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On the use of the outcome variable “small
for gestational age” when gestational age
is a potential mediator: a maternal asthma
perspective
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Abstract

Background: The variable “small for gestational age,” frequently defined as birth weight below the 10th percentile
in a gestational age and sex-normalized population, is nowadays generally perceived as a more adequate measure
than birth weight or low birth weight (birth weight < 2500 g) to capture fetal growth. However, the use of small for
gestational age rather than birth weight or low birth weight as an outcome (dependent) variable may have important
impacts on the interpretation of analyses aimed at estimating the causal effect of an exposure of interest on infants.
We hypothesized potential differences in both types of effects estimated (direct or total) and in ability to control for
confounding bias.

Methods: We first examined the use of outcome variables birth weight and small for gestational age to get insights
on modeling practices within the field of maternal asthma. Using directed acyclic graph simulations where gestational
age was a potential mediator, we then compared estimated exposure effects in regression models for birth weight,
low birth weight, and small for gestational age. Graphs with and without confounding were considered.

Results: Our simulations showed that the variable small for gestational age captures the direct effect of exposure on
birth weight, but not the indirect effect of exposure on birth weight through gestational age. Interestingly, exposure
effect estimates from small for gestational age models were found unbiased whenever exposure effect estimates from
birth weight models were affected by collider bias due to conditioning on gestational age in the models.

Conclusions: The sole consideration of the outcome small for gestational age in a study may lead to suboptimal
understanding and quantification of the underlying effect of an exposure on birth weight-related measures. Instead,
our results suggest that both outcome variables (low) birth weight and small for gestational age should minimally be
considered in studies investigating perinatal outcomes.

Background
Perinatal outcomes birth weight (BW) and low birth
weight (LBW; BW < 2500 g) have a long history of use in
public health and medical studies [1]. Since the past
several decades, there has been an increased awareness
and understanding of the limitation of these variables to
convey notions of prematurity and fetal growth [1–3].
Although no numeric cut-offs were proposed at that
time, the concept of being “small for gestational age”

(SGA) can be traced back to the 1960s [1]. Nowadays,
the variable SGA, frequently defined as BW below the
10th percentile in a gestational age (GA) and sex-
normalized population [4, 5], is generally accepted as a
more adequate measure than BW or LBW to characterize
intrauterine growth [2, 6]. Indeed, (L)BW can be viewed
as a heterogeneous variable influenced by two distinct
processes, GA and fetal growth, which can complicate the
interpretation of study results. However, while much of
recent focus is put on the epidemiology of preterm birth
and SGA (e.g., [1, 7]), the use of SGA rather than (L)BW
itself as an outcome (dependent) variable may have
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analytical consequences which can pose difficulties if they
are not well known or understood.
In this work we have investigated the practical impli-

cations, both in terms of types of estimated effects and
potential biases, of using different birth weight-related
parametrizations (that is either (L)BW or SGA) as out-
come variables when assessing the effect of exposures in
analyses which use these outcomes. As mentioned previ-
ously, the rationale for not exclusively using (L)BW in
studies is now well understood. Although SGA is per-
ceived as a more interpretable outcome than (L)BW since
internally adjusted for GA, it remains that this variable is
a mere statistical construct (e.g., [8]) and could also
present some limitations.
Direct and indirect exposure effects are intuitive

concepts which are at the heart of mediation analyses
[9–11]. Fundamentally, one often desires to decompose
the total effect of an exposure on an outcome in one
effect that is mediated by an intermediate variable (indir-
ect effect) and one effect that does not arise through that
variable (direct effect). The potential for GA to lie in the
causal pathway between an exposure of interest (e.g., in-
haled corticosteroids (ICS) for treating asthmatic preg-
nant women) and BW is clearly evident. Indeed, any
effect of the exposure on GA necessarily entails an indir-
ect effect of the exposure on BW because of the strong
causal association between GA and BW. Using medi-
ation ideas, we have conceived a simulation study with
the goal to shed further light on the advantages and
disadvantages of considering either (L)BW or SGA as
outcome variable of interest in exposure effect analyses.
Our objective is to emphasize the statistical implications
of using standard modelling approaches for variables
that could formally be cast into mediation models.
Using directed acyclic graphs (DAGs) [12, 13] where

GA is a potential mediator between the exposure to ICS
and BW, we first examined different scenarios wherein
the effect of ICS on the outcome was either direct, indir-
ect or both. Because SGA is strictly a function of BW
and GA, we then assessed the corresponding interpreta-
tions for this outcome. Using mediation DAGs with
confounders, we also examined different scenarios which
could bias similarly or dissimilarly the estimates of the
exposure-(L)BW and exposure-SGA associations. To our
knowledge, no comprehensive simulation-based study
has yet brought evidence concerning the differential
implications of using either parametrization in the pres-
ence of confounding biases.
The paper is divided as follows. We first offer a glance

at practice in maternal asthma research with respect to
the use of (L)BW, SGA and GA as outcome variables.
While one can argue that these are relatively crude
measures of fetal and subsequent infant health, these
outcomes are widely used in this specific research area.

Then we describe the two sets of simulated scenarios
considered, the processes used to generate the data, and
the analyses performed. The presentation of the results
and a discussion conclude this work.

Method
A glance at practice in maternal asthma research
To get insights about the choice of (L)BW and SGA as
outcome variables of interest, we selected two relatively
recent articles which performed a meta-analysis or a
systematic review on populations of asthmatic pregnant
women. Our selection is not deemed exhaustive but
rather insightful of preferred habits in the use of
(L)BW and SGA as outcome variables in maternal
asthma research.
The first article, authored by Murphy et al. [14], pre-

sents a meta-analysis of adverse perinatal outcomes in
women with asthma. The meta-analysis is based on
cohort studies published between 1975 and 2009 and for
which the effect of asthma was assessed for at least one
of the following outcomes: LBW, SGA, and preterm
birth (PTB; GA < 37 weeks). Table 1 presents the selec-
tion of these three outcomes by included study; this
table was constructed from the studies reported in rela-
tive risk Figures 1–3 in Murphy et al. [14].
The second article, by Eltonsy et al. [15], presents a

systematic review for the use of β2-agonists during

Table 1 Meta-analysis by Murphy et al. [14]: a summary of
selected outcome variables by included study

