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Abstract

Background: Prediction models and prognostic scores have been increasingly popular in both clinical practice and
clinical research settings, for example to aid in risk-based decision making or control for confounding. In many
medical fields, a large number of prognostic scores are available, but practitioners may find it difficult to choose
between them due to lack of external validation as well as lack of comparisons between them.

Methods: Borrowing methodology from network meta-analysis, we describe an approach to Multiple Score
Comparison meta-analysis (MSC) which permits concurrent external validation and comparisons of prognostic
scores using individual patient data (IPD) arising from a large-scale international collaboration. We describe the
challenges in adapting network meta-analysis to the MSC setting, for instance the need to explicitly include
correlations between the scores on a cohort level, and how to deal with many multi-score studies. We propose first
using IPD to make cohort-level aggregate discrimination or calibration scores, comparing all to a common
comparator. Then, standard network meta-analysis techniques can be applied, taking care to consider correlation
structures in cohorts with multiple scores. Transitivity, consistency and heterogeneity are also examined.

Results: We provide a clinical application, comparing prognostic scores for 3-year mortality in patients with chronic
obstructive pulmonary disease using data from a large-scale collaborative initiative. We focus on the discriminative
properties of the prognostic scores. Our results show clear differences in performance, with ADO and eBODE
showing higher discrimination with respect to mortality than other considered scores. The assumptions of
transitivity and local and global consistency were not violated. Heterogeneity was small.

Conclusions: We applied a network meta-analytic methodology to externally validate and concurrently compare
the prognostic properties of clinical scores. Our large-scale external validation indicates that the scores with the
best discriminative properties to predict 3 year mortality in patients with COPD are ADO and eBODE.

Keywords: Prognostic scores, External validation, Multiple score comparison, Chronic obstructive pulmonary disease

Background
Prediction models, which combine predictors using
regression coefficients, and simpler prognostic scores,
which typically assign point values to predictors based
on prediction models, have become increasingly popular
[1, 2]. They aid in decision making in public health,

clinical research and clinical practice [3] by estimating a
person’s risk of developing a disease or other outcome.
In several medical fields, a variety of prediction models
have been developed to assess the individual risk of
adverse outcomes. A great example for this was a very
recent systematic review regarding validated risk factor
models for neurodevelopmental outcomes in children
born very preterm or with very low birth weight [4]; 78
original studies (including 222 prediction models) were
extracted. Most of the models were not intended to be
used for clinical practice and only four studies (5%) had
performed a validation. Another example regards models
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predicting risk of type 2 diabetes mellitus with genetic
risk models on the basis of established genome-wide
association markers; a systematic review deemed to be
eligible 21 articles representing 23 studies [5]. Concern-
ing the risk of developing cardiovascular disease, over
the past two decades, numerous prediction models have
been developed, to estimate the risk of developing
cardiovascular disease [6]. Only 36% of them were exter-
nally validated and only 19% by independent investiga-
tors. In the case of chronic obstructive pulmonary
disease (COPD), several prognostic scores have been
developed to predict mortality, starting with the BODE
score [7]. But scores also exist to predict exacerbations
[8], or the course of health-related quality of life [9, 10].
Prognostic scores suffer from a reluctance of general
practitioners to use them [11, 12] as well as from scepti-
cism because they lack internal and external validation
which are requirements for generalizability [13, 14]. The
external validation studies are often simply poorly
designed or reported [15]. The lack of comparisons
among available prognostic scores provides an additional
hurdle to their widespread applicability, as practitioners
may not be able to decide among them based on the
information available [16].
Luckily, the collection of “big data” [17] and the grow-

ing availability of individual patient data (IPD) data
analyses [18–23] provide researchers with new oppor-
tunities and challenges [24, 25]. Furthermore, the call of
the medical community for data sharing [26] improves
the possibilities of checking a model’s predictive
performance across clinical settings, populations, and
subgroups [25]. The COCOMICS study [27] is a rare
example of prognostic scores being directly compared
with each other and simultaneously externally validated
after pooling all the databases in a single cohort [16].
Our approach, multiple score comparison network
meta-analysis (MSC), extends the simple pooling
approach to pool direct comparisons taken from differ-
ent studies, as a meta-analysis across studies provides in
general higher quality information compared to the
analysis of a database, constituted pooling together the
single studies [28, 29]. This methodology allows to take
into account heterogeneity of the individual studies and
obtain more generalizable results [25].

