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Abstract

Background: Recommender systems have shown tremendous value for the prediction of personalized item
recommendations for individuals in a variety of settings (e.g., marketing, e-commerce, etc.). User-based collaborative
filtering is a popular recommender system, which leverages an individuals’ prior satisfaction with items, as well as the
satisfaction of individuals that are “similar”. Recently, there have been applications of collaborative filtering based
recommender systems for clinical risk prediction. In these applications, individuals represent patients, and items
represent clinical data, which includes an outcome.

Methods: Application of recommender systems to a problem of this type requires the recasting a supervised learning
problem as unsupervised. The rationale is that patients with similar clinical features carry a similar disease risk. As the
“Big Data” era progresses, it is likely that approaches of this type will be reached for as biomedical data continues to
grow in both size and complexity (e.g., electronic health records). In the present study, we set out to understand and
assess the performance of recommender systems in a controlled yet realistic setting. User-based collaborative filtering
recommender systems are compared to logistic regression and random forests with different types of imputation and
varying amounts of missingness on four different publicly available medical data sets: National Health and Nutrition
Examination Survey (NHANES, 2011-2012 on Obesity), Study to Understand Prognoses Preferences Outcomes and
Risks of Treatment (SUPPORT), chronic kidney disease, and dermatology data. We also examined performance using
simulated data with observations that are Missing At Random (MAR) or Missing Completely At Random (MCAR) under
various degrees of missingness and levels of class imbalance in the response variable.

Results: Our results demonstrate that user-based collaborative filtering is consistently inferior to logistic regression
and random forests with different imputations on real and simulated data. The results warrant caution for the
collaborative filtering for the purpose of clinical risk prediction when traditional classification is feasible and practical.

Conclusions: CF may not be desirable in datasets where classification is an acceptable alternative. We describe some
natural applications related to “Big Data” where CF would be preferred and conclude with some insights as to why
caution may be warranted in this context.

Background
Recommender systems have been widely used to provide
data driven suggestions for individuals [28]. The predic-
tion of recommendations based on historical data from
an individual, and data from individuals that are similar
in their buying behaviors or preferences. Recommender
system approaches can be broadly classified as either
content-based or based on collaborative filtering. Briefly,
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content-based approaches infer a preferences structure of
the individual based on detailed attributes of their per-
sonal preferences. In this setting, each item has an under-
lying attribute structure that can be leveraged for rec-
ommendations, e.g., Pandora uses hundreds of attributes
to describe the essence of music [8]. In this work, we
focus on the latter classification of recommender sys-
tems, collaborative filtering, which relies on the notion
that individuals that agree on ratings of items are likely to
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also agree on ratings of other items, perhaps not known to
them. Collaborative Filtering (CF) can be used to predict
item ratings for an individual and to collectively develop
a personalized ranking of items that may be of interest to
them.
CF based recommender systems have enjoyed tremen-

dous success in e-business, marketing, and for other
personalized recommendation services [2]. Recently, rec-
ommender systems have emerged in the biomedical sci-
ences. In these applications, the objectives are the same,
predict ratings for missing items. However, in this case,
items may represent clinical variables or diagnostic codes.
Unfortunately, the translation from classic business appli-
cations to clinical utility is littered with basic challenges.
Unlike marketing applications, clinical data is based on
factors such as medical examination, clinical measure-
ments, professional expertise, and may not necessarily be
altered by the mindset or preferences of patients. This
is an important distinction between the two application
areas, as user/patient bias is less likely to play a role in
medical applications. In marketing applications habitual
high/low raters can skew prediction, and the data often
requires adjustments or scaling. Another challenge is that
the absence of a diagnosis (e.g., missing data) may indi-
cate that a person has yet to be diagnosed, not necessarily
that they do not have the disease. Recommender sys-
tems utilize a likert scale that is ordinal in nature, and
this scale is uniform across all items. In contrast, clinical
data can be a mixture of variable types (e.g., continu-
ous, categorical, ordinal), which is more challenging to
model and merge from different databases. The majority
of applications of CF in the biomedical sciences have cen-
tered on the prediction of comorbidity from patient data
consisting of diagnostic codes for diseases. The applica-
tion to comorbidity prediction from diagnostic codes is
quite natural given that recommender systems are often
adopted to massive and sparse databases. There is also
tremendous value in the standardization of these codes
that enables seamless merging of databases. Davis et al.
developed a Collaborative Assessment and Recommenda-
tion Engine (CARE) that relies on patient medical history
as described by ICD-9-CM (International Classification of
Diseases, Ninth Revision, Clinical Modification) codes for
the prediction of future disease risk [13, 14]. CARE uses
CF methods to predict each patients disease risk based
on their own history, and the history of similar patients.
The output is a patient-specific rank ordered list of dis-
eases. CARE was applied to a subset of data from the
medicare database consisting of 13 million patients with
encouraging performance, which they believe could be
improved by amending other features, such as, clinical and
genetic data [9]. Folino et al. developed a similar approach
to comorbidity, but add an additional layer with respect
to prediction of disease risk that relies on association

rules [18]. Recently, Folino et al. extended this approach
and developed a COmorbidity-based Recommendation
Engine (CORE), which extends their earlier model to
include a clustering phase for patient records that aims
to emphasize the local nature of the model [17]. CORE
models also rely solely on ICD-9-CM codes.
Hassan et al. proposed an alternative application for CF

in medical datasets [21, 32]. Their application in this area
is fundamentally unique as it focusses on the use of CF
for risk prediction using clinical data. The data consisted
of a cohort of 4,557 patients from the MERLIN-TIME 36
trial [31] with acute coronary syndrome with measured
features spanning clinical measurements, family history,
and demographics. The overall objective was to predict
outcomes such as sudden cardiac death and recurrent
myocardial infraction. Unlike the comorbidity prediction
described earlier, Hassan et al. consider an application
with clear set of predictors, X, and an outcome, Y, which
would traditionally be solved using classification meth-
ods. In their application, they utilize CF and compare
the performance to logistic regression and support vector
machines. The problem is therefore treated as an unsuper-
vised learning problem, although traditionally a problem
of this type would be cast as a supervised classification
problem. Moreover, discretization is required in order
to make use of CF, which ultimately leads to a loss of
information.
Hassan et al. show that CF outperforms traditional clas-

sification methods on the MERLIN-TIME 36 trial data,
which is not only promising for the use of CF with clinical
data, but is a novel application of models that do not solely
leverage diagnostic codes for diseases. However, untan-
gling the advantages and disadvantages of CF in clinical
applications of this type is challenging, not well under-
stood, and likely very data dependent. We hypothesize
that as the “Big Data” era progresses, there will be a nat-
ural draw to consider recommender systems, such as CF,
and other scalable approaches, for biomedical data, which
is growing in both size and complexity. This has motivated
the present study, which takes steps to assess the per-
formance of CF in different publicly available biomedical
datasets. Our study, and Hassan et al., examine large, but
not massive, datasets. However, there are natural implica-
tions for the use of CF in “Big Data” applications where
classification is feasible and practical.
This paper assesses user-based CF recommender sys-

tems in the context of clinical risk prediction. Specifically,
the problem of predicting the value for an unknown
outcome and/or missing predictor variables is solved by
leveraging patient similarity in a user-based CF algorithm.
We compare recommender systems to logistic regres-
sion and random forests with different types of impu-
tation. These algorithms are compared on four different
publicly available data sets: National Health and Nutrition
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Examination Survey (NHANES, 2011-2012 on Obesity),
Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT), chronic kidney dis-
ease, and dermatology data. We have formulated a sim-
ulation pipeline that enables us to assess algorithm per-
formance for these data across varying levels of missing
data (low, moderate, severe). Our findings demonstrate
CF based recommender systems are inferior for every
dataset examined, and across each imposed level of miss-
ing data. Moreover, the difference between traditional
classification machine learning approaches and CF is not
marginal. This trend was also observed in simulated data
with (and without) class imbalance in the response, with
missingness that wasMissing At Random (MAR) or Miss-
ing Completely at Random (MCAR). Our assessment is
both consistent and sobering, and warrants the use of cau-
tion when considering user-based CF for the purpose of
clinical risk prediction when traditional classification is an
acceptable alternative.

Methods
Recommender systems were compared to more tradi-
tional methods for imputation and classification on four
different publicly available datasets with different levels of
missing data. In this section, we briefly outline the data,
algorithms, and how the assessment of performance was
made.

Data sets
Four different publicly available datasets were investi-
gated, National Health and Nutrition Examination Survey
(NHANES), Study to Understand Prognoses Preferences
Outcomes and Risks of Treatment (SUPPORT), chronic
kidney disease, and dermatology data. There are broad
differences in these datasets that transcend beyond the
scope of the study, and the population. These data vary
in their size, both the number of predictors (p) and the
number of observations (N), in some cases N >> p. Fur-
thermore, there are missing data and heterogeneity in the
population for many of the measured predictors. Each of
the four data sets has different levels ofmissingness within
predictor variables, ranging from less than 1% up to 16%.
From this point of view, many of the features present in Big
Data are present on a smaller scale in these data sets, but
our simulations will make this more severe. Each dataset
under investigation has a categorical outcome and can
therefore be framed as a classification problem. Briefly, we
detail each dataset below.

• National Health and Nutrition Examination
Survey (NHANES, 2011-2012 on Obesity): The
National Health and Nutrition Examination Surveys
(NHANES) programs include several cross-sectional

studies on the resident population of the United
States related to nutrition and obesity [6]. NHANES
includes a comprehensive set of dietary, social
economic and biological information from
participants and serves a wide range of public health
objectives, including but not limited to disease
prevalence and risk factors. We have focussed on the
data in the 2011 − 2012 time period, which consists
of 9,756 participants and 22 predictors (Additional
file 1: Table S1). The current study focuses on the
relationship between obesity and basic demographics,
social economic status, smoking and drinking habits
and physical activity. In our applications, the response
variable is an indicator for obesity that is measured as
a BMI of 30 or above. Participants that provided the
responses refuse to answer or do not know the
answer were eliminated from the dataset, rendering a
total of 5,018 participants in the final analysis.

• SUPPORT Study: The SUPPORT (Study to
Understand Prognoses Preferences Outcomes and
Risks of Treatment) aims to estimate survival over a
180-day period and thus study the prognosis for
hospitalized and seriously ill adults [11]. This
prospective cohort study was carried out in 5 tertiary
care academic centers in the United States. A total of
9105 patients were enrolled for Phase I and II trials. A
total of 23 predictors (Additional file 1: Table S2) are
used to build a predictive model, most of which are
physiological measurements and physician
evaluations of patient condition. The data were
obtained from a collection provided by the
Department of Biostatistics at Vanderbilt University
[15].

• Chronic kidney disease: The data were collected in
hospitals and can be used to predict chronic kidney
disease through a set of 24 predictor variables, which
includes age and 23 physiological measurements
(Additional file 1: Table S3). There are 400
observations in the data set. The response variable is
a binary indicator for chronic kidney disease. This
data set is available through UCI machine learning
repository (http://archive.ics.uci.edu/ml/) [1].

• Dermatology: The data were collected to classify
eryhemato-squamous disease among six possible
disease types. Such differential diagnosis has been a
challenge in dermatology. There are 366 observations
in the data and a set of 34 predictor variables, which
include age, family history, clinical attributes and
histopathological attributes (Additional file 1: Table
S4). This data set is also available through UCI
machine learning repository (http://archive.ics.uci.
edu/ml/) [1].

• Simulated Data: In addition to the above real data
sets, we also consider a simple simulation to mimic a

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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controlled setting in which we investigate the
performance of various methods for data that
contains various degrees of class imbalance along with
Missing At Random (MAR) or Missing Completely
At Random (MCAR) data [29]. We performed two
different sets of simulations, one to investigate
performance under MAR and MCAR scenarios on a
well balanced dataset (N=300), and another to
investigate MAR and MCAR in larger datasets
(N=1000) with class imbalance. The differences in
sample size for the simulations was motivated by the
desire to retain adequate support in the data under
imbalanced settings with higher levels of missingness.
Both simulations utilize a multivariate normal with
Xi ∼ N(0, 1) for i = 1, . . . 5. The response was
generated from this data using the least squares
model Y = Xβ + λ · ε, where β = [1, 1, 0.1, 0.1, 0.1],
λ = 10−2, and ε ∼ N(0, 1). The response was
dichotomized at the mean. In our simulations of class
imbalance, we consider simulations of severe,
moderate, and low-moderate class imbalance, in
which the minority class is represented at a rate of
20%, 25%, and 30%, respectively. The details of the
MAR and MCAR mechanisms imposed on the data
are provided in Simulation.

Predictive model development
Each data set under consideration can be cast as a
supervised learning problm. Our objective is to look
comparatively at the use of recommender systems for
the prediction of a clinical outcome against more tradi-
tional methods of classification and imputation. We focus
the comparison on logistic regression [25] and random
forests [4].

Multiple Logistic Regression is a statistical method for
classification has a probabilistic interpretation for the
assignment of classes [25]. Let G(x) be the predictor
that partitions the model space into K distinct regions
(or classes). Logistic regression models seek to estimate,
P(G = k | X = x), the posterior probability of a class
assignment, G = k, given the data X = x. Following the
formulation in [19], the logistic model is given as:

Pr(G = k | X = x) = exp(βk0 + βT
k x)

1 + ∑K−1
l=1 exp(βl0 + βT

l x)
,

k = 1, . . . ,K − 1,

Pr(G = K | X = x) = 1
1 + ∑K−1

l=1 exp(βl0 + βT
l x)

.

The parameters θ = {β10,βT
1 , . . . ,β(K−1)0,βT

K−1} are
usually fit using maximum likelihood approaches [25].
We evaluate the predictive accuracy via the misclassi-
fication rate, which is based on a 0 − 1 loss function.

Datasets with a dichotomous response variable were fit
using the glm function in the R programming language
(https://www.r-project.org). The dermatology dataset has
a multivariate response (six classes) and was fit using
the glmnet package. The Hosmer-Lemeshow (HL) good-
ness of fit test [24] was used to assess goodness of fit for
the dichotomous models. The HL test specifies the null
hypothesis that the actual and predicted event rates are
similar across quantiles of the data. Rejection of the null
suggests that the actual and predicted rates are not the
same and refinement of the model may be warranted. HL
test was performed in the R programming language using
the ResourceSelection package. In our applications,
we used deciles and a threshold of P-value < 0.05 to sup-
port a poor model fit. We also used a Brier score to assess
calibration and goodness of fit in order to better com-
pare with Random Forests, which is the mean squared
difference between an individual and its predicted
probability [33].

Random Forest is a machine learning technique that
leverages ensemble learning for classification. that relies
on aggregates over bootstrapped CART model [4]. CART
models have been widely used for decision making in
several research areas, e.g., medicine, engineering, and
marketing [3]. Their popularity is due in part to their
natural interpretation and flexibility.
Briefly, we motivate the random forest approach

through the description of CART as a base classifier. The
recursive partitioning algorithm examines each predictor
variable in model, {X1,X2, . . . ,Xp}, for optimal split points
that minimize loss subject to previous partitions in the
model space. The process is depicted in Fig. 1a for a sim-
ple two dimensional predictor space, {X1,X2}, and a two
class outcome. Recursive partitioning can be viewed as a
greedy-search for sub-regions in the model space that are
good predictors of the outcome Y . The greediness arises
from the fact that at each step, that splits are dependent
on the splits that proceed them. For example, in Fig. 1a,
the first split divides the X1 region, and split 2 divides
the X2 region, but the split is subject to the split that
has already occurred, and so forth. Consequently, parti-
tioning of this type can be visualized as a tree, where the
splits are represented as internal nodes (Fig. 1b). In our
applications, we focus on classification tress, which bases
prediction on the label of the majority class in the termi-
nal nodes, or equivalently the sub-regions of the model
space. The recursive partitioning is framed as an opti-
mization problem that seeks to maximize the purity (of
class) in the terminal regions [3]. The process of predic-
tion is simply inputing an observation at the top of the
tree and tracing it down to identify the appropriate ter-
minal region and label. Unfortunately, CART models are
known to be unstable, meaning that small changes in the

https://www.r-project.org
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Fig. 1 The simulation pipeline proceeds in a series of steps: (1) The data is input, and (2) divided into K-folds, (3) missing data is created at random,
(4) the data is discretized, (5) a recommender system is fit along with variations of logistic regression and random forests, and the (6) performance is
evaluated

training set can give rise to significantly different decision
tree structures [19].
Random forests utilize CART models in an ensemble

fashion to overcome instability and uncertainty in the
population and predictor set. The randomness comes in
two ways that relate to resampling of the training data and
the predictor set. Briefly, each model in the ensemble is
based on a sample that is bootstrapped with replacement

from the training data. A decision tree is fit from the boot-
strapped data. However, at each node in the tree, only a
random subset ofm predictors is considered for partition-
ing, instead of the entire set. Empirically, RFs have been
shown to be relatively insensitive over different values of
m [4]. In our applications, we have used m = √p, and
have grown 5,000 trees for each implementation of the
RF routine. Predictions for a RF are obtained by tracing
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the new sample down each decision tree in the ensem-
ble and aggregating over those predictions. Unfortunately,
due to the aggregate nature of the ensemble, the natural
interpretation of the CART model is not retained. Calcu-
lations were performed in the R programming language
using the randomForest package [4]. For dichotomous
outcomes, the Brier score was calculated from the Out Of
Bag (OOB) votes that arise from frequency prediction of
classifications based on trees for which it was not in the
bootstrap sample. Although this is not a probability, rather
it is an OOB frequency of prediction, the Brier score is
most often used for RF calibration [12].

Collaborative filtering is an algorithm that relies on user
rating data for items to infer missing ratings for other
users and items. This type of recommender system is
widely used for the creation of ranked lists of items, that
are personalized in the sense that the inference is based
on other users with similar patterns of ratings. Applica-
tions tomarketing are obvious. The scale of ratings is fixed
across items. There are modifications to the standard CF
that account for user rating bias, which occurs when indi-
viduals tend to always rate highly or poorly [28]. In certain
applications this may be an issue, e.g., self-reporting, mea-
surement, or doctor bias. The bias adjustment amounts to
simply centering the rows (patients).
In the clinical application, users are patients, and items

are derived from clinical features of the patients. Several of
the measured features can be expected to be missing. We
define the patients, P = {P1,P2, . . .Pn}, and the measured
features on these patients X = {X1,X2, . . . ,Xp}. This cal-
culation is performed on the ratings over a common set

of features, which have no missing values between the
two patients. The similarity between patients Pi and Pj is
defined as the cosine distance between their features:

simcos(Pi(X), Pj(X)) = 〈Pi(X),Pj(X)〉
||Pi(X)||||Pj(X)|| , (1)

where 〈·〉 denotes the inner product, and || · || is the
euclidean norm.
Feature Xi of patient Pj is estimated as:

X̂Pj
i = 1

∑
h∈N(Pj) simcos(Pj, h)

∑

h∈N(Pj)
simcos(Pj, h) ·Xh,i

(2)

where h ∈ N(Pi) is the neighborhood centered on patient
Pi. A schematic depicting the notion of a neighborhood
for a patient P9 is shown in Fig. 2a. Missing data and out-
come is predicted by aggregating across the k neighbors
(Fig. 2b). Note that CF does not treat the clinical predic-
tion problem as supervised, rather it recasts a supervised
learning one as an unsupervised problