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Accounting for parameter uncertainty in @
the definition of parametric distributions

used to describe individual patient

variation in health economic models

Koen Degeling'@®, Maarten J. lJzerman', Miriam Koopman? and Hendrik Koffijberg'"

Abstract

Background: Parametric distributions based on individual patient data can be used to represent both stochastic
and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be
accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter
uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level
models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of
this uncertainty on modeling outcomes.

Methods: Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were
applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of
time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes,
sample size was varied in the simulation study and subgroup analyses were performed for the case-study.

Results: Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased
the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-
effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed
similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample
sizes (i.e. n=25), yielding infeasible modeling outcomes.

Conclusions: Modelers should be aware that parameter uncertainty in distributions used to describe stochastic
uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of
uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for
this uncertainty.
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Background

Clinical decision-making is aiming towards patient-
specific and preference-sensitive treatment, based on mul-
tiple biomarkers for treatment targeting and monitoring
patients’ response to treatment [1]. Consequently, there is
an increasing need for corresponding patient-level models
to accurately represent clinical practice when estimating
the health economic impact of novel healthcare interven-
tions [2, 3]. To facilitate decision making, such models
should adequately reflect all types of uncertainty in the
synthesized evidence used for analysis [4]. This is particu-
larly relevant in patient-level modeling studies in which
reflecting patient heterogeneity may effectively increase
uncertainty, for example by relatively low sample sizes in
defined subgroups or by an increasing number of parame-
ters that need to be estimated to account for patient char-
acteristics in individualized predictions.

Uncertainty in evidence can be disaggregated into sto-
chastic uncertainty (i.e. patient-level variation or first-order
uncertainty) and parameter uncertainty (i.e. second-order
uncertainty) [4]. This can be illustrated using a time-to-
event parameter, e.g. the time-to-progression after surgery.
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If, for a certain patient group, this parameter is defined by a
mean estimate (Table 1 — Box A), the parameter uncertainty
in this mean estimate needs to be accounted for, which can
be done using a parametric distribution in the probabilistic
sensitivity analysis (PSA) (Table 1 — Box B) [4]. For example,
this parameter uncertainty could be reflected by defining a
Normal distribution for the mean time-to-progression
based on the estimated mean and standard error, by apply-
ing the Central Limit Theorem [5]. Additionally, it is pos-
sible to account for stochastic uncertainty by using
parametric distributions to describe individual patient vari-
ation, such as typically used in patient-level state-transition
models [6] and discrete event simulation (DES) models [7].
For example, a Weibull distribution [8] can be used in a
DES model to derive and assign patient-specific time-to-
progression values (Table 1 — Box C), rather than assigning
the estimated mean time-to-progression to all patients
(Table 1 — Box A). As for the parameter defined by the
mean estimate in Box A of Table 1, the uncertainty in the
parameters defining this Weibull distributions needs to be
accounted for [4]. However, there is currently no clear guid-
ance on how to reflect parameter uncertainty (i.e. second-

Table 1 lllustration of the example that is discussed in the introduction

Type of Uncertainty

Time-to-Event
(Stochastic uncertainty not reflected)

Time-to-Event
(Stochastic uncertainty reflected)

Stochastic uncertainty Box A
(Patient-level variation)
(First-order uncertainty)
to-progression  is
patients:

220 240 260

Patient-level variation is not described.
Consequently, an estimated mean time-
assigned to all

- Mean est. = 250 days -

Box C
Patient-level
progression is described by a Weibull
distribution:

- Shape parameter est. = 1.5
Scale parameter est. = 277
- u=250days

variation in  time-to-

0 200 400 600 800 1000

280

Parameter uncertainty Box B

(Second-order uncertainty)

by a Normal distribution:

and included in the PSA.

220 240 260

Parameter uncertainty in the estimated
mean time-to-progression is described

- Mean parameter est. = 250
- SEE parameter est. = 10

Box D

Parameter uncertainty in the estimated
Shape and Scale parameter of the
Weibull  distribution needs to be
described and included in the PSA.
Patient-level
progression is reflected by drawing
from a different distribution in each

variation in  time-to-

PSA sample:
PSA Shape Scale Mean
1 1.50 242 219
2 1.62 253 227
3 1.67 292 260
n

280 Methods to generate these parameter

values are illustrated in this paper.

SEE standard error of the estimate
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order uncertainty) in these parametric distributions used to
describe stochastic uncertainty (i.e. patient-level variation or
fist-order uncertainty) in PSA (Table 1 — Box D).

Reflecting parameter uncertainty in parametric distribu-
tions is challenging because these distributions are typic-
ally defined by multiple parameters, e.g. the shape and
scale parameter of the Weibull distribution, with their
values preferably estimated from individual patient data
(IPD). When estimated from IPD, these distributions’ pa-
rameters are correlated for most of the parametric distri-
butions commonly used in health economic analyses,
such as Gamma, Beta, Log-Normal, and Weibull distribu-
tions [8]. Consequently, it is incorrect to estimate the
values of, for example, the shape and scale parameters in-
dependently, and to define independent (i.e. separate) dis-
tributions for each of these parameters’ uncertainty in
PSA. Therefore, guidance is needed towards approaches
that maintain the correlation in the parameters of distri-
butions reflecting stochastic uncertainty when accounting
for the parameter uncertainty these parameters introduce.

The lack of specific guidance is illustrated by recently
published modeling studies that do not fully utilize IPD
while performing PSA, for example, by adjusting predicted
values (stochastic uncertainty) with a random percentage
[9], by excluding correlation between parametric distribu-
tions’ parameters [10], or altogether not reporting (includ-
ing) parameter uncertainty in parametric distributions [11].
As a consequence of inadequately reflecting all types of un-
certainty in the synthesized evidence used for analysis, sub-
optimal resource allocation and research prioritization
decisions may be made due to biased outcomes of PSA,
overestimated confidence in the corresponding expected
values of the PSA, and ensuing biased estimation of the
value of collecting additional evidence to better inform de-
cision making [12].

The objective of this study is to provide explicit guid-
ance for health economic modelers on how parameter un-
certainty in parametric distributions used to describe
stochastic uncertainty (i.e. patient-level variation) can be
considered in PSA. In order to do so, two alternative solu-
tions are illustrated and compared: 1) a non-parametric
bootstrapping approach and 2) an approach using multi-
variate Normal distributions. Both approaches are used in
a DES simulation study and in a DES case study in which
stochastic uncertainty in time-to-event data is described
by parametric distributions. Additionally, the potential im-
pact of increased parameter uncertainty due to subgroup
stratification on health economic outcomes is illustrated.

Methods

Consider the scenario in which time-to-event observations
from a clinical study are used to describe stochastic uncer-
tainty by fitting a Gamma distribution [8], i.e. the distribu-
tions’ (correlated) shape and rate parameter values are
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estimated from the IPD. Figure 1a shows an example of the
estimated values of these parameters, including the 95%
confidence ellipse, representing the sets (i.e. combinations)
of parameter values. If uncertainty in the parameter esti-
mates (i.e. parameter uncertainty) is ignored by using the
parameters’ point-estimates in each run of the PSA, individ-
ual time-to-event values would be repeatedly drawn based
on the same mean density curve of Fig. 1b in all runs of the
PSA. However, if this parameter uncertainty is reflected by
using different sets of correlated parameter estimates for
each run of the PSA, a variety of distributions is simulated,
which is illustrated by the 95% confidence interval (surface)
in Fig. 1b. As this variety of distributions reflects uncer-
tainty in the individual time-to-event values as well as over-
all (mean) time-to-event values, this uncertainty can be
seen as parameter uncertainty (in this case of the ‘hyper-
parameters, i.e. the parameters defining the time-to-event
distribution). Both proposed approaches, which are intro-
duced subsequently, can be used to generate these corre-
lated sets of distributions’ parameter values based on IPD.
A different set of generated parameters values can be used
in the PSA, incorporating one set of correlated values in
each Monte Carlo sample.

Non-parametric bootstrapping (Bootstrap approach)
Non-parametric bootstrapping is a statistical tech-
nique that can be used to construct an approximate
sampling distribution of a statistic of interest, without
the need for assumptions regarding the distribution of
this statistic [13]. It has been applied in health eco-
nomics, for example, to construct confidence intervals
for the incremental net benefit in economic evalua-
tions alongside clinical trials [5, 14]. In the Bootstrap
approach, the distributions’ parameters are repeatedly
estimated based on different bootstrap samples of the
original dataset, which are obtained by resampling the
original dataset with replacement, such that the size
of the bootstrap sample equals the size of the original
dataset [13]. A detailed discussion of the Bootstrap
approach is provided in Additional file 1. Briefly,
reflecting parameter uncertainty with this approach
consists of the following four steps:

(1)Generate a feasible* bootstrap sample of the original
dataset, by resampling this dataset with replacement,
such that the sample size of the bootstrap sample
equals that of the original dataset.

(2)Fit the pre-specified distribution(s)** to the boot-
strap sample and record the estimated parameter
values.

(3)Repeat (1) and (2) r times, where r equals the
required number of PSA runs.

(4)Perform the PSA, using a different set of parameter
values to define the distribution(s) for each PSA run.
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Fig. 1 a Exemplary plot of a Gamma distribution’s shape and scale parameters, showing their point-estimates and the 95% confidence ellipse
representing the uncertainty and correlation in these estimates. b Density plot of the Gamma distribution as defined in Fig. 1a. The black line
represents the density curve from which individual values are drawn in each run of the PSA if parameter uncertainty in the parameter estimates
is ignored. The grey surface represents the 95% confidence interval of density curves from which individual values are drawn if different
(correlated) sets of parameter values are used in each run of the PSA, i.e. if parameter uncertainty in the parameter estimates is accounted for

Time—to—Event in Days

* The definition of feasible bootstrap samples may vary
between studies. Please see Additional file 1 for a more
in-depth discussion.

** Note that if multiple distributions are fitted in step
(2), all distributions need to be fitted on the same boot-
strap sample to preserve correlation among all distribu-
tions and other parameters used to describe variables in
the dataset.

Multivariate normal distributions (MVNorm approach)
The MVNorm approach assumes the distributions’ pa-
rameters to be Normal distributed, which is valid for suffi-
ciently large sample sizes according to the Central Limit
Theorem [5], as suggested by Briggs et al. for regression
models in general [15]. Given a distribution’s parameter
estimates and their variance-covariance matrix, a multi-
variate Normal distribution can be defined and used to
draw correlated sets of parameter values. A detailed dis-
cussion of the MVNorm approach is provided in Add-
itional file 1. Briefly, reflecting parameter uncertainty with
this approach consists of the following four steps:

(1)Fit the pre-specified distribution to the original data-
set and record the estimated parameter values and
(calculate) the variance-covariance matrix.

(2)Define a multivariate Normal distribution from the
parameters’ estimates and their variance-covariance
matrix according to (1).

(3)Draw r feasible* sets of parameter values from the
defined distribution (2), where r equals the required
number of PSA runs.

(4)Perform the PSA, using a different set of parameter
values to define the distribution(s) for each PSA run.

* The drawn sets of parameter values need to be
assessed for their feasibility, i.e. whether the
parameter values are appropriate for the pre-
specified distributions. Please see Additional file 1
for a more in-depth discussion.

Simulation study

A simulation study was performed to assess potential dif-
ferences in the performance of both approaches and com-
pare them to the scenario in which parameter uncertainty
in the time-to-event distributions was not considered.
This simulation study was performed in R Statistical Soft-
ware version 3.3.2 [16] and used a basic health economic
DES model to compare two treatment strategies in terms
of health economic outcomes. This health economic DES
model was structured according to a basic three state dis-
ease progression model, i.e. healthy, progressed, and
death, and included two competing risks for patients in
the healthy state, i.e. progression and death (Fig. 2). Time-
to-event data was simulated using Weibull distributions,
separately for the intervention and control patient popula-
tions, which differed in terms of survival and treatment
costs in the progressed state. The exact definitions of the
time-to-event distributions and cost and effect parameters
are provided in Additional file 1.

The simulation study was carried out for several sam-
ple sizes, i.e. 500, 100, 50, and 25 patients, performing
2500 simulation runs (i.e. hypothetical trials) of 5000
PSA runs, each including 5000 patients per treatment
strategy, for each sample size (Fig. 3). Weibull distribu-
tions were used to describe stochastic uncertainty in
time-to-event data to avoid potential bias due to mis-
matching distributions, as Weibull distributions were
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Fig. 2 Graphical representation of the DES model that was used for
the simulation study as described in the Methods section