Methods
Various methodological approaches have been proposed
for network meta-analysis for comparison of treatments
[30–36], which is sometimes referred to as network
meta-analysis, multiple (or mixed) treatment compari-
sons meta-analysis (MTC meta-analysis) or multiple
treatments meta-analysis [37, 38]. For diagnostic test
performance, the first steps of network meta-analysis
were undertaken (e.g. in terms of sensitivity and

specificity) [39, 40]. No similar methodology exists to
compare the performance of prognostic scores or pre-
diction models. Nevertheless, network meta-analysis
may provide an attractive solution to the problem of
comparing the performance of prognostic scores.
Changing from comparing effects of treatments to

comparing performance of prediction models or prog-
nostic scores, however, reveals a number of differences
between the two settings, and care must be taken to
ensure that the unique features of multiple score com-
parison (MSC) meta-analysis (as we will refer to this
new method) are considered properly in the analysis.
A number of features distinguish a MSC meta-analysis

of prognostic scores from a meta-analysis of treatments.
In network meta-analysis of treatments outcomes are
summarized separately within each treatment arm of a
randomized trial, and combined to obtain estimates of
treatment effect (for example, mean difference or log
odds ratio); instead, the MSC meta-analysis uses
performance measures of each score in a cohort that can
be calculated on the same sample of patients. Addition-
ally, the number of prognostic scores assessed in a given
cohort is not limited by the practicalities of study design,
so that it would be easily possible to have more than,
say, four scores within one cohort, while such a large
number of treatment arms in an RCT is relatively
unlikely due to considerations of power and sample size
along with practical aspects of conducting clinical trials.
Consideration of multi-score studies properly, including
the correlations inherent in such comparisons, in MSC
is therefore of great importance.
We developed a comprehensive approach to MSC to

assess various prediction models using network meta-
analysis with individual patient data, providing external
validation and concurrent comparison of the scores, and
applied it to risk prediction scores for mortality in
COPD [41, 42]. After careful methodological issues (see
also online-only material, where we go deeper into the
statistical background) the following approach was
developed: we calculated aggregated summary statistics
for each cohort and score. Then, we examined the
network structure by grouping the cohorts according to
which scores could be evaluated. We adapted method-
ology from network meta-analysis [35] to concurrently
externally validate and compare prognostic scores from
individual patient data across different cohorts, explicitly
including correlations [43] between the scores on a
cohort level.
We will also re-interpret NMA as a two-stage meta-

regression model, as proposed in [35]:

1. Ordinary meta-analysis to gain the direct estimates
for corresponding pooled effect estimates (using the
inverse-variance weighted means of the
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corresponding cohorts). Cohorts at our disposal are
classified into “groups” according to which scores it
is possible to evaluate by their data.

2. Based on the direct estimates and their variances
from the first stage, they obtain to find the optimal
estimate of the pooled effect parameters that obeys
the fundamental consistency equations. In this stage
we merge the group estimates, looking for the
weighted least squares solution to the regression
problem equation.

The last steps were to confirm that transitivity is a
plausible assumption and to check for possible inconsist-
ency and heterogeneity.

Calculation of aggregated summary statistics
First, the performance measure for comparison of the
various prognostic scores was defined as the area under
the curve (AUC) of the corresponding receiver operating
characteristic curve (ROC). This is a graphical plot that
illustrates the ability of a binary classifier system
(diagnostic or prognostic) as its discrimination threshold
is varied (in particular plotting true vs false positive
rate). Differences in AUC, denoted ΔAUC, provided an
estimate of the relative discrimination ability when
comparing scores. For this purpose, we use of a common
comparator (CC) model (in our case the GOLD classifi-
cation, since it is a variable supposed to be present in
each COPD cohort); it constitutes a reference value for
the performance of other scores, the value from which
to subtract the possibly common biases [44].
Variance and covariance estimates for the ΔAUC