Study Publication dateª LBW SGA PTB

Lao et al. [30] 1990 X − X

Perlow et al. [31] 1992 X X X

Doucette et al. [32] 1993 X − X

Jana et al. [33] 1995 X − X

Schatz et al. [34] 1995 X X X

Stenius-Aarniala et al. [35] 1995 − − X

Demissie et al. [36] 1998 X X X

Liu et al. [37] 2001 − X X

Bracken et al. [38] 2003 − X X

Dombrowski et al. [39] 2004 − X X

Acs et al. [40] 2005 X − X

Bakhireva et al. [41] 2005 − X X

Sheiner et al. [42] 2005 X − −

Clark et al. [43] 2007 − X −

Enriquez et al. [44] 2007 − X −

Kallen et al. [45] 2007 X X X

Karimi et al. [46] 2008 X − X

Breton et al. [47] 2009 X X X

Abbreviations: LBW low birth weight, PTB preterm birth, SGA small for
gestational age
ª Presented by increasing order of publication date
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pregnancy and their effects on perinatal outcomes. This
systematic review searched for articles published before
2013 regarding the effects of β2-agonists on congenital
malformations, SGA, mean and low BW, GA, and PTB.
Table 2 presents the selection of the three types of out-
comes investigated by included study; this table was
constructed from the studies reported in Tables 4–8 in
Eltonsy et al. [15].
We see that the GA-related variables (GA, PTB) most

often appear in the studies listed in Tables 1 and 2.
Thus, when only two variables were considered in a
study, it usually included a GA-related variable. In such
a situation, the other covariate selected was seen to split
in a larger proportion for (L)BW as opposed to SGA (8/
12 vs 4/12, respectively; studies counted once only). In
the meta-analysis results (see Table 1), 5 out of 18
studies (27.8%) reported all three outcomes, and 4 out of
10 (40%) for the systematic review (see Table 2). Three
studies, all in the meta-analysis from Murphy et al. [14],
only reported either LBW or SGA (without GA).
No clear time trend with respect to the patterns of

inclusion of the variables is seen in Tables 1 and 2. More
recent articles also show differential preferences regard-
ing the use of variables (L)BW, SGA, and GA/PTB. For
instance, in [16] and [17], the authors used all these
three variables as outcomes in analyses, while [18] and
[19] only used SGA and GA, and LBW and GA, respect-
ively. Although the use of (L)BW without SGA (and vice
versa) is not widespread based on these articles and the
selected meta-analysis and systematic review, it is
frequent enough to establish the relevance of investigat-
ing (L)BW and SGA jointly.
In the next section, we introduce a series of DAGs to

help interpret estimated causal effects of an exposure on
(L)BW and SGA. At the same time, we also incorporate

the GA dimension since the constructed variable SGA is
a function of both BW and GA.

Design of primary simulations
We first present basic scenarios and corresponding data
generation processes. These were used to gain insights
on the interpretation of the associations between the
exposure and the outcomes of interest ((L)BW, SGA).
Then, to investigate the potential for confounding or
collider bias [20, 21] when using (L)BW or SGA, we
pursue with more complex scenarios that incorporate a
single confounder of the relationships between the
exposure, GA, and BW. Collider bias can be described
as a spurious association between the exposure and the
outcome which arises when studies, at the design or the
analysis stage, stratify or adjust on a collider; in a DAG,
a collider is a common effect of two variables lying on a
path linking the exposure and the outcome [11]. The
simulations were performed using R [22], version 3.0.2.
We used the same initial seed to generate the data for
all scenarios.

Basic scenarios
We considered four basic causal DAGs with three nodes:
the exposure node ICS, the mediator node GA, and the
outcome node BW. Figure 1 presents the DAGs showing
the posited links between ICS, GA, and BW. Each of the
DAGs corresponds to one scenario and is the basis for
the generation of the corresponding variables of interest.
First, a causal link between GA and BW is assumed in
all four scenarios. Basic Scenario 1 depicts the case
where ICS has no effect on BW, either direct or indirect.
Basic Scenario 2 is a scenario in which the effect of ICS
on BW is fully mediated by GA; in other words, the
effect of ICS on BW exclusively occurs through a modi-
fication in GA. Basic Scenario 3 represents the situation
where ICS only has a direct effect on BW; in this case,
the effect of ICS on BW does not occur through a modi-
fication in GA. Finally, in Basic Scenario 4, ICS has a
direct effect on BW, in addition to having an indirect
effect mediated through GA. It can be noted that there
are two scenarios which do not feature GA as a
mediator of the relationship between ICS and BW (Basic
Scenarios 1 and 3). These were considered as a bench-
mark for interpreting the results under scenarios in
which GA is a mediator (Basic Scenarios 2 and 4).

Generation of outcomes (L)BW and SGA (basic scenarios)
For each basic scenario, we simulated data for 20,000
babies, where this process was repeated 1000 times to
constitute 1000 samples of size 20,000. Exposures to ICS
were generated from Bernoulli experiments with prob-
ability 0.5 (ICS = 1 if exposed and ICS = 0 if unexposed).

Table 2 Systematic review by Eltonsy et al. [15]: summary of
selected outcome variables by included study

Study Publication dateª (L)BW SGA PTB∕GA

Schatz et al. [48] 1988 X X X

Lao et al. [15]b 1990 X − X

Schatz et al. [49] 1997 X X −

Alexander et al. [50] 1998 X − X

Olesen et al. [51] 2001 X − X

Braken et al. [23]b 2003 − X X

Schatz et al. [52] 2004 X X X

Bakhireva et al. [26]b 2005 X X X

Clifton et al. [53] 2006 X X X

Clark et al. [28]b 2007 X X −

Abbreviations: GA gestational age, (L)BW (low) birth weight, PTB preterm birth,
SGA small for gestational age
ª Presented by increasing order of publication date
b Study listed in Table 1
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For each sample in the basic scenarios, the GAs for all
babies were initially generated from a multinomial distri-
bution with support between 26 and 43 weeks and
probabilities corresponding to the estimated probability
of delivering at each of these weeks according to Table 1
from Kramer et al. [4]. More precisely, the GAs were
generated with theoretical probabilities coinciding with
the empirical probabilities found in that table (that is,
number of pregnancies observed for a given GA value
divided by the total number of pregnancies). To generate
the GAs for exposed babies in scenarios in which ICS
had a direct effect on GA (Basic Scenarios 2 and 4), we
subtracted 2 weeks from the GAs that were generated in
the first place. The magnitude of this effect was chosen
to well illustrate the concepts described herein and is
likely larger than the real effect of ICS on GA. Indeed,
low-to-moderate doses of ICS are generally regarded as
safe regarding GA- and BW-related outcomes while
some uncertainty remains regarding the effects of larger
doses of ICS [23].
The BWs (in grams) were then generated independ-