also used to simulate the hypothetical populations. Dis-
tributions were fitted using the fitdist function of the fit-
distrplus package [17] in R Statistical Software [16].
Stochastic uncertainty in the model’s cost and effect pa-
rameters was deliberately not considered to represent
the common scenario in which IPD is not available for
all model parameters, and PSA samples for these param-
eters were generated according to the distributions as
defined in Additional file 1. Random draws from a
multivariate Normal distribution were performed using
the mvrnorm function of the MASS package [18].
Estimations of the “true” mean value and distribution of
the parameters and health economic outcomes were ob-
tained by analyzing the model for 2500 different samples
from the simulated populations, with corresponding sam-
ple sizes. This resembles the scenario in which the popula-
tion values, ie. values based on observing the total
population, would be approximated in practice by per-
forming 2500 clinical studies. These “true” results were
used to compare the generated sets of distributions’ par-
ameter values and the health and economic outcomes
using either of both approaches. The distributions of the
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time-to-event distributions’ parameter values and health
economic outcomes were compared based on their rela-
tive entropy, i.e. the Kullback-Leibler divergence [19],
using the KLdiv function of the flexmix package [20-22].
The relative entropy is a measure of the difference be-
tween two probability distributions, for which lower
values indicate a better match of distributions. Addition-
ally, the impact of considering the parameter uncertainty
in the time-to-event distributions’ parameters was illus-
trated in an incremental cost-effectiveness plane for one
hypothetical trial, i.e. one random run out of 2500 simula-
tion runs, and in mean cost-effectiveness acceptability
curves (CEACs), including a 95% confidence interval,
based on all simulation runs.

Case study

To illustrate how parameter uncertainty in time-to-event
distributions’ parameter estimates could impact health eco-
nomic outcomes in practice, a case study was performed
based on the randomized phase 3 CAIRO3 study
(NCT00442637) that was carried out by the Dutch Colorec-
tal Cancer Group [23]. A total of 558 metastatic colorectal
patients with stable disease or better after six cycles of cape-
citabine, oxaliplatin, and bevacizumab (CAPOX-B) induc-
tion therapy were randomized to either receive capecitabine
and bevacizumab maintenance treatment or observation
until progression of disease. CAPOX-B treatment was to be
re-introduced upon progression on either maintenance or
observation, and continued until second progression (PFS2)
the primary endpoint of the study.

A previous developed DES model was adapted to use the
sets of distributions’ parameter values generated by the
Bootstrap and MVNorm approach in the PSA (Add-
itional file 1). The model was developed and validated in
AnyLogic multimethod simulation software [24] according
to good research practices guidelines [7, 25, 26], and

(n=100000)

Simulated patient population

|

Hypothetical trials

Level 3: (n=2500)

For different sample sizes
(n=25, n=50, n=100, n=500)

l

Level 2: (runs=5000)

Probabilistic sensitivity analysis

|

Health economic model

Level 1: (patients=5000)

Fig. 3 Graphical representation of the simulation study as described in the Methods section
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structured according to the same health states as the state-
transition model used for the original evaluation of the
CAIRO3 study: post-induction, re-induction, salvage, and
death [27] (Fig. 4). Event-specific probabilities and Weibull
distributions were used to describe time-to-event data and
handle the competing risks of disease progression and
death in the post-induction and re-induction state [28]. Pa-
rameters of the distributions used to reflect parameter un-
certainty in non-time-to-event parameters, e.g. costs and
utilities, were deliberately defined exactly as in the original
evaluation of the CAIRO3 study for all subgroups [27], so
that observed differences in outcomes could be designated
specifically to the uncertainty in time-to-event distributions’
parameter estimates. The health economic outcomes for all
case study analyses were presented in incremental cost-
effectiveness planes and CEACs based on 10,000 PSA runs
of 10,000 patients per treatment strategy.

Clinical relevant subgroups were defined to resemble
the personalized context described in the introduction,
illustrating the impact of parameter uncertainty in time-
to-event distributions’ parameter estimates on health
economic outcomes for different sample sizes. Patients
were stratified according to their treatment response
(stable disease (SD) versus complete or partial response
(CR/PR)) and stage of disease (synchronous versus meta-
chronous), which resulted in a total of 8 subgroups with
sample sizes ranging from 50 to 410 (Table 2). As illus-
trated in Table 2, this stratification created subgroups in
which events were observed only once, or not all, which
prohibits fitting of a Weibull distribution, and the prob-
ability of that event occurring was therefore set to zero.

Results

Simulation study

The potential impact of considering parameter uncertainty
in time-to-event distributions’ parameter estimates in PSA
is illustrated for several sample sizes in Fig. 5, which shows
results of one single run of the simulation study. Ignoring
parameter uncertainty in the time-to-event distributions’
parameter estimates leads to an underestimation of the un-
certainty surrounding cost-effectiveness outcomes. This is
illustrated by the smaller confidence ellipse for this
scenario (long-dashed black ellipse) compared to other sce-
narios in which uncertainty in the time-to-event distribu-
tions’ parameter estimates is accounted for using one of

Post—inductionH Re-induction H Salvage

Death

Fig. 4 Graphical representation of the DES model that was used for
the case study as described in the Methods section
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the proposed approaches (dashed gray and dotted light-
gray ellipses). The indicated effect is already observed for
rather large sample sizes (ie. #=500) and increases as
sample size decreases, illustrated by the larger distance be-
tween the long-dashed black confidence ellipse and the
dashed gray and dotted light-gray confidence ellipses for
smaller sample sizes. Although the Bootstrap (dashed gray
ellipse) and MVNorm approach (dotted light-gray ellipse)
yield incremental cost-effectiveness point-estimates similar
to the “real” value, both approaches slightly overestimate
the magnitude of the uncertainty for sample sizes of n =
100 and smaller, demonstrated by smaller confidence ellip-
ses for the “real” uncertainty (solid black ellipse). For very
small sample sizes (i.e. n=25), the MVNorm approach
generates unrealistic parameter values, e.g. indicating a
mean survival far beyond life-expectancy, leading to ex-
treme and unrealistic health economic outcomes, which
results in an unrealistic large confidence ellipse (not pre-
sented). However, since Fig. 5 represents only one run of
the simulation study, these results may not be representa-
tive for the approaches in general.

To assess the performance of the approaches in gen-
eral, 2500 of these comparisons were performed in the
simulation study. Results show that both approaches
yield comparable mean parameter estimates and stand-
ard errors (Additional file 1). Although the MVNorm
approach seems to perform slightly better for small sam-
ple sizes (n=25) in terms of mean parameter estimates,
this approach too often yields extreme and unrealistic
outcomes in the health economic simulation. Consider-
ing the Kullback-Leibler divergence, both approaches
perform similar, though on average the MVNorm ap-
proach seems to represent the “estimated true” distribu-
tions slightly better for very small sample sizes (i.e. n =
25) (Additional file 1). Also the CEACs presented in
Fig. 6 show that the results for both approaches are
similar (light gray and gray lines). However, compared to
the results of the strategy in which the uncertainty in
time-to-event distributions’ parameter estimates is not
considered (black line), both approaches yield different
mean CEACs (solid lines) with different confidence in-
tervals (dashed lines), illustrating the potential health
economic impact of ignoring this uncertainty.

Case study

Incremental cost-effectiveness planes for the cohort ana-
lysis and selected subgroup analyses of the case study
are presented in Fig. 7. CEACs and incremental cost-
effectiveness planes for the cohort analysis and all sub-
groups analyses are available in Additional file 1. The
cost-effectiveness point-estimate for the cohort (Sub-
group 0) is not affected by considering the parameter
uncertainty in the time-to-event distributions’ parameter
estimates in PSA, as the points in the corresponding
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Table 2 Overall and treatment strategy-specific subgroup definitions, sample sizes, and number of events for the case study

Sample size Event observations
Progression Death Progression Death Death
(Post-induction) (Post-induction) (Re-induction) (Re-induction) (Salvage)
Subgroup 0: No Subgroups 558 519 39 370 109 410
Observation 279 270 9 200 54 216
Maintenance 279 249 30 170 55 194
Subgroup 1: SD 191 185 6 128 43 142
Observation 95 95 0 68 22 73
Maintenance 96 90 6 60 21 69
Subgroup 2: CR/PR 367 334 33 242 66 268
Observation 184 175 9 132 32 143
Maintenance 183 159 24 110 34 125
Subgroup 3: Synchronous 410 382 28 275 82 300
Observation 191 186 5 143 33 153
Maintenance 219 196 23 132 49 147
Subgroup 4: Metachronous 147 137 10 95 27 110
Observation 88 84 4 57 21 63
Maintenance 59 53 6 38 6 47
Subgroup 5: SD & Synchronous 141 136 5 94 34 102
Observation 67 67 0 49 15 52
Maintenance 74 69 5 45 19 50
Subgroup 6: SD & Metachronous 50 49 1 34 9 40
Observation 28 28 0 19 7 21
Maintenance 22 21 1 15 2 19
Subgroup 7: CR/PR & Synchronous 269 246 23 181 48 198
Observation 124 119 5 94 18 101
Maintenance 145 127 18 87 30 97
Subgroup 8: CR/PR & Metachronous 97 88 9 61 18 70
Observation 60 56 4 38 14 42
Maintenance 37 32 5 23 4 28

SD stable disease, CR/PR complete or partial response

incremental cost-effectiveness plane overlap. However,
there is a substantial increase in the amount of uncer-
tainty surrounding this point-estimate when the uncer-
tainty in the distributions’ parameter estimates is
accounted for, illustrated by the distance between the
long-dashed black confidence ellipse and the dashed
gray and dotted light-gray confidence ellipses. The po-
tential impact of this increase in uncertainty is illustrated
by the results for Subgroup 3. Without considering the
parameter uncertainty in the distributions’ parameter es-
timates, the results indicate that health loss due to main-
tenance treatment (experimental strategy) is unlikely in
this subgroup, as the corresponding (dashed black) con-
fidence ellipse is entirely located right of the vertical
axis. However, the dashed gray and dotted light-gray
confidence ellipses, including this uncertainty, show

there actually is a non-zero probability of health loss, as
these are partly located left of the vertical axis.

As the cohort is stratified, and sample size decreases,
the impact of considering parameter uncertainty in the
time-to-event distributions’ parameter estimates in PSA
increases substantially, which is illustrated by the results
for Subgroup 4 and Subgroup 6. These results show that
the increase in uncertainty due to stratification may be-
come so large that (further) subgroup stratification
might not be informative. Additionally, the results for
Subgroup 6 illustrate that for small sample sizes (i.e. n =
50) the point-estimates of the cost-effectiveness out-
comes themselves may also be affected by the uncer-
tainty in the distributions’ parameters, which is
illustrated by the non-overlapping points in the corre-
sponding incremental cost-effectiveness plot.
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No meaningful differences in the point estimates
and the magnitude of uncertainty surrounding these
estimates between the Bootstrap and MVNorm ap-
proach are observed, as their point-estimates and
confidence ellipse overlap to a great extent. However,
as also observed in the simulation study, the use of
the MVNorm approach occasionally results in ex-
treme and unlikely parameter values, which were to
be excluded from the simulation.

Discussion

As demonstrated in this paper, parameter uncertainty
in parametric distributions used to describe stochastic
uncertainty (i.e. patient-level variation) should be expli-
citly accounted for in PSA by modelers, as it does im-
pact incremental cost-effectiveness point-estimates and
CEAGCs. If this type of uncertainty is ignored, subopti-
mal resource allocations or research prioritization deci-
sions may be made, due to an underestimation of the
total uncertainty surrounding health economic out-
comes. This is particularly relevant in a personalized
treatment context in which patient stratification

obviously leads to an increase in uncertainty on the
level of subgroups compared to the level of the full pa-
tient group due to decreasing sample sizes in sub-
groups. This increase in uncertainty should of course
be reflected in PSA, and although it is likely that many
experienced modelers already do so, clear guidance on
appropriate methods was not yet available. Besides
time-to-event distributions, this notion also applies to
other types of distributions that are used to reflect sto-
chastic uncertainty, e.g. Gamma distributions to de-
scribe patient-level costs. Although DES was used in
both the simulation and case study, these findings apply
to any patient-level modeling method used to reflect
stochastic uncertainty, e.g. microsimulation state-
transition models. Reflecting all parametric uncertainty
in this way does require drawing values from a different
distribution in each PSA sample, providing some add-
itional work for modelers. However, the required effort
is minimal and an online tool, including tutorials, has
been made available alongside this paper to easily
analyze individual patient data for implementation into
patient-level models [29].
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Fig. 6 CEACs showing the mean probability of cost-effectiveness (solid lines) and corresponding 95% confidence interval (dashed lines) for all
runs of the simulation study