values were estimated numerically using bootstrapping.
We also confirmed consistency of bootstrapped variance
estimates to those of the analytical formula for variances
of paired differences in AUC [45] (results not shown).
Aggregated data on the cohort level for a cohort with k

scores consist therefore of k – 1 ΔAUC estimates and a
corresponding (k – 1) x (k – 1) variance-covariance matrix.
To further clarify the methodology, we show the main

steps with a small fictional example. Suppose we had 2
cohorts where score A and B could be evaluated (group
1: AB; cohorts P, R), 2 cohorts where A and C could be
evaluated (group 2: AC; cohort S, T), 2 cohorts where A,
B and D could be evaluated (group 3: ABD; cohorts U,
V), and a final 2 cohorts where A, B, C, and D could be
evaluated (group 4: ABCD, cohorts X and Y). Let us
focus on group 3, constituted by the cohorts X and Y in
which the scores A, B, and D can be used. We would
obtain performance difference of the scores B and D in
comparison to the score A for each of the cohorts, as
reported in Table 1.
Analogously, in group 3, we would obtain variance-

covariance matrices, like the ones reported in Table 2.

Examination of network structure
Once the aggregated summary statistics were computed,
we explored the structure of the network. In a first step,
we divided the cohorts into groups based on which sets
of scores could be evaluated.
Each group is represented by a polygon, that passes by

all the scores (i.e. the vertices) which can be evaluated in
the cohorts constituting that group. The thickness of the
polygon is directly proportional to the number of deaths
in the group (Fig. 1).
Head-to-head comparisons within a group can be

performed between any two scores connected in the
same polygon.
For example, in group 4, A and D can be compared

because they are both connected by the same polygon,
even though there is no line directly connecting the two
scores in that group.
According to Table 3, group 1, group 2, group 3 and

group 4 have a cumulative number of 4000, 1000, 3000
and 2000 patients, respectively.

Multiple score comparison
The method of Lu et al. [35] was used to perform the
multiple score comparison meta-analysis with Der
Simonian-Laird random effects [46–49]. This method,
which reinterprets frequentist NMA as a two-stage meta-
regression model (using inverse variance weighted least
squares estimation), was chosen as, compared to most of
the network meta-analytic techniques, it can easily handle
multi-score cohorts, and does not make unnecessary
simplifications with respect to the correlations inherent in
such trials, as discussed above. In the first stage, cohorts
in which the same set of scores have been assessed are
grouped together and meta-analysed separately.
An estimation T2 of the between - cohort variance (τ2)

(i.e., the variance of the true performance difference

Table 1 Point estimate of the difference of AUC of the scores B
and D with the score A in the group 3 of the fictional example

Cohort ΔAUC – AB ΔAUC – AC ΔAUC – AD

X 0.05 – 0.07

Y 0.06 – 0.18

Table 2 Variance-covariance matrices of the difference of AUC
of the scores B and D with the score A in the group 3 of the
fictional example

Cohort X

0.0012 0.0005

0.0005 0.0009

Cohort Y

0.0068 0.0051

0.0051 0.0109
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across all studies) is the Der Simonian-Laird method
[47] adapted to the network meta-analysis case [35].
Indeed, the Q statistic (adapted to network meta-
analysis) is referred to a χ2 distribution with degrees of
freedom dfg = (Mg − 1)(Ng − 1), where Mg is the number
of scores compared in the group g and Ng is the number
of cohorts belonging to the group g. Thus, the degrees
of freedom are df1 = 1*0 = 0, df2 = 1*1 = 1, df3 = 2*1 = 2,
df4 = 3*1 = 3. Table 3 allows us to calculate pooled τ2

(according to the methods of moments) [46] with which
we evaluate the weights used to obtain the weighted
average of the performance estimate for the whole
network (reported in the first 4 rows in Table 4).
Analogously, extending the definitions from meta-

analysis [46] to network meta-analysis [35] we calculate

the variables C, Q and τ (τ represents the heterogeneity
and deserves further discussion in the text later).
In Stage II the inverse variance weighted least square

solution across all groups is found, thus we obtain the
performance vector related to each score, best fitting the
results of Stage I (for more details see Additional file 1).
In the last row of Table 4, the final results of the MSC
meta-analysis for the fictional example of are reported.

