data generation
and covariance structures for each scenario are described
in Appendix B.
For multiple imputation, we fitted weighted CQR

(wCQR) models using both known probability weights π

(MI-wCQR1) and π̂ that was estimated through the afore-
mentioned logistic regression model. Since the observed
biomarker data zi,t+j in this logistic regression model had
also censored values, we considered fitting two separate
wCQR models, one based on imputed censored data by
DL/2 (MI-wCQR2) and the other using uncensored data
only (MI-wCQR3), in order to see the impact of these two
approaches on parameter estimates. We also considered
unweighted CQR method (MI-CQR) which accounts for
censoring but ignores the missing data mechanism. Other
imputation methods were further applied, that included
Markov Chain Monte Carlo (MCMC)-based MI methods
[11, 14] through on Bayesian frame work for a monotone
missing data, which were implemented in the function
‘mice’ of the R package mice [25], imputing only missing
values (MI-MCMC1), as well as imputing both censored
and missing values (MI-MCMC2). MCMC-MI algorithm
obtains the posterior distribution of parameters by sam-
pling iteratively from conditional distributions based on
Gibbs sampling method.
Using imputed biomarker data generated from differ-

ent MI methods described above, we conducted longi-
tudinal regression analysis using model 1, for each sce-
nario. For assessing the performance of each estimator, we

calculated bias and ratio of the mean squared error (MSE)
of the omniscient estimator (OMNI), the gold standard,
which is based on the complete data without censoring, to
that of each estimator. Throughout we refer to this ratio
of MSEs as relative efficiency (RE), which will be used for
comparing the performance of the aforementioned meth-
ods. Moreover, we also conducted complete case analysis
using only observed biomarker data where censored data
were imputed by a single value of DL/2 (CC-DL/2).

Analysis of PSOAS data
Censored or missing CRP data at early visits in PSOAS
were imputed based on six different approaches (CC-
DL/2, MI-MCMC1, MI-MCMC2, MI-CQR, MI-wCQR2,
MI-wCQR3) that are described in “Simulation studies”
section. For each imputed dataset, we assessed the lon-
gitudinal association between natural log-transformed
CRP levels and mSASSS while controlling for poten-
tial confounding factors, that included Bath Ankylosing
Spondylitis Disease Activity Index (BASDAI), medication
usages of Tumor Necrosis Factors inhibitors (TNFi), and
Nonsteroidal Anti-Inflammatory drugs (NSAIDs) as well
as demographic information such as sex, race, disease
duration, co-morbidity, education and smoking status.
Multivariable mixed effect Poisson regression models
were conducted for each imputed dataset, to account for
the correlations of repeated measures within a patient.

Results
Simulation study results
Table 1 presents the results of simulation study across
different censoring rates based on aforementioned
Scenario 1; Bias and relative efficiency (100 × RE) are
presented for each parameter, α0, α1, α2. Overall, our
proposed three MI-wCQR approaches (i.e., MI-wCQR1,
MI-wCQR2, MI-wCQR3) produced more efficient esti-
mators (i.e., higher REs) than other MI methods that
were used for comparison. Specifically, with 10% cen-
sored data, RE of our MI methods for α1, the coeffi-
cient of biomarker, ranged from 53.4% to 53.8%, while
for CC-DL/2 RE was 3.2% and for that of MI-MCMC1,
MI-MCMC2 and MI-CQR were 5.0, 39.5, and 49.6%,
receptively. Although as the censoring rate increased the
magnitude of RE for our methods decreased slightly,
we still observed higher REs, ranging from 40.1% to
44.9% for α1, compared to other methods with REs
ranging from 8% for CC-DL/2 to 39.98% for MI-CQR,
when 30% of data were censored. We also observed
similar patterns in REs for other two coefficients, α0
and α2.
Similar findings were observed under Scenario 2-

Scenario 4, as shown in Table 2. OurMImethods provided
higher REs compared to the other methods across all
these three scenarios in the presence of 30% censoring. It
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Table 1 Simulation results (10-30% censored; Scenario 1)