When accounting for parameter uncertainty in distri-
butions’ parameter estimates, the Bootstrap approach
has some advantages over the MVNorm approach. The
Bootstrap approach seems more robust for smaller sam-
ple sizes, does not require any assumptions regarding
underlying distributions, and preserves the correlation in
the whole dataset. Although not distinctively illustrated
in this study, the latter also concerns the correlation
with other, non-time-to-event, related parameters, such
as utilities and costs, and can be considered a major ad-
vantage. The Bootstrap approach does, however, require
the definition of a feasible bootstrap sample. Especially
in case of scarce events, which are inevitable in person-
alized medicine, this can be challenging. Moreover, the
sets of parameters values probably need to be generated
outside the software environment used for the simula-
tion and need to be imported into this environment for
performing the PSA.

Although the MVNorm approach is better capable of
handling scarce events in theory, mainly because it does
not require the definition of a feasible bootstrap sample,
it has several severe downsides. The MVNorm approach
requires the definition of feasible values for the distribu-
tions’ parameter estimates and the assumption that these

estimates follow a Normal distribution, which is not ap-
propriate for insufficiently large sample sizes. For ex-
ample, the shape and rate parameter of the Gamma
distribution may be skewed, depending on the IPD on
which their values are estimated. Additionally, many of
the commonly used parametric distributions are defined
for positive parameter values only, whereas Normal dis-
tributions are defined for any real number, including
negatives. Furthermore, although this approach is better
capable of handling scarce events in theory, it is likely to
yield extreme parameter values for smaller sample sizes
due to increasing standard errors, a scenario in which
the use of the MVNorm approach is advised against.
Given the advantages and disadvantages of both ap-
proaches, the Bootstrap approach is recommended over
the MVNorm approach if constructing enough feasible
bootstrap samples is possible. However, if modelers feel
the need to use the MVNorm approach, for example be-
cause multivariate Normal distributions are supported in
the used software environment and the Bootstrap ap-
proach is not, they should carefully check whether 1) the
sample size is sufficient, i.e. no implausible and extreme
parameter values are observed, and 2) whether correl-
ation between defined distributions to reflect patient-
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level variation is low or negligible and the additional un-
certainty introduced by using independent multivariate
Normal distributions (e.g. for costs, utilities, time-to-
events) is therefore limited.

Several choices in the study design may have influenced
the final results. Both the simulation study and case study
focus on the impact of parameter uncertainty specifically
in time-to-event distributions, because primary outcomes
in clinical studies are often related to time-to-events, e.g.
overall survival, and these distributions characterize DES.
Additionally, accounting for the parameter uncertainty in
non-time-to-event related distributions may further in-
crease the amount of uncertainty surrounding the health
economic outcomes, which will contribute to the conclu-
sion that parameter uncertainty in distributions used to
describe stochastic uncertainty (i.e. patient-level variation)
needs to be accounted for. Furthermore, Weibull distribu-
tions are used to describe the IPD, which is a design
choice and therefore introduces structural uncertainty.
This choice is not expected to meaningfully influence the
outcomes, because the fitted distributions match the data
well. Moreover, other distributions’ parameters may have
a stronger correlation, which would further stress the need
to use one of the proposed approaches to appropriately
account for the uncertainty in these parameters.

Further research may be directed towards evaluating
the impact of using different types of distributions to de-
scribe stochastic uncertainty on health economic out-
comes, the uncertainty surrounding these outcomes, and
the performance of both approaches. Additionally, sensi-
tivity analyses other than PSA, such as deterministic
sensitivity analysis and structural sensitivity analysis,
might be considered. Furthermore, additional guidance
is desirable on how uncertainty in IPD can be appropri-
ately combined with uncertainty in aggregated data on
population level, e.g. a reported mean estimate and
standard error from literature, for sensitivity analyses in
patient-level models.

Conclusions

With an increasing need for patient-level models to ac-
curately represent clinical practice, modelers should be
aware that the parameter uncertainty in parametric dis-
tributions used to describe stochastic uncertainty (ie.
patient-level variation) should be accounted for in PSA
performed in health economic modeling studies. This
type of uncertainty could have a substantial impact on
the total amount of uncertainty surrounding the health
economic outcomes and may influence healthcare
decision-making. At least two approaches are available
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to account for the parameter uncertainty in parametric
distributions used to describe stochastic uncertainty. If
feasible, the Bootstrap approach is recommended to ac-
count for this type of uncertainty.
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