Transitivity, heterogeneity and inconsistency
The main assumptions to be met for performing a
network meta-analysis are transitivity (a key assumption
related to consistency), heterogeneity (differences in esti-
mates of the same treatment or score contrasts coming
from different studies) and inconsistency (comparing
direct and indirect estimates, sometimes referred to as
incoherence) [44, 50]. A key assumption of consistency
is transitivity (sometimes referred to as similarity [51])

Fig. 1 Network representation of the fictional example. a, b, c, d are the scores that are assessed in the fictional example

Table 3 Group characteristics of a fictional network (g identifies
the group. n is the total number of subjects and d is the total
number of deaths in each group. Additional characteristics are
also listed: the Q statistic describing heterogeneity has df
degrees of freedom, and τ gives the square root of the τ2

statistics for between - cohort heterogeneity)

g Scores Cohorts n d Q df τ

1 A, B R 4000 350 28 0 0.019

2 A, C S, T 1000 200 15.5 1 0.014

3 A, B, D U, V 3000 300 13.4 2 0.004

4 A, B, C, D X, Y 2000 300 9.6 3 0.036

Table 4 Stage I and Stage II results of the MSC meta-analysis in
the fictional example of Table 1 (comparison with the A score)

Stage G B C D

I 1 0.09 (0.07, 0.12)

I 2 0.18 (0.07, 0.29)

I 3 0.10 (0.08, 0.12) 0.22 (−0.05, 0.50)

I 4 0.08 (0.04, 0..12) 0.15 (0.01, 0.29) 0.18 (0.05, 0.31)

II 0.09 (0.06, 0.13) 0.17 (0.10, 0.25) 0.21 (0.07, 0.35)
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among the treatment effects [34, 44, 51–55], that is, that
indirect comparisons are valid estimates of (unobserved)
direct comparisons. Therefore one statistical approach
to check for transitivity in our case is to explore the
distribution variables giving case-mix across groups [56,
57], which we have adopted here using meta-regression.
In practice, we used the definition of transitivity from a
review paper on the topic [44] better matching our
methodology, namely that the different sets cohorts do
not differ with respect to the distribution of variables
that could generate case mix variation. Thus, we evalu-
ated by meta-regression analysis [58] the distribution of
the variables that could generate case mix variation (like
median and variability of age [25], range and variance of
obstruction severity (i.e., FEV1% pred.), exercise
capacity, size, mortality rate).
In case of variables directly affecting the performance,

we used analysis of variance (ANOVA) to see whether
the distribution of the identified variables was imbal-
anced in the groups and could consequently generate
imbalance in the performance group by group. In case
of homogenous groups, we cannot reject the null
hypothesis of transitivity. With this method we assess as
well, the eventuality that within-cohort heterogeneity
could affect the analysis when “case-mix” is present (i.e.
heterogeneity in the variables representing heterogeneity
in the cohorts, like FEV%predicted range, that could affect
the discriminative properties in the specific cohorts).
Heterogeneity could be described using a multivariate

version of the usual τ2 statistic, which in the Lu et al. [35]
approach is considered on a group level at stage 1. They
suggest that a pooled τ2 may be a natural solution to situa-
tions where there are singleton groups (i.e. constituting
only a cohort).
Inconsistency was primarily assessed visually by compar-

ing direct and indirect comparisons from node-splitting
side by side [59]. As a further check of inconsistency, we
further examined the Q statistic (that is, the residual sum
of squares) which can be used to reject the hypothesis of
inconsistency between direct and indirect estimates if Q is
greater than the χ2 statistic with N – K+ 1 degrees at free-
dom at the 100(1 – α)% level [35], where N is the sum of
the number of contrasts in each group, and K is total num-
ber of scores. Furthermore local consistency could be
assessed at the group level by examining residuals and
leverage statistics. Furthermore, we considered ways to
calculate direct and indirect evidence within the network.
Direct comparisons were computed by including only
cohorts where both scores under consideration were
present, and then performing the usual random effects
meta-analysis [46]. However, defining loops of any order for
indirect comparisons proved to be difficult in our setting,
where the network is highly connected, and most cohorts
have between 4 and 9 scores being assessed. Due to the

various difficulties presented by studies with multiple
scores, we chose to examine inconsistency in the network
using “node-splitting” [59]. This approach avoids the need
to define loops of any order, and includes all possible
indirect evidence.