α α0 α1 α2

Method Bias 100xRE Bias 100xRE Bias 100xRE

10% censored

OMNI 0.0015 – -0.0004 – -0.0009 –

CC-DL/2 -0.0353 40.885 0.2295 32.190 0.0163 49.142

MI1 0.0151 19.644 -0.1900 15.025 -0.0531 29.805

MI2 0.0289 54.944 0.0044 39.458 -0.0055 67.701

MI-CQR 0.0588 61.407 -0.0237 49.594 -0.0133 80.753

MI-wCQR1 0.0548 64.175 -0.0142 53.410 -0.0109 82.931

MI-wCQR2 0.0554 64.336 -0.0143 53.619 -0.0110 83.657

MI-wCQR3 0.0562 63.070 -0.0119 53.832 -0.0112 82.383

15% censored

OMNI 0.0015 – -0.0004 – -0.0009 –

CC-DL/2 0.0155 34.977 0.1073 20.623 0.0005 43.807

MI1 0.2081 12.694 -0.2884 11.962 -0.0673 20.976

MI2 0.0318 51.749 0.0043 33.300 -0.0061 65.404

MI-CQR 0.0612 60.611 -0.0265 48.581 -0.0131 80.495

MI-wCQR1 0.0541 62.868 -0.0195 52.850 -0.0097 81.684

MI-wCQR2 0.0521 61.869 -0.0194 51.751 -0.0060 80.580

MI-wCQR3 0.0566 61.969 -0.0155 51.419 -0.0104 81.064

20% censored

OMNI 0.0015 – -0.0004 – -0.0009 –

CC-DL/2 0.0769 25.633 -0.0500 14.061 -0.0084 35.731

MI1 0.2753 11.360 -0.3920 10.965 -0.0793 15.871

MI2 0.0339 47.699 0.0041 28.147 -0.0067 61.568

MI-CQR 0.0636 59.024 -0.0273 44.248 -0.0129 75.347

MI-wCQR1 0.0542 62.054 -0.0215 49.542 -0.0087 79.569

MI-wCQR2 0.0485 62.323 -0.0233 48.830 -0.0066 78.507

MI-wCQR3 0.0618 60.503 -0.0178 45.908 -0.0112 75.721

30% censored

OMNI 0.0015 – -0.0004 – -0.0009 –

CC-DL/2 0.2094 12.909 -0.4255 7.810 0.0062 23.053

MI1 0.4420 8.714 -0.6175 10.370 -0.0973 10.664

MI2 0.0383 42.703 0.0019 21.804 -0.0076 54.866

MI-CQR 0.0621 58.587 -0.0198 39.975 -0.0111 75.797

MI-wCQR1 0.0466 61.367 -0.0177 44.947 -0.0042 77.979

MI-wCQR2 0.0327 62.075 -0.0262 43.389 0.0018 79.091

MI-wCQR3 0.0302 61.427 -0.0072 40.062 0.0015 75.897

OMNI: Omniscient; CC-DL/2: CC with censored values imputed by DL/2; MI-MCMC1: MI-MCMC imputing only missing values; MI-MCMC2: MI-MCMC imputing both censored
and missing values; MI-CQR: MI-unweighted CQR; MI-wCQR1: MI-weighted CQR using original probability of missing; MI-wCQR2: MI-weighted CQR using estimated
probability from censored values imputed by DL/2; MI-wCQR3 MI-weighted CQR using estimated probability from uncensored values only; RE: Relative Efficiency

also demonstrates that our weighted CQR methods is not
sensitive to the choice of covariance structure, as com-
pared to MCMC-based methods that assume normality

of biomarker data. For example, RE for MI-MCMC2
under Scenario 3 (MVE) was about 49% lower than that
of Scenario 2 (MVN) (i.e., from 21.52 for Scenario 2 to
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Table 2 Simulation results (30% censored; Scenario 2–Scenario 4)

α α0 α1 α2

Method Bias 100xRE Bias 100xRE Bias 100xRE

Scenario 2: MVN, Unstructured covariance

OMNI 0.0017 – -0.0006 – -0.0013 –

CC-DL/2 0.0527 16.527 -0.5413 7.541 0.1161 28.516

MI1 0.1809 8.011 -0.3166 11.718 0.0028 18.080

MI2 0.0183 42.410 -0.0014 21.517 -0.0035 52.201

MI-CQR 0.0433 63.613 -0.0050 36.069 -0.0089 69.551

MI-wCQR1 0.0319 71.852 -0.0099 42.007 -0.0031 78.523

MI-wCQR2 0.0204 71.104 -0.0299 40.525 0.0031 77.691

MI-wCQR3 0.0172 63.936 -0.0168 37.197 0.0030 70.009

Scenario 3: MVE, Exchangeable covariance

OMNI 0.0028 – 0.0000 – -0.0014 –

CC-DL/2 0.2094 12.616 -0.4212 7.660 0.0057 22.869

MI1 0.4430 3.682 -0.6098 3.640 -0.0981 10.591

MI2 0.0423 32.878 0.0008 11.074 -0.0088 44.840

MI-CQR 0.0667 58.224 -0.0183 36.201 -0.0128 71.372

MI-wCQR1 0.0501 62.644 -0.0163 41.087 -0.0055 77.240

MI-wCQR2 0.0379 62.214 -0.0256 40.690 0.0000 77.128

MI-wCQR3 0.0273 59.215 -0.0041 37.352 0.0018 71.902

Scenario 4: MVE, Heteroscedastic covariance

OMNI 0.0028 – 0.0000 – -0.0014 –

CC-DL/2 0.1739 14.389 -0.4081 8.210 0.0171 23.356

MI1 0.1892 3.537 -0.3084 1.531 0.0002 10.432

MI2 0.0410 32.650 0.0011 11.025 -0.0083 44.126

MI-CQR 0.0649 58.870 -0.0141 36.739 -0.0125 71.618

MI-wCQR1 0.0492 63.492 -0.0121 41.733 -0.0054 78.362

MI-wCQR2 0.0340 63.222 -0.0223 40.015 0.0009 78.325

MI-wCQR3 0.0273 59.195 -0.0041 37.005 0.0018 71.929

OMNI: Omniscient; CC-DL/2: CC with censored values imputed by DL/2; MI-MCMC1: MI-MCMC imputing only missing values; MI-MCMC2: MI-MCMC imputing both censored
and missing values; MI-CQR: MI-unweighted CQR; MI-wCQR1: MI-weighted CQR using original probability of missing; MI-wCQR2: MI-weighted CQR using estimated
probability from censored values imputed by DL/2; MI-wCQR3 MI-weighted CQR using estimated probability from uncensored values only; RE: Relative Efficiency

11.07 for Scenario 3), while our methods provided consis-
tent REs (< 0.5% change) over all three scenarios.
Figure 2 displays distribution of biomarker data from

one of simulated datasets, distinguishing the observed
data from imputed data by our MI-wCQR2 method; the
distribution of data after imputation was very similar
to the complete data distribution that were originally
simulated. Similar findings were observed for our other
methods, MI-wCQR1 and MI-wCQR3 (Figures are not
shown).

Results of applying the proposedmethods to PSOAS data
General characteristics of patients in PSOAS
Among 295 AS patients who had at least 4 years of

radiologic follow up, the mean follow up time was 6.49
years (standard deviation (SD) = 2.37) with maximum
years of 13.5 and mean number of X-ray visits was 3.6 (SD
= 1.2). The cohort was 76.3% male, 81% white, 8.8% His-
panic, with a mean age 42.6 years (SD = 13.1) and a mean
disease duration 18.0 years (SD = 12.7) at baseline. Of the
295 patients, 54 (18.3%) were from UCSF, 83 (28.1%) from
UTH, 106 (35.9%) from Cedars Sinai, 42 (14.2%) from the
NIH Clinical Center and 10 (3.4%) were from PAH. At
baseline visit, 71.5% of patients had at least one comor-
bidity, 41.5% were ever-smokers and 10.7% were current
smokers. A median mSASSS at baseline visit was 5 (inter-
quartile range (IQR) = [0, 24]), the first observed CRP
level with censored values imputed by DL/2 had a median
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Fig. 2 Imputed data distribution based on MI-wCQR2. Distribution of
biomarker data from one of simulated datasets, distinguishing
observed data (green area; data with left-censored/missing values)
from imputed data (gray area); after imputation, data distribution was
very similar to the complete data distribution that were originally
simulated (red line)

of 0.4 (IQR= [0.2, 0.8]) and patients withmSASSS≥ 4 had
higher median CRP level compared to those withmSASSS
< 4 (0.43 vs. 0.31).

Analysis results
Table 3 shows the adjusted rate ratios (RR) and
p-values of complete case analysis using censored CRP
data imputed by DL/2 (CC-DL/2), and those from
imputed CRP levels by three other methods:MI-MCMC2,
MI-CQR and MI-wCQR2. The results from MI-MCMC2
and MI-wCQR2 were very similar to those from MI-
MCMC1 and MI-wCQR3 respectively (data not shown).
This may be because the censoring rate of CRP in PSOAS
data is not high enough to cause differences between
these methods. However, there were noticeable differ-
ences in the estimates and the corresponding p-values
for CRP across these four methods. The results from our
method (MI-wCQR2) suggest that higher CRP is signifi-
cantly associated with radiographic damage (adjusted RR
= 1.018; 95% confidence interval (CI) = [1.004, 1.031];
p = 0.0095), while the other methods did not result in a

Table 3 Analysis results of longitudinal association between CRP
and mSASSS when CRP levels were imputed by different
imputation methods

log(CRP)

Method adj. RR (95% CI) p-value

CC-DL/2 1.001 (0.98, 1.02) 0.9867

MI-MCMC2 1.006 (0.99, 1.03) 0.5586

MI-CQR 1.010 (0.995, 1.02) 0.1839

MI-wCQR2 1.018 (1.004, 1.03) 0.0095

CC-DL/2: CC with CRP imputed by DL/2; MI-MCMC2: MI-MCMC imputing both
censored and missing CRP; MI-CQR: MI-unweighted CQR; MI-wCQR2: MI-weighted
CQR using estimated probability from censored CRP imputed by DL/2; adj. RR:
adjusted Rate Ratio after controlling for sex, race, disease duration, co-morbidity,
education, smoking status, BASDAI and medication usages of TNFi and NSAIDs

statistically significant association (p = 0.99 for CC-DL/2;
p = 0.56 for MI-MCMC2; p = 0.18 for MI-CQR).

Discussion and conclusion
Biomarker data are often subject to left censoring due to
inability to obtain complete data when the measurements
are below the limit of detection. In longitudinal studies, it
is also possible that biomarker data are not completely col-
lected during early study visits which introduces a mono-
tonic missing data pattern. Both likelihood based joint
modeling techniques ([5, 16, 24]) and quantile regression
approaches ([10, 12, 29]) have been used to deal with
monotonic missing data. However, most of these method-
ological developments have dealt with monotone missing
data caused by termination from a trial or study (e.g.,
dropout), to our knowledge there are no published studies
that have developed imputation approaches that specif-
ically accommodate both censoring and missing data at
early follow up visits. In this article we have developed
the use of multiple imputation procedure that is based on
weighted censored quantile regression model to account
for both left-censored and monotone missing biomarker
data during early visits. Specifically, we applied inverse
probability weighting techniques to incorporate missing
data in early visits through amultiple imputation based on
censored quantile regression.
Our findings from the simulation study indicate that

our proposed method performs better than other MI
methods as assessed by higher RE. Further, our approach
is not sensitive to the choice of covariance structure as
compared to other methods that assume normality of
biomarker data. The results of our method MI-wCQR2,
where missing data probability weights were estimated
based on the imputed censored data by DL/2, were similar
to those ofMI-wCQR1, where the true probability weights
were used. This is reassuring to use estimated proba-
bilities for missing data based on the logistic regression
model for missing data process, as in real life applications
we may not have information about the true probabilities
for missing data. However, when the uncensored data
were only used for the missing data model (MI-wCQR3),
the results were not as good as the ones from MI-wCQR1
and MI-wCQR2 (i.e., lower RE). Since missing data model
is defined by linear covariate effects, uncensored data can
be used to obtain a consistent estimate of probability of
missing, but it may introduce some bias when there is a
strong underlying nonlinear relationship or the censoring
rate is considered high (e.g., > 30%). This is consistent
with literature that indicate accurate estimates of prob-
ability is critical when the inverse weighted probability
based approach is applied [27, 29].
Moreover, we demonstrated application of our meth-

ods to real data from the PSOAS cohort by examin-
ing the longitudinal association between CRP levels and
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radiographic damage in a situation where CRP levels for
some patients were either not collected in the early vis-
its or left-censored due to the detection limit. The results
from our method indicated that higher CRP is signif-
icantly associated with radiographic damage, while the
other methods did not result in a significant associa-
tion. This finding is also consistent with clinical expecta-
tion that CRP is associated with radiographic severity in
patients with AS [1].
Though developed method could be implemented with

standard software package quantreg in R that fits quan-
tile regression, we are currently developing R package for
users to easily implement the proposed MI approaches.
Censored quantile regression has been extended to data
censored at both lower and upper thresholds [4], there-
fore our method can be also directly extended to doubly
censored biomarker data. There is a growing interest in
developing MI methods that impute missing data across
multiple medications while accounting for the correla-
tions among them, which can be also extended by our
proposed method.
Based on our earlier work (Lee and Kong [10]), we

expect our method to provide consistent estimates for
the parameters in the weighted quantile regression model,
assuming the missing data model is correctly specified
[10, 12]. Despite aforementioned advantages for our
method shown earlier, we acknowledge that the misspec-
ification of the model for missing data process may intro-
duce bias in the estimation of parameters. Therefore, it is
important to identify themodel carefully and interpret the
analysis results cautiously [8, 10].

Endnotes
1 Participants from PAH have been enrolled since 2007.
2Study I-A: 5-year funded study (enrolled from 2002–

2006) for AS patients with disease symptom duration of
> 20 years. Patients were initially enrolled for one visit but
the protocol was amended to include the second follow up
visit about 2 to 3 years after their initial enrollment; Study
I-B: 2-year longitudinal study (enrolled from 2003–2006)
for AS patients with disease symptom duration of < 20
years.

Appendix A: Model formulation/ Estimation
procedure
A.1 Weighted censored quantile regression model
accounting for missing early visits
Let z∗it be the biomarker measurement for the i-th sub-
ject at time t assuming all subjects are to be observed
at the same time. Suppose we define the linear regres-
sion model z∗it = xTitβ + eit , i = 1, · · · , n; t =
1, · · · ,m, where xit is a p × 1 vector of covariates that
can include the time of measurement, β is an unknown

p × 1 vector of regression parameters and the random
errors eit are correlated within the subject to reflect the
serial correlations of repeated measurements within each
individual. If the τ -th conditional quantile of eit given
xTit is assumed to be zero, a quantile regression model
related to the τ -th quantile of response variable, qτ

(
z∗it

)
,

conditional on xit has the form qτ

(
z∗it

) = xTitβτ , 0 <

τ < 1, where βτ is a vector of quantile specific regres-
sion parameters corresponding to the coefficient β in
the linear regression model above. When there exists a
lower detection limit, say c, z∗it is a latent variable and
we cannot observe the biomarker measurement if it has
a value below c and we only observe zit = z∗it , if z∗it > c.
This leads to the longitudinal censored quantile regression
(CQR) model defined as zit = max

(
c, xTitβ + eit

)
. We can

define the objective function for longitudinal censored
data as

Qn(βτ ) = 1
n

n∑

i=1

m∑

t=1
ρτ

(
zit − max

{
c, xTitβτ

})
. (2)

The loss function ρτ (u) = u{τ − I(u ≤ 0)}, with
I(·) being an indicator function, represents the contri-
bution by residuals. The estimates resulting from (2) are
equivalent to the solution of estimating equation

Sn(βτ ) = 1
n

n∑

i=1

m∑

t=1
xit

[
τ − I

(
zit ≤ max

{
c, xTitβτ

})]
= 0. (3)

To apply the weighting techniques to the censored quan-
tile regression model for handling missing data at early
visits, letOi be a random variable indicating the time point
when the data collection was started for the i-th subject.
Oi can take the values between 1 andm. If the subject has
completed 1∼ m follow-up visits then Oi = 1, and if the
subject had missing data from visit 1 tom-1 then Oi = m.
We denote zoi as the observed response history since the
data collection was started, and X i = {xi1, · · · , xim}T as
a set of covariates that were observed from the complete
study visits 1∼ m. When the biomarker measurements
are MAR, the conditional probability of missing early visit
from the baseline to the oi − 1 occasion for the i-th sub-
ject is πioi = Pr{Oi = oi|zoi , X i, γ } (oi = 1, · · · ,m),
where πioi > 0 and γ is a parameter vector of the regres-
sion model. Now the weighted estimating equations for
censored quantile regression model can be defined as

Swn (βτ ) =
( n∑

i=1

1
πioi

m∑

t=oi
xit

[
τ − I

(
zit ≤ max

{
ci, xTitβτ

})]
)

=
n∑

i=1

⎛

⎝
m∑

oi=1

I(Oi = oi)
πij

m∑

t=oi
xit

[
τ − I

(
zit ≤ max

{
ci, xTitβτ

})]
⎞

⎠

(4)
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The basic idea of weighted estimating equations is to
weight each subject’s contribution by the inverse prob-
ability of missing early visits to a given occasion. After
we define xwit = 1

πioi
xit , zwit = 1

πioi
zit and ciw = π−1

ioi c,
Eq. (4) can be written in the same form as the unweighted
estimating Eq. (3) as follows:

Swn (βτ ) = 1
n

n∑

i=1

m∑

t=oi
π−1
ioi xit

[
τ − I

(
π−1
idi zit ≤ max

{
π−1
ioi c,π

−1
ioi x

T
itβτ

})]

= 1
n

n∑

i=1

m∑

t=oi
xwit

[
τ − I

(
zwit ≤ max

{
ciw, xwTit βτ

})]
= 0.

Thus, the corresponding objective function is in the
form of

Qw
n (βτ ) =

n∑

i=1

m∑

t=oi
ρτ

(
zwit − max

{
ciw, xwit

T
βτ

})
. (5)

Now the traditional censored quantile regression esti-
mation algorithm ([4, 20]) can be straightly applied to
minimize this objective function. Details related to esti-
mation procedures, inference, and asymptotic proper-
ties of parameter estimators were discussed in Lee and
Kong [10].

A.2 Missing data process
If the missing early visit data arise from the MAR mech-
anism, estimation of probability of missing early visits is
straightforward. To illustrate the missing data process,
denote Rit as the missing status of response variable zit ,
i.e., Rit = 1 if zit is observed and 0 otherwise. Then Rij = 1
implies that Rij′ = 1 for all j′ > j given themonotonemiss-
ing pattern. To indicate when the data collection is started,
we define a random variableOi asOi = 1+(m−∑m

t=1 Rit).
The probability of missing early visit πioi from baseline to
occasion oi − 1 can be given by

πioi = Pr(Oi = oi|zoio′
i
,X i, γ )

= Pr
(
Ri,1, · · · ,Ri,oi−1 = 0,Ri,oi = 1|zoio′

i
,X i, γ

)
,

where zoio′
i
is the first observed z value after time oi (i.e.,

oi < o′
i ≤ m). When we define the probability of

being observed at time t for the i-th subject as ηit =
Pr

(
Rit = 1|Ri,t+1 = · · · = Rim = 1, zoit′ ,X i, γ

)
, t < t′ ≤ m,

we can carry out the probability of missing early visits in
terms of ηit as follows:

πioi =
oi−1∏

t=1

{
1 − Pr

(
Rit = 1|Ri,t+1 = · · · = Rim = 1, zoit′ ,Xi, γ

)}

× Pr
(
Rioi = 1|Ri,oi+1 = · · · = Rim = 1, zoio′

i
,Xi, γ

)I{oi≤m}

=
(oi−1∏

t=1
(1 − ηit)

)

(ηioi )
I{oi≤m},

where γ is the parameter vector of the regression model
for ηit . Then appropriate regression models such as logis-
tic regression model can be used to estimate ηit , and then
we can calculate πioi based on the equation above.

A.3 Multiple imputation process based on weighted
censored quantile regression
Multiple imputation techniques [21] have been widely
used for the general handling of missing data . However,
the censoring and monotone missing mechanisms should
be incorporated in the imputation models to deal with the
complexity of missingness. Based on the weighted cen-
sored regression of quantiles that was introduced in the
previous section, we propose themultiple imputation pro-
cedure to fill in the data that are left-censored or missing
at early visits. The conditional censoring probability of
zit , ω(X it) = Pr(zit < c|X it) can be estimated using a
logistic regression model logit[ω(Xit)]= XT

it δ , where δ

is unknown parameter vector and then v is sampled from
uniform distribution UNIF (0,ω(Xit)) in order to impute
the censored value zit by its conditional quantile of z∗it =
XT
it β̂v which is estimated through fitting weighted cen-

sored quantile regression model where zit is treated as the
dependent variable as described in the previous section.
We also draw u from UNIF(0, 1) to fill in the missing
value by z∗it = XT

it β̂u, that is the u-th conditional quantile
of zit given Xit . Once the imputed datasets are gener-
ated, any analysis designed for the complete dataset can
be applied to each of M imputed datasets. To obtain the
parameter estimators of interest in the regression model
yit = α0 + α1z∗it + α2wit + εit , we define the combined
MI estimator as α̂MI = M−1 ∑M

k=1 α̂k . Wang and Feng
[28] discussed the asymptotic properties of their proposed
multiple imputation procedure based on the conditional
quantile function and suggested bootstrapping because
the asymptotic variance of MI estimators takes complex
forms and it is difficult to estimate directly. We adopted
a bootstrap method by resampling the paired observa-
tions with replacement based on 500 bootstrap samples to
obtain the standard errors for estimated parameters and
p-values that were calculated by using the normality of
estimated parameter α̂MI .

Appendix B: Simulation study design
Suppose the subjects are to be observed at the same m
time points. The latent longitudinal biomarker data are
generated from the model

z∗it = β0 + β1xit + β2wit + eit − F−1
eit ,

i = 1, · · · , n; t = 1, · · · ,m,

where the covariates include a variable xit with Pois-
son(20) distribution and wit representing the t-th assess-
ment time which is set equal to t. Given the covariates,
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random error vectors, ei = (ei1, · · · , eim)T for i =
1, · · · , n, are assumed to be mutually independent and
have conditional τ -th quantile equal to zero. Let us con-
sider an error term eit − F−1

eit (τ ), where F(·) denotes the
cumulative distribution function and F−1

eit (τ ) is the τ -th
quantile of eit given xi and t. We simulated the random
variable eit from each of the following distributions and
calculated F−1

eit (τ ) with τ = 0.5 for each scenario.

Scenario 1 Multivariate normal distribution (MVN);
exchangeable covariance structure:
ei = {ei1, · · · , ei4}T ∼ MVN(0, σ 2R), where
σ 2 = 1 and correlation matrix R is
exchangeable with ρ = 0.3

R =

⎛

⎜
⎜
⎝

1.0 0.3 0.3 0.3
1.0 0.3 0.3

1.0 0.3
1.0

⎞

⎟
⎟
⎠ .

Scenario 2 Multivariate normal (MVN) distribution ;
unstructured covariance:
ei = {ei1, · · · , ei4}T ∼ MVN(0, σ 2R), where
σ 2 = 1 and correlation matrix

R =

⎛

⎜
⎜
⎝

1.00 0.75 0.44 0.54
1.00 0.37 0.46

1.00 0.08
1.00

⎞

⎟
⎟
⎠ .

Scenario 3 Multivariate exponential distribution;
exchangeable covariance:
eit = exp(ξit) − 1 and
ξ i = {ξi1, · · · , ξi4}T ∼ MVN(0, σ 2R), where
σ 2 = 1 and R is exchangeable with ρ = 0.3.

Scenario 4 Multivariate exponential distribution;
heteroscedastic covariance structure (i.e.,
covariance depends on a set of covariates X i:
eit = exp(ξit) − 1 and
ξ i = {ξi1, · · · , ξi4}T ∼ MVN(0, 1/(1 + xi1)R),
where R is exchangeable with ρ = 0.3. Note
that in this case, F−1

eit (τ ) varies with xi1.

We set β = (β0,β1,β2)T = (2.3,−0.25,−0.1)T , m = 4
and overall censoring percentage r = 10, 15, 20 or 30%.
We chose the detection limit c as the (100×r)-th sam-
ple percentile of the simulated biomarker data z∗it . Using
latent variable z∗it , we finally generated yit = α0 + α1z∗it +
α2wit + εit , (α0 = 5,α1 = −4,α2 = −6). As for the miss-
ing data process, the logistic regression model below was
postulated,

logit(ηit) = γ0 + γ1z∗i,t+1 + γ2xit , (6)

where the parameter vector is α=(γ0, γ1, γ2)T =
(1,−8.5, 0.5)T , ηit is the conditional probability of being
observed at time t, and z∗i,t+1 is the observed biomarker
data at the time point t+1. Under this setting, we assumed

the subjects with higher level of marker z∗ are more likely
to have missing data.
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