ently according to a normal distribution with mean

μBW ¼ −3703:3þ 183:25 GAþ βICS ICS ð1Þ

and standard deviation σBW = 333.82. The value of βICS
in Eq. (1) was set to −100 or 0, depending on whether
ICS had a direct effect on BW or not. The values of the
intercept and GA coefficients were defined on the basis
of the data found in Table 1 from Kramer et al. [4].
Specifically, these two coefficients had been a priori cal-
culated by fitting a linear regression model for BW ver-
sus GA on a large simulated sample (n = 100,000), where
the GAs had also been generated according to tabulated
empirical probabilities and the BWs generated from a
normal distribution according to the GA-specific mean
and standard deviation values found in that table. The
value 333.82 for σBW corresponds to the average of the
standard deviation values found in the table and is sub-
stantially smaller than the residual standard error
returned by the aforementioned large sample regression
analysis (450.80). This value for σBW was selected so that
less variability is observed for the BW distributions
conditional on the smallest GA values. Although the
assumptions of a linear effect of GA on BW and of com-
mon variance of errors are not satisfied in the data
summarized in Table 1 from Kramer et al. [4], these
were made in the primary simulations for simplicity.
We created the SGA variables for all babies based on

their values for GA and BW. The binary variable SGA
was determined by comparing a baby’s BW to the 10th
percentile of the normal BW distribution conditional on
GA. For example, an unexposed baby born at 28 weeks
of gestation was found small for his GA (SGA = 1) if his
BW was less than 999.89 g and not small for his GA
otherwise (SGA = 0), where 999.89 is the 10th percentile
of a normal distribution with mean equal to −3703.3 +
183.25 × 28 = 1427.7 and standard deviation equal to
333.82. An exposed baby born at 28 weeks of gestation
was also said small for his GA if his BW was less than
999.89 g. A common BW threshold was thus used to
determine the SGA value of every baby born at the same
GA. Finally, a baby was said having LBW if his BW was
smaller than 2500 g.

Confounding scenarios
Next, we considered four additional DAGs with four nodes:
a dichotomous confounder node V and the same three
nodes as before (ICS, GA, BW). Figure 2 presents the DAGs
depicting the causal links between V, ICS, GA, and BW in
these confounding scenarios. All the DAGs feature a causal
effect of ICS on BW fully mediated by GA. The DAGs differ
by the posited relationships between V and the nodes ICS,
GA, and BW. In Confounding Scenario 1, V is a confounder
between ICS and GA, while V is a confounder between GA
and BW in Confounding Scenario 2. In Confounding
Scenario 3, V is a confounder between ICS and BW. Con-
founding Scenario 4 encompasses all previous scenarios as
V is a common cause of ICS, GA, and BW simultaneously.

ICS
GA

BW

ICS
GA

BW

ICS
GA

BW

ICS
GA

BW

Fig. 1 Directed acyclic graphs for the Basic Scenarios 1–4. From top
to bottom, Basic Scenario 1: Null effect of ICS on BW; Basic Scenario
2: Indirect effect of ICS on BW; Basic Scenario 3: Direct effect of ICS
on BW; Basic Scenario 4: Direct and indirect effects of ICS on BW
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Generation of outcomes (L)BW and SGA (confounding
scenarios)
We also generated 1000 samples according to each of
the four confounding scenarios. Each sample included
20,000 babies, among which half (10,000) had the value
V = 1 and half had the value V = 0. Whenever there was

an arrow from V to ICS in a DAG (Confounding Scenar-
ios 1, 3, 4), the probability of being exposed to ICS was
set to 0.7 for those with V = 1 and to 0.3 for those with
V = 0. Otherwise (Confounding Scenario 2), the prob-
ability of being exposed to ICS was 0.5, independently of
the value of V. Exposures to ICS were then generated
according to these probabilities. Of note, the former
values of 0.70 and 0.30 were selected to induce signifi-
cant confounding arising through covariate V and expos-
ure ICS. In general, in our simulations, we have allowed
for strong relationships between variables to more
comprehensively interpret the results.
For each sample, the GAs for the babies with V = 0

were generated from the multinomial distribution previ-
ously described. In Confounding Scenario 3, in which V
had no direct effect on GA, the generated GA values for
the babies with V = 1 were taken to be the same as those
for the babies with V = 0. These values constituted the
intermediate GA values for all babies. To create the GAs
for the babies with V = 1 in scenarios in which V had a
direct effect on GA, we subtracted 2 weeks from the
GAs that were generated for the babies with V = 0.
Lastly, to generate the final GA values for the exposed
babies in scenarios in which ICS had a direct effect on
GA, we subtracted 2 weeks from each exposed baby’s
intermediate GA. For all other babies, their intermediate
GA value was set to their final GA value.
The BWs (in grams) were generated independently

according to a normal distribution with mean

μBW ¼ −3703:3þ 183:25 GAþ βICS ICS þ βV V

ð2Þ
and standard deviation σBW = 333.82. The value of βICS
(βV) in Eq. (2) was equal to - 100 or 0, depending on
whether ICS (V) had a direct effect on BW or not. The
variables SGA and LBW were created as in the Basic
Scenarios 1–4.

Primary analyses (all scenarios)
On each sample generated according to each of the four
basic scenarios, we fitted four linear or logistic models
(M), depending or SGA was modeled:

M1 : E BW½ � ¼ β0 þ βICS ICS;

M2 : E BW½ � ¼ β0 þ βICS ICS þ βGA GA;

M3 : logit P LBW ¼ 1ð Þð Þ ¼ β0 þ βICS ICS;

M4 : logit P SGA ¼ 1ð Þð Þ ¼ β0 þ βICS ICS:

For each model under each basic scenario, we
computed the mean of the 1000 estimated ICS coeffi-

cients, β̂ICS , where each coefficient represents either a
mean difference or a log odds ratio. The standard error

ICS GA BW

V

ICS GA BW

V

ICS GA BW

V

ICS GA BW

V
Fig. 2 Directed acyclic graphs for the Confounding Scenarios 1–4.
From top to bottom, Confounding Scenario 1: Indirect effect of ICS
on BW with V confounder between ICS and GA; Confounding Scenario
2: Indirect effect of ICS on BW with V confounder between GA and BW;
Confounding Scenario 3: Indirect effect of ICS on BW with V confounder
between ICS and BW; Confounding Scenario 4: Indirect effect of ICS on
BW with V common confounder between ICS, GA, and BW
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of the mean of β̂ICS was calculated as the standard
deviation of the 1000 estimated ICS coefficients divided
by

ffiffiffiffiffiffiffiffiffiffi

1000
p

.We also assessed whether the Monte Carlo
95% normal confidence interval for βICS included zero.
Similarly, we fitted the following eight models on each

sample generated according to each of the four
confounding scenarios:

M1 : E BW½ � ¼ β0 þ βICS ICS;

M1;V : E BW½ � ¼ β0 þ βICS ICS þ βV V ;

M2 : E BW½ � ¼ β0 þ βICS ICS þ βGA GA;

M2;V : E BW½ � ¼ β0 þ βICS ICS þ βGA GAþ βV V ;

M3 : logit P LBW ¼ 1ð Þð Þ ¼ β0 þ βICS ICS;

M3;V : logit P LBW ¼ 1ð Þð Þ ¼ β0 þ βICS ICS þ βV V ;

M4 : logit P SGA ¼ 1ð Þð Þ ¼ β0 þ βICS ICS;

M4;V : logit P SGA ¼ 1ð Þð Þ ¼ β0 þ βICS ICS þ βV V :

We calculated the mean of the 1000 estimates β̂ICS ob-
tained for each model under each confounding scenario,
with corresponding standard error. Again, we assessed
whether the confidence interval for βICS included zero. As
an aid for interpretation, we also indicated whether the

estimators of the ICS effect on (L)BW (β̂ICS in models M1

− 3, M1 − 3, V) are biased according to the DAGs considered
(e.g., see Pearl [24] for graphical causal rules). Whether or

not the estimators of the ICS effect on SGA ( β̂ICS in
models M4, and M4, V) are biased was also determined; in
this case our insight relied on the estimates obtained from
the simulations under the unconfounded basic scenarios.

Sensitivity analyses (all scenarios)
In the primary simulations, we made the assumptions of a
linear effect of GA on BW and of common variance of
BW errors. We subsequently decided to create additional
simulation scenarios to examine the consequence of fit-
ting the standard regression models previously described
when these assumptions were not verified in the data.
We assessed the potential impact of the heterogeneity

of BW errors on the basic and confounding scenarios’
results. Instead of simulating the BWs with constant
errors (σBW = 333.82 for all GA), we simulated them
according to the GA-specific standard deviation values
found in our perinatal reference table (that is, Table 1
from Kramer et al. [4]). For instance, we used σBW =
241.00 for a baby born at 28 weeks and σBW = 447.00 for
a baby born at 40 weeks. Modification to the way that
the SGA variable was created was done accordingly.
More precisely, the 10th percentile cut-off at a given GA
was determined using the GA-specific standard deviation

value used for simulating the BWs at that GA. No changes
were made regarding the linearity of the effect of GA on
BW in these new analyses; that is, Eq. (1) and (2) still
apply for describing the mean BW formula used for gener-
ating this outcome.
We also assessed the potential impact of the nonline-

arity of the effect of GA on BW on the basic and
confounding scenarios’ results. To do that, we took an
approach similar to what was done to calculate the inter-
cept and GA coefficient values in Eq. (1). However,
instead of fitting a simple linear model on the large
sample with GA as a single explanatory variable, we con-
sidered a model with additional quadratic and cubic GA
terms. The coefficients returned by this model were used
to specify the equations used to generate the BW values
for these sensitivity analyses. For both the basic scenar-
ios and the confounding scenarios with nonlinearity of
GA effect on BW, we thus had

μBW ¼ 29415−2922:4 GAþ 94:46 GA2−0:9378 GA3

þφ ICS;Vð Þ

where φ(ICS,V) is the last term in Eq. (1) for the basic
scenarios, and φ(ICS,V) is the sum of the last two terms
in Eq. (2) for the confounding scenarios; the standard
deviation of errors remained the same at σBW = 333.82.
For these analyses, we also fitted either one or two
additional models M2� ;M2;V �

� �

where polynomial terms
in GA up to degree 3 were included as regressors.

Results
Primary analysis results
The results for the basic and confounding scenarios for
the primary simulations are presented in Tables 3 and 4,
respectively.
For Basic Scenario 1 (Table 3), all mean estimated ICS

effects on (L)BW or SGA are close to zero, as is
expected since ICS has no effect, either direct or indir-
ect, on BW. For Basic Scenario 2, in which ICS has an
indirect effect on BW, the ICS effect in the GA-
unadjusted models M1 and M3 is significantly different
from zero. In model M1, this mean estimate reflects the
diminution of 2 weeks in GA for babies exposed to ICS,
which in turn decreases the average BW by (−2) ×
183.25 = −366.50 g (see Eq. (1)). Further, we observe that
ICS is not associated with SGA (M4), nor is it with BW
when we condition on GA (M2). For Basic Scenario 3,
all mean estimated ICS effects on (L)BW or SGA are
significantly different from zero. The mean estimated
ICS effect on BW is close to −100 in both models M1

and M2, and reflects the direct effect of ICS on BW (see
Eq. (1)). In that scenario, being exposed to ICS was
found to increase the odds of having a LBW baby by exp
(0.3283) = 1.3886 and the odds of having a SGA baby by
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exp (0.5611) = 1.7526. In Basic Scenarios 1 and 3, a re-
duction in variability is observed for the ICS estimates
obtained from model M2 as opposed to model M1. In
these scenarios, the mean estimated ICS effect is the
same for both models M1 and M2, but the effect is more
accurately estimated from the model including GA (M2).
For Basic Scenario 4, the mean estimated ICS effect on
BW in M1 and M2 are different, as in Basic Scenario 2.
In this case, the estimated ICS effect on BW in M1 rep-
resents both the direct and indirect effects specified in
simulation (−100–366.50 = −466.50 g), while the ICS ef-
fect on BW observed from M2 only reflects the direct ef-
fect. The estimated effect of ICS on SGA in Basic
Scenario 4 is the same as in Basic Scenario 3. Together,
the pairs of Basic Scenarios (1, 2) and Basic Scenarios (3,
4) thus reveal that the strength of the association
between the exposure and SGA is driven by the size of
the direct effect of the exposure on BW.
For interpreting the results from the confounding sce-

narios (Table 4), we take as reference the results ob-
tained for Basic Scenario 2. In Confounding Scenario 1,
in which V is a confounder between ICS and GA, only
the estimated ICS effects from model M1 and M3 are

biased. These results are interesting since they show that
common causes of exposure and GA, and not only com-
mon causes of exposure and BW, create bias in the
exposure-BW relationship when the (L)BW model do
not adjust for them. In such a fully mediated scenario,
this situation arises because of the presence of the open
back-door path ICS←V→GA→ BW which creates a
spurious association between ICS and BW; this path
becomes closed when conditioning on GA. Still in Con-
founding Scenario 1, the mean estimate in model M3,V

(1.3296) is somewhat different from the mean estimate
for M3 in the Basic Scenario 2 (1.2676). This difference
is attributed to the well-known non-collapsibility of the
odds ratios, where, on this scale, marginal effects are
generally different than conditional effects [25]. In Con-
founding Scenario 2, in which V is a confounder be-
tween GA and BW, the estimated ICS effects from
model M2 are biased. This bias arises since adjusting for
GA in the BW model opens the back-door path ICS→
GA←V→ BW which creates a spurious association
between ICS and BW; including V in the model closes
the path and thus eliminates the bias (see corresponding
result for model M2,V). In Confounding Scenario 3, in
which V is a confounder between ICS and BW, all
estimated ICS effects from non V-adjusted models (i.e.,
models M1, M2, M3,M4) are biased. Without surprise, all
estimated ICS effects from non V-adjusted models are
also biased in Confounding Scenario 4 (V confounder
for all ICS, GA, and BW). Overall, there are thus two
confounding scenarios that affect the estimates differ-
ently depending on whether we use (L)BW or SGA as
outcome variables. Unlike (L)BW, our results indicate
that SGA is not affected by confounders between the
exposure and GA, nor by those between GA and BW. In
particular, it appears that using this outcome variable
prevents the collider bias problem that was seen under
model M2 for the conditional effect of ICS on BW in
Confounding Scenario 2.

Sensitivity analysis results
The results for the sensitivity analyses regarding the
heterogeneity of errors in basic and confounding scenar-
ios are found in Tables 5 and 6, respectively.
In the basic scenarios with heterogeneity of errors

(Table 5), the same interpretation as in the basic scenar-
ios with homogeneity of errors can be done regarding
the type of effect (total, direct) estimated in the different
(L)BW and SGA models.
In the confounding scenarios with heterogeneity of

errors (Table 6), the estimates obtained behaved similarly
to those obtained under the confounding scenarios with
homogeneity of errors from one scenario to the other.
One notable difference is with regard to the non-null
effect for some SGA models in Confounding Scenarios

Table 3 Basic scenarios without confounding

Scenario
(model, interpretation of effect)

mean se null ICS effect?

Basic 1 (M1, total) −0.2374 0.2025 yes

Basic 1 (M2, direct) −0.0152 0.1441 yes

Basic 1 (M3, total) 0.0046 0.0027 yes

Basic 1 (M4, direct) −0.0008 0.0015 yes

Basic 2 (M1, total) −366.75 0.2025 no

Basic 2 (M2, direct) −0.0098 0.1754 yes

Basic 2 (M3, total) 1.2676 0.0022 no

Basic 2 (M4, direct) −0.0008 0.0015 yes

Basic 3 (M1, total) −100.24 0.2025 no

Basic 3 (M2, direct) −100.02 0.1441 no

Basic 3 (M3, total) 0.3283 0.0025 no

Basic 3 (M4, direct) 0.5611 0.0014 no

Basic 4 (M1, total) −466.75 0.2025 no

Basic 4 (M2, direct) −100.01 0.1754 no

Basic 4 (M3, total) 1.6370 0.0021 no

Basic 4 (M4, direct) 0.5611 0.0014 no

Legend. Mean of the estimated exposure (ICS) effect (mean difference or log
odds ratio) on the outcome (BW, LBW or SGA) based on 1000 samples of size
20,000, with Monte Carlo standard error (se)
Basic Scenario 1: no ICS effect on BW; Basic Scenario 2: indirect ICS effect
on BW;
Basic Scenario 3: direct ICS effect on BW; Basic Scenario 4: direct and indirect
ICS effect on BW
M1: BW ~ ICS; M2: BW ~ ICS + GA; M3: LBW ~ ICS; M4: SGA ~ ICS;
null ICS effect = yes if 0 ∈ mean ± 1.96se
Abbreviations: BW birth weight, GA gestational age, ICS inhaled corticosteroids,
LBW low birth weight, SGA small for gestational age
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2–4. Specifically, Models M4, M4,V in Confounding
Scenarios 2 and M4,V in Confounding Scenarios 3 and 4
all featured a mean ICS estimate very close but signifi-
cantly different from zero. For example, the mean
estimate from M4,V in Confounding Scenarios 2 with
heterogeneity of error was 0.0127 and the standard error
of the mean was 0.0013, thus only slightly, but

significantly, departing from the null. This is opposed to
the null effect found in the corresponding M4,V result
when assuming homogeneity of errors. A common
feature of Confounding Scenarios 2–4, which could be
the source of this very small discrepancy in these fully
mediated scenarios, is the GA-dependent heterogeneity
of effect of V on SGA. Indeed, in these scenarios, the

Table 4 Confounding scenarios for indirect ICS effect on BW

Scenario
(model, interpretation of effect)

mean se null ICS effect? association confounded?

Confounding 1 (M1, total) −513.25 0.2041 no yes

Confounding 1 (M1,V, total) −366.72 0.2189 no no

Confounding 1 (M2, direct) −0.1645 0.1814 yes no

Confounding 1 (M2,V, direct) −0.1614 0.1823 yes no

Confounding 1 (M3, total) 1.7763 0.0017 no yes

Confounding 1 (M3,V, total) 1.3296 0.0018 no no

Confounding 1 (M4, direct) −0.0011 0.0015 yes no

Confounding 1 (M4,V, direct) −0.0001 0.0016 yes no

Confounding 2 (M1, total) −366.44 0.2292 no no

Confounding 2 (M1,V, total) −366.56 0.1973 no no

Confounding 2 (M2, direct) 24.232 0.1690 no yes

Confounding 2 (M2,V, direct) −0.1271 0.1694 yes no

Confounding 2 (M3, total) 1.2508 0.0014 no no

Confounding 2 (M3,V, total) 1.3351 0.0014 no no

Confounding 2 (M4, direct) 0.0008 0.0013 yes no

Confounding 2 (M4,V, direct) 0.0010 0.0013 yes no

Confounding 3 (M1, total) −406.67 0.1950 no yes

Confounding 3 (M1,V, total) −366.72 0.2189 no no

Confounding 3 (M2, direct) −40.136 0.1714 no yes

Confounding 3 (M2,V, direct) −0.1614 0.1823 yes no

Confounding 3 (M3, total) 1.4315 0.0021 no yes

Confounding 3 (M3,V, total) 1.2931 0.0023 no no

Confounding 3 (M4, direct) 0.2212 0.0013 no yes

Confounding 3 (M4,V, direct) 0.0006 0.0014 yes no

Confounding 4 (M1, total) −553.24 0.2109 no yes

Confounding 4 (M1,V, total) −366.72 0.2189 no no

Confounding 4 (M2, direct) −10.382 0.1854 no yes

Confounding 4 (M2,V, direct) −0.1614 0.1823 yes no

Confounding 4 (M3, total) 1.8558 0.0016 no yes

Confounding 4 (M3,V, total) 1.3321 0.0016 no no

Confounding 4 (M4, direct) 0.2212 0.0013 no yes

Confounding 4 (M4,V, direct) 0.0006 0.0014 yes no

Legend. Mean of the estimated exposure (ICS) effect (mean difference or log odds ratio) on the outcome (BW, LBW or SGA) based on 1000 samples of size 20,000,
with Monte Carlo standard error (se)
Confounding Scenario 1: confounder between ICS and GA; Confounding Scenario 2: confounder between GA and BW; Confounding Scenario 3: confounder
between ICS and BW; Confounding Scenario 4: confounder between ICS, GA and BW
M1: BW ~ ICS; M2: BW ~ ICS + GA; M3: LBW ~ ICS; M4: SGA ~ ICS;
null ICS effect = yes if 0 ∈ mean ± 1.96se
Models subscripted by V additionally include the V variable in the regression model
Abbreviations: BW birth weight, GA gestational age, ICS inhaled corticosteroids, LBW low birth weight, SGA small for gestational age
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direct effect of the V covariate on the mean BW is non-
null and the same for all GA values (−100); however,
when assuming heterogeneity of errors, this effect will
translate differently across GA for SGA since the BW
standard deviation, which intervenes in the definition of
the SGA variable, varies across GA.
The results for the sensitivity analyses regarding the

nonlinear GA effect on BW in basic and confounding
scenarios are found in Tables 7 and 8.
With a nonlinear GA effect on BW, changes in results

were observed for Basic Scenarios 2 and 4 which both
feature an indirect effect of GA on BW (Table 7). For
these scenarios, the effect obtained under model M2,
which adjusts for a linear GA term only, did not unbia-
sedly represent the direct effect of exposure on BW. A
positive residual bias of about 40 g was observed, but
this bias vanished when additionally including the quad-
ratic and cubic GA terms in the model (see results for
M2� in these scenarios).
Compared to all previous scenarios, the interpretation of

results for the confounding scenarios under nonlinearity of
GA effect on BW is more complicated (Table 8). It is noted

Table 5 Basic scenarios without confounding with
heterogeneity of errors

Scenario
(model, interpretation of effect)

mean se null ICS effect?

Basic 1 (M1, total) −0.2350 0.2398 yes

Basic 1 (M2, direct) −0.0126 0.1931 yes

Basic 1 (M3, total) 0.0029 0.0022 yes

Basic 1 (M4, direct) −0.0008 0.0015 yes

Basic 2 (M1, total) −366.75 0.2388 no

Basic 2 (M2, direct) −0.0374 0.2258 yes

Basic 2 (M3, total) 1.1826 0.0018 no

Basic 2 (M4, direct) −0.0008 0.0015 yes

Basic 3 (M1, total) −100.24 0.2398 no

Basic 3 (M2, direct) −100.01 0.1931 no

Basic 3 (M3, total) 0.3250 0.0020 no

Basic 3 (M4, direct) 0.4236 0.0014 no

Basic 4 (M1, total) −466.75 0.2388 no

Basic 4 (M2, direct) −100.04 0.2258 no

Basic 4 (M3, total) 1.5032 0.0018 no

Basic 4 (M4, direct) 0.4316 0.0014 no

Legend. Mean of the estimated exposure (ICS) effect (mean difference or log
odds ratio) on the outcome (BW, LBW or SGA) based on 1000 samples of size
20,000, with Monte Carlo standard error (se)
Basic Scenario 1: no ICS effect on BW; Basic Scenario 2: indirect ICS effect
on BW;
Basic Scenario 3: direct ICS effect on BW; Basic Scenario 4: direct and indirect
ICS effect on BW
M1: BW ~ ICS; M2: BW ~ ICS + GA; M3: LBW ~ ICS; M4: SGA ~ ICS;
null ICS effect = yes if 0 ∈ mean ± 1.96se
Abbreviations: BW birth weight, GA gestational age, ICS inhaled corticosteroids,
LBW low birth weight, SGA small for gestational age

Table 6 Confounding scenarios for indirect ICS effect on BW
with heterogeneity of errors

Scenario
(model, interpretation of effect)

mean se null ICS effect?

Confounding 1 (M1, total) −513.28 0.2388 no

Confounding 1 (M1,V, total) −366.76 0.2579 no

Confounding 1 (M2, direct) −0.2363 0.2328 yes

Confounding 1 (M2,V, direct) −0.2306 0.2353 yes

Confounding 1 (M3, total) 1.5614 0.0015 no

Confounding 1 (M3,V, total) 1.1601 0.0016 no

Confounding 1 (M4, direct) −0.0011 0.0015 yes

Confounding 1 (M4,V, direct) −0.0001 0.0016 yes

Confounding 2 (M1, total) −366.46 0.2600 no

Confounding 2 (M1,V, total) −366.58 0.2312 no

Confounding 2 (M2, direct) 24.188 0.2168 no

Confounding 2 (M2,V, direct) −0.1823 0.2167 yes

Confounding 2 (M3, total) 1.0759 0.0012 no

Confounding 2 (M3,V, total) 1.1475 0.0012 no

Confounding 2 (M4, direct) 0.0125 0.0013 no

Confounding 2 (M4,V, direct) 0.0127 0.0013 no

Confounding 3 (M1, total) −406.71 0.2335 no

Confounding 3 (M1,V, total) −366.76 0.2593 no

Confounding 3 (M2, direct) −40.210 0.2226 no

Confounding 3 (M2,V, direct) −0.2394 0.2378 yes

Confounding 3 (M3, total) 1.3095 0.0017 no

Confounding 3 (M3,V, total) 1.1839 0.0019 no

Confounding 3 (M4, direct) 0.1738 0.0014 no

Confounding 3 (M4,V, direct) 0.0050 0.0016 no

Confounding 4 (M1, total) −553.28 0.2444 no

Confounding 4 (M1,V, total) −366.76 0.2579 no

Confounding 4 (M2, direct) −10.454 0.2361 no

Confounding 4 (M2,V, direct) −0.2306 0.2353 yes

Confounding 4 (M3, total) 1.6301 0.0013 no

Confounding 4 (M3,V, total) 1.1518 0.0014 no

Confounding 4 (M4, direct) 0.1859 0.0014 no

Confounding 4 (M4,V, direct) 0.0120 0.0015 no

Legend. Mean of the estimated exposure (ICS) effect (mean difference or log
odds ratio) on the outcome (BW, LBW or SGA) based on 1000 samples of size
20,000, with Monte Carlo standard error (se)
Confounding Scenario 1: confounder between ICS and GA; Confounding
Scenario 2: confounder between GA and BW; Confounding Scenario 3:
confounder between ICS and BW; Confounding Scenario 4: confounder
between ICS, GA and BW
M1: BW ~ ICS; M2: BW ~ ICS + GA; M3: LBW ~ ICS; M4: SGA ~ ICS;
null ICS effect = yes if 0 ∈ mean ± 1.96se
Models subscripted by V additionally include the V variable in the
regression model
Abbreviations: BW birth weight, GA gestational age, ICS inhaled corticosteroids,
LBW low birth weight, SGA small for gestational age
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that even BW models adjusted for V (M1,V) did not estimate
the total effect of exposure completely without bias when the
confounder was associated with GA (Confounding Scenarios
1, 2, 4). However, model M1,V did unbiasedly estimate the
total effect of exposure under Confounding Scenarios 3 (refer
to M1,V in Basic Scenario 2, Table 7, for comparison), sce-
nario in which the confounder is associated with exposure
and outcome only. Nonetheless, adjusting for V in the
(L)BW models M1,V and M3,V yielded estimates overall closer
to the total effect of exposure, as expected. The unbiased es-
timation of the direct effect of exposure in the BW models
was achieved under model M2;V �, where both the correct
functional form of GA and the confounder was accounted
for. In these sensitivity analyses, no changes in results and in-
terpretation were observed for SGA as compared with the
Confounding Scenarios in the primary analyses (Table 4).

Table 7 Basic scenarios without confounding with nonlinear
GA effect on BW

Scenario
(model, interpretation of effect)

mean se null ICS effect?

Basic 1 (M1, total) −0.2921 0.2050 yes

Basic 1 (M2, direct) −0.0693 0.1479 yes

Basic 1 (M2� , direct) −0.0137 0.1442 yes

Basic 1 (M3, total) 0.0049 0.0026 yes

Basic 1 (M4, direct) −0.0008 0.0015 yes

Basic 2 (M1, total) −359.88 0.2132 no

Basic 2 (M2, direct) 40.140 0.1773 no

Basic 2 (M2� , direct) −0.0502 0.1856 yes

Basic 2 (M3, total) 1.3082 0.0021 no

Basic 2 (M4, direct) −0.0008 0.0015 yes

Basic 3 (M1, total) −100.29 0.2050 no

Basic 3 (M2, direct) −100.07 0.1479 no

Basic 3 (M2� , direct) −100.01 0.1442 no

Basic 3 (M3, total) 0.2730 0.0024 no

Basic 3 (M4, direct) 0.5611 0.0014 no

Basic 4 (M1, total) −459.88 0.2132 no

Basic 4 (M2, direct) −59.860 0.1773 no

Basic 4 (M2� , direct) −100.05 0.1856 no

Basic 4 (M3, total) 1.6259 0.0020 no

Basic 4 (M4, direct) 0.5611 0.0014 no

Legend. Mean of the estimated exposure (ICS) effect (mean difference or log
odds ratio) on the outcome (BW, LBW or SGA) based on 1000 samples of size
20,000, with Monte Carlo standard error (se)
Basic Scenario 1: no ICS effect on BW; Basic Scenario 2: indirect ICS effect
on BW;
Basic Scenario 3: direct ICS effect on BW; Basic Scenario 4: direct and indirect
ICS effect on BW
M1: BW ~ ICS; M2: BW ~ ICS + GA; M2� : BW ~ ICS + GA + GA2 + GA3; M3: LBW ~
ICS; M4: SGA ~ ICS;
null ICS effect = yes if 0 ∈ mean ± 1.96se
Abbreviations: BW birth weight, GA gestational age, ICS inhaled corticosteroids,
LBW low birth weight, SGA small for gestational age

Table 8 Confounding scenarios for indirect ICS effect on BW
simulated with nonlinear GA effect on BW
Scenario
(model, interpretation of effect)

mean se null ICS effect?

Confounding 1 (M1, total) −560.30 0.2198 no

Confounding 1 (M1,V, total) −400.33 0.2377 no

Confounding 1 (M2, direct) 16.904 0.1866 no

Confounding 1 (M2,V, direct) 15.329 0.1869 no

Confounding 1 (M2� , direct) −0.1993 0.1916 yes

Confounding 1 (M2;V� , direct) −0.1992 0.1917 yes

Confounding 1 (M3, total) 1.9051 0.0017 no

Confounding 1 (M3,V, total) 1.4397 0.0017 no

Confounding 1 (M4, direct) −0.0011 0.0015 yes

Confounding 1 (M4,V, direct) −0.0001 0.0016 yes

Confounding 2 (M1, total) −400.02 0.2474 no

Confounding 2 (M1,V, total) −400.15 0.2139 no

Confounding 2 (M2, direct) 39.335 0.1709 no

Confounding 2 (M2,V, direct) 19.839 0.1745 no

Confounding 2 (M2� , direct) 31.644 0.1712 no

Confounding 2 (M2;V� , direct) −0.1679 0.1774 yes

Confounding 2 (M3, total) 1.3528 0.0013 no

Confounding 2 (M3,V, total) 1.4636 0.0014 no

Confounding 2 (M4, direct) 0.0008 0.0013 yes

Confounding 2 (M4,V, direct) 0.0010 0.0013 yes

Confounding 3 (M1, total) −399.77 0.2051 no

Confounding 3 (M1,V, total) −359.81 0.2317 no

Confounding 3 (M2, direct) −0.0345 0.1714 no

Confounding 3 (M2,V, direct) 39.950 0.1846 no

Confounding 3 (M2� , direct) −40.216 0.1852 no

Confounding 3 (M2;V� , direct) −0.2350 0.1955 yes

Confounding 3 (M3, total) 1.4528 0.0021 no

Confounding 3 (M3,V, total) 1.3339 0.0023 no

Confounding 3 (M4, direct) 0.2212 0.0013 no

Confounding 3 (M4,V, direct) 0.0006 0.0014 yes

Confounding 4 (M1, total) −600.29 0.2267 no

Confounding 4 (M1,V, total) −400.33 0.2377 no

Confounding 4 (M2, direct) 6.6866 0.1907 no

Confounding 4 (M2,V, direct) 15.329 0.1869 no

Confounding 4 (M2� , direct) −1.6285 0.1930 no

Confounding 4 (M2;V� , direct) −0.1992 0.1917 yes

Confounding 4 (M3, total) 1.9757 0.0015 no

Confounding 4 (M3,V, total) 1.4531 0.0016 no

Confounding 4 (M4, direct) 0.2212 0.0013 no

Confounding 4 (M4,V, direct) 0.0006 0.0014 yes

Legend. Mean of the estimated exposure (ICS) effect (mean difference or log odds
ratio) on the outcome (BW, LBW or SGA) based on 1000 samples of size 20,000, with
Monte Carlo standard error (se)
Confounding Scenario 1: confounder between ICS and GA; Confounding Scenario 2:
confounder between GA and BW; Confounding Scenario 3: confounder between ICS
and BW; Confounding Scenario 4: confounder between ICS, GA and BW
M1: BW ~ ICS; M2: BW ~ ICS + GA; M2� : BW ~ ICS + GA + GA2 + GA3; M3: LBW ~ ICS; M4:
SGA ~ ICS;
null ICS effect = yes if 0 ∈ mean ± 1.96se
Models subscripted by V additionally include the V variable in the regression model.
Abbreviations: BW birth weight, GA gestational age, ICS inhaled corticosteroids, LBW
low birth weight, SGA small for gestational age
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Discussion
Our study found that the sole consideration of SGA in a
study may lead to suboptimal understanding and quanti-
fication of the underlying effect of an exposure on BW-
related measures. Using DAGs where GA was a potential
mediator between the exposure and BW, we have
confirmed that SGA is an absorbing variable: the ob-
served association between the exposure and SGA solely
reflects the direct effect of the exposure on BW, effect
which could be interpreted as a manifestation of intra-
uterine growth retardation. In the situation where the ef-
fect of exposure on BW was fully mediated by GA, the
exposure and SGA were not causally linked. Therefore,
an analyst may have concluded for no exposure effect on
the BW-axis, but what should really be concluded is the
absence of a direct effect of the exposure on BW. While
one could argue this is precisely the purpose of using
SGA, we believe that being able to assess the total
(direct and indirect) effect of the exposure on BW is at
least as valuable.
If the exposure has a direct beneficial effect but an

overall detrimental effect, the direct effect has less im-
portance. However, precise quantification of the total ef-
fect is obtained with the use of BW as outcome variable.
From our perspective, it would thus not be advisable to
only consider SGA and GA as outcome variables since
the ability to precisely assess the indirect and total ef-
fects of exposure on BW would be diminished. Although
the presence of an indirect effect of the exposure on BW
could be deduced from results looking at the effect of
the exposure on GA, our study suggests that considering
BW as outcome variable is the most straightforward way
to thoroughly investigate this issue. Indeed, recall that
the strength of an indirect effect of an exposure on an
outcome is a combination of two measures: 1) the
strength of the association between the exposure and
the mediator (GA) and 2) the strength of the association
between the mediator and the outcome (BW) [26].
One advantage we found with respect to the use of

SGA as outcome variable, as opposed to BW, is that is
less prone to bias. Interestingly, exposure effect esti-
mates from SGA models were found unbiased whenever
exposure effect estimates from BW models were affected
by collider bias due to conditioning on GA in the model.
Therefore, accounting for GA internally (through the
use of a GA-adjusted BW measure) or externally (by
conditioning on GA in a model for BW) are two com-
peting strategies that are not equally robust to bias. This
finding is particularly important when confounders for
the GA and BW association are unmeasured and cannot
be adjusted for in the model for BW. In our study, only
the SGA model, and not the BW model, yielded un-
biased results interpretable as a direct effect of exposure
on BW in the absence of such a confounder in the

model. We also found that whenever one missing covari-
ate was a common cause between exposure and BW, the
exposure-BW association as well as the exposure-SGA
association were biased. Therefore, one should not make
the distinction between these outcome variables when
selecting such confounders and adjusting for them in
models. However, we found that in fully mediated sets-
up, common causes between exposure and GA biased
the exposure-(L)BW relationship unlike the exposure-
SGA relationship when a model with the former variable
(BW) did not adjust for GA. Distinguishing between
common causes of exposure and GA and common
causes of exposure and (L)BW could, however, be a
rather difficult task in practice.

Conclusions
In light of our simulations and current wisdom, we
recommend that, in addition to GA, both outcome vari-
ables (L)BW and SGA be considered in studies that rely
on these perinatal outcomes. Alternatively to considering
all three outcomes (GA, SGA, and (L)BW) in standard
separate analyses, mediation analyses with GA as a
mediator could be used to better understand the direct
and indirect effects of an exposure on BW. When adopt-
ing a mediation strategy, the use of SGA could be omit-
ted as one would be able to make the distinction
between an exposure effect on (L)BW arising through a
diminution in GA and one external to this mechanism.
However, such a mediation model would nevertheless be
inadequate to provide unbiased results in the presence
of unmeasured mediator-outcome confounders [11] and
could also be sensitive to linearity assumptions.
Globally, our study has highlighted the complexity of

perinatal outcome modeling. Although our findings are
directly relevant to the field of maternal asthma, we
believe they are applicable to other research areas or
specific types of studies where (L)BW and SGA, as
measures of perinatal health, are the most useful and
feasible. As a matter of fact, these variables have been
recently considered in meta-analyses (e.g., [27]), large
clinical trials in less-resourced countries (e.g., [28]), and
large-scale perinatal studies based on administrative
databases (e.g., [29]).
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