Consideration of missing data
The main analysis was performed without any imput-
ation technique. A sensitivity analysis, using multiple
imputation was also performed and it is shown in the
online-only material. The results were not significantly
different in the two cases.

COPD data description
Following the recommendation for large prospective
studies [41], we based our analysis on a large-scale data-
base (provided by the COPD Cohorts Collaborative
International Assessment (3CIA) consortium [42]) from
a diverse set of 24 cohort studies and 15,762 patients
with COPD (1871 deaths and 42,203 person-years of
follow-up). The cohorts were heterogeneous concerning
geographic location, sample size, number of events and
correspond to a broad spectrum of patients with COPD
from primary, secondary and tertiary care settings. Mean
FEV1 ranged from 30 to 70% of the predicted values,
mean modified Medical Research Council (mMRC)
dyspnea scores from 1.0 to 2.8 (the scale goes from 0 to
4, with 4 being the worst), mean number of exacerba-
tions in the previous year (where available) from 0.2 to
1.7 and mean 6-min walk distance (where available)
from 218 to 487 m. The follow-up period varied from
cohort to cohort, thus we decided to use a minimum
common time frame of 3 years. The mean age varies
between 58 and 72 years. The outcome of interest was
3-year all-cause mortality. A table summarizing the
clinical characteristics of the cohorts is reported in
Additional file 1.

Results
To illustrate an MSC meta-analysis, we compared the
prognostic ability of various scores to predict mortality
in patients with COPD. The COPD Cohorts Collabora-
tive International Assessment (3CIA) [42] initiative con-
tains individual data for around 16,000 patients (approx.
70,000 person years) with COPD from 26 cohorts in
seven countries. Patients were considered to have COPD
if the ratio of forced expiratory volume in 1 s (FEV1) to
forced vital capacity (FVC) was less than 70%, regardless
of the Global Initiative for Chronic Obstructive Lung
Disease (GOLD) (2007) stage (I–IV) [60]. The minimum
required set of variables for each cohort included vital
status (up to death, loss to follow-up, or last data collec-
tion in June 2013), age, sex, pre-bronchodilator and
post-bronchodilator FEV1 and dyspnoea MRC grade
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[42]. Most cohorts included many more variables allow-
ing for the calculation of a total of 10 prognostic scores:
GOLD (2007), GOLD (2011), updated ADO, BODE,
updated BODE, eBODE, BODEx, DOSE, SAFE and
optimised B-AE-D [7, 10, 61–65].

Examination of network structure
We apply the MSC network meta-analysis of prognostic
scores for 3-year mortality from the 3CIA data.
Based on the availability of the 10 scores in each

cohort, the cohorts could be divided into 6 groups. The
network structure is shown in Table 5 and in Fig. 2.
Even if it would make sense to use absolute perform-

ance, we used relative performance of each score in com-
parison to a Common Comparator score, in order to get
rid of possible common biases. We chose as Common
Comparator score the GOLD classification. One cohort
(COCOMICS Requena I) was excluded from the analysis
because it only had sufficient variables to evaluate a single
score (GOLD) and it would not contribute to the analysis.
We had to further exclude the cohort A1ATD because
there were no cases in the follow-up considered for our
analysis (3 years) and the lack of events does not allow
calculating an AUC. Of the remaining 24 cohorts, 4 had 2
scores (GOLD (2007), updated ADO), and the other 20
had between 3 and 9 scores assessed. We note that in no
cohort all the 10 scores could be evaluated.
As GOLD (2007) is commonly used to classify the grade

of severity of COPD patients, it could be assessed in all
cohorts [60]. We note that direct evidence was available
for 41 of 45 score comparisons, indirect evidence was
available for other 16 comparisons (among which the four
cases in which the direct comparison was missing).

Multiple score comparison meta-analysis (MSC)
Transitivity, heterogeneity and inconsistency
To examine whether transitivity was fulfilled, we
analysed the distribution of a number of possible
variables potentially generating case-mix, following
epidemiological reasoning and literature (age median
and variability [25], FEV1 percent predicted range and
variance, mortality percentage, exercise capacity range,
number of events) across the groups using meta-
regression. For the variables generating case-mix
(whose meta-regression analysis were significant), the
ANOVA analysis showed that the variables were
balanced in the groups. Thus, we cannot reject the
null hypothesis of transitivity.
Stage I group level results are presented in the top of

Table 6, while the bottom rows show the stage II overall
results from the network meta-analysis. GOLD (2007)
scores ranged from 0.481 to 0.731, with a median of
0.614, and interquartile range (0.587, 0.641). Of the
scores, the one that predicted mortality best was
updated ADO with an average AUC 0.083 higher than
that of GOLD (2007) (95% confidence interval: 0.069,
0.097), followed by the updated BODE which was associ-
ated with a 0.072 better AUC than GOLD (95% confi-
dence interval: 0.051, 0.093) and eBODE (+0.069, 95%
confidence interval: 0.044, 0.093). DOSE (+0.027, 95%
confidence interval: 0.010, 0.045), optimised B-AE-D
(+0.016, 95% confidence interval: −0.007, 0.038) and
GOLD (2011) (+0.014, 95% confidence interval: 0.001,
0.028) and showed the worst performance in predicting
mortality, only slightly better than GOLD (2007). The
other scores, BODE, SAFE and BODEx showed moder-
ate performance, between +0.045 and +0.064 improve-
ment in AUC over GOLD.

Table 5 Group characteristics of the network

g Scores Cohortsa n d Q df τ

1 GOLD – ADO Copenhagen*, HUNT, Japan, SEPOC* 4323 378 2.8 3 0

2 GOLD – ADO – BODE – BODEupd Barmelweid*, Basque*, Galdakao†, Pamplona†,
Zaragoza I†

1208 215 15.5 12 0.014

3 GOLD – GOLD (2011) – ADO – BODE – BODEupd Mar de Plata Argentina, PACECOPD*,
Son Espases Mallorca

556 61 10.9 8 0.025

4 GOLD – GOLD (2011) – ADO – BODE – BODEupd – SAFE COPDgene 4484 337 7.46E-29 0 NA

5 GOLD – GOLD (2011) – ADO – BODEx – DOSE – BAED Genkols, ICE COLD ERIC, Initiatives BPCO,
Sevilla†, Terrassa I†, Terrassa III†, Zaragoza II†

4346 722 48.1 30 0.011

6 GOLD – GOLD (2011) – ADO – BODE – BODEupd –
eBODE – BODEx – DOSE – BAED

La Princesa Madrid, Requena II†, Tenerife†,
Terrassa II†

845 125 34.5 24 0.014

Abbreviations: g group, n number of subjects, d number of deaths, Q likelihood ratio statistic, df degrees of freedom, τ heterogeneity within the group, GOLD
Global initiative for chronic Obstructive Lung Disease, BODE Body mass index, airflow Obstruction, Dyspnoea and severe Exacerbations, BODE upd. BODE updated,
ADO Age, Dyspnoea, airflow Obstruction (we use in the our analysis the updated version of the ADO score), e-BODE severe acute exacerbation of COPD plus
BODE, BODEx Body mass index, airflow Obstruction, Dyspnoea, severe acute Exacerbation of COPD, DOSE Dyspnoea, Obstruction, Smoking and Exacerbation
frequency, SAFE Saint George’s Respiratory Questionnaire (SGRQ) score, Air-Flow limitation and Exercise capacity, B-AE-D Body-mass index, Acute
Exacerbations, Dyspnoea
aCohorts belonging to the ADO or COCOMICS groups are marked with * or † respectively. We notice that for group 4 the value of heterogeneity τau is not
available (NA); indeed, that is a singleton group, where we cannot evaluate heterogeneity
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Concerning heterogeneity, due to the group containing
only a single cohort (group 6), we primarily considered a
random effects analysis calculated using a pooled esti-
mate of τ2 for all groups, which was 0.00015, indicating
a relatively low heterogeneity. The results of the MSC
network meta-analysis were not substantially different
when using the group-specific τ2 estimates.
Possible inconsistency between direct and indirect

comparisons was assessed using the Q statistic as
described above. Overall, Q for the random effects ana-
lysis was 22.1 with 16 degrees of freedom. Keeping in
mind that in this case (as in classical network meta-
analysis) the inconsistency test has low power, since Q
was smaller than the corresponding χ2 statistic of 26.3,
we do not reject the hypothesis of consistency (P = 0.14).
Both direct and indirect estimates of the score com-

parisons were calculated using node-splitting [59], and
compared visually. The results are similar to each other
and to the estimates provided by the network meta-
analysis (see Additional file 1 for further discussion).

Consideration of missing data
As a secondary analysis, the entire meta-analysis was
repeated in a multiple imputation framework, as described
above. The results were similar to the main analysis
without imputation (see Additional file 1) [1, 66, 67].

Discussion
To the best of our knowledge, the MSC meta-analysis
proposed in this paper represents the first methodology
to evaluate the comparative prognostic properties of pre-
diction models that synthesizes all available (direct and
indirect) evidence. The application of the MSC meta-
analysis could provide different clinical fields with a clear
indication of which is the best-performing prediction
model, paving the way for a standardized clinical appli-
cation. While there are a number of issues when adapt-
ing usual NMA methodology to MSC, they can be
addressed in a straightforward manner. Multi-score
studies are considered in our approach by explicitly
using covariance estimates for the various prognostic

Fig. 2 Depiction of network structure with lines weighted by the total number of deaths in the group. Abbreviations: GOLD, Global initiative for
chronic Obstructive Lung Disease; BODE, Body mass index, airflow Obstruction, Dyspnoea and severe Exacerbations; BODE upd., BODE updated;
ADO, Age, Dyspnoea, airflow Obstruction (we use the updated version of the ADO score in our analysis); e-BODE, severe acute exacerbation of
COPD plus BODE; BODEx, Body mass index, airflow Obstruction, Dyspnoea, severe acute Exacerbation of COPD; DOSE, Dyspnoea, Obstruction,
Smoking and Exacerbation frequency; SAFE, Saint George’s Respiratory Questionnaire (SGRQ) score, Air-Flow limitation and Exercise capacity;
B-AE-D, Body-mass index, Acute Exacerbations, Dyspnoea. aCohorts belonging to the ADO or COCOMICS groups are marked with * or †
respectively. bThe thickness of the lines is proportional to the number of deaths of the respective cohort. cBelow we report the composition of the
group; each of them is identified by a specific color: Copenhagen*, HUNT, Japan, SEPOC* (378 deaths in 4323 patients), Barmelweid*,
Basque*, Galdakao†, Pamplona†, Zaragoza I† (215 deaths in 1208 patients), Mar de Plata Argentina, PACECOPD*, Son Espases Mallorca (61 deaths
in 556 patients), COPDgene (337 deaths in 4484 patients), Genkols, ICE COLD ERIC, Initiatives BPCO, Sevilla†, Terrassa I†, Terrassa III†,
Zaragoza II† (722 deaths in 4346 patients), La Princesa Madrid, Requena II†, Tenerife†, Terrassa II† (125 deaths in 845 patients)
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scores. Calculation of such estimates using bootstrap-
ping may be computationally intensive but is not diffi-
cult to implement. The approach presented here can be
used to compute prognostic score comparisons for the
entire network of evidence, as well as both direct and
indirect comparisons between scores.
Despite these adaptations, the results of the MSC

meta-analysis are clear, and may be interpreted in a fash-
ion similar to standard network meta-analysis results.
The only difference is that the performance measure is
not mean difference between treatments, or log odds
ratio, but difference in performance measure such as
AUC. Measures of heterogeneity and inconsistency can
however be calculated and interpreted in the usual fash-
ion [44]. For instance, a definition similar to the one
used for the heterogeneity for meta-analysis of direct
comparisons, can be used for the heterogeneity of
network meta-analysis, adapting a definition used for
multi-arm trials to multiple score comparison. Since we
have singleton groups in our MSC data (group 6 in our
database), it is recommended in our case to use pooled
estimate of the τ2 (τ2pooled) [35], i.e. a multivariate version
of the pooled estimate for the heterogeneity variance
(more technical details are provided in Additional file 1).
We used one of the scores as a common comparator,

which would not generally be necessary, but may be
easily possible in this MSC setting.
Performance of the considered prognostic scores can

be computed from the individual patient data (IPD)
directly; this is how we approach the problems having at
our disposal a large-scale IPD database. The group
results (Stage I) arise from averaging the cohort results,
that, in turn, are calculated using the IPD of each
cohort. If no IPD are available, instead, there are two
possibilities: use published results, or send cohorts code
to extract the aggregated performance measures
individually. Use of published results requires that com-
parisons have been reported for more than one score,
which in practice may almost never be the case. Sending
code to obtain aggregated measures may be an optimal
approach in cases where no large-scale collaboration
exists, and published results are not detailed enough.
We used all-cause mortality as outcome. Apart from

being clinically relevant, mortality is the easiest outcome
that we can expect to evaluate in a cohort, with a hard
definition. This makes it easier to reduce the problems
related to miss-classification or missingness of the
outcome [68, 69].
Given the patterns of missing data (in general, the vari-

ables are completely or almost completely missing or not
missing at all) a sensitivity analysis performed after multiple
imputation is providing similar results to the analysis with-
out imputation (a comparison is provided in Additional file
1). Analogously, a sensitivity analysis using heterogeneity

group by group gives similar results than using a pooled
heterogeneity (here recommended because of the network
structure; more details are available in Additional file 1).
There are a few limitations to this approach to MSC.

Although the analysis can be implemented as outlined by
Lu et al. [35] (Additional file 1), creating an input dataset
in a spreadsheet may be less than straightforward. We
have therefore provided example R code to convert a
dataset of prognostic scores to a MSC meta-analysis,
without first making a table of cohort-level summary
statistics, as is often performed. We note however
that such a dataset including a column for each cell
of the variance-covariance matrices could be analysed
using mvmeta in Stata. Creating that kind of sum-
mary dataset might be useful to go along with the
network meta set of commands in Stata [70]. We fo-
cused on implementing this approach starting from
the raw prognostic scores from individual patients,
which had been calculated using raw data from the
international collaboration [42].

Conclusions
In summary, we have adapted methodology from network
meta-analysis to compare prognostic scores from individ-
ual patient data across different cohorts. This approach
permits concurrent external validation of the scores in a
consistent analysis explicitly including correlations be-
tween the scores on a cohort level. Estimates of differ-
ences in performance can be estimated for the entire
network, as well as for both direct and indirect compari-
sons of scores. Results of the MSC meta-analysis can be
interpreted in a manner similar to that of the usual net-
work meta-analysis, regardless of the performance meas-
ure used. Our application to prognostic scores showed
that the ADO and updated BODE scores have the best
discriminative performance to predict mortality for patients
with COPD. The meta-analysis could also be repeated for a
number of different performance measures in order to de-
scribe multiple facets of the prognostic scores (e.g. discrim-
ination and calibration [1]) or using reclassification
methods (like the net reclassification index, NRI [71]) or to
aid in the interpretation of the results. Development of
clearer data input formats as well as more automated
would provide opportunities for further methodological re-
search in MSC meta-analysis.

Additional file

Additional file 1: Multiple Score Comparison: A network meta-analysis
approach to comparison and external validation of prognostic scores.
Additional statistical background is provided, as well as further details on
heterogeneity, transitivity, inconsistency, indirect evidence, and multiple
imputation, as well as a table summarizing the scores compared.
(DOCX 750 kb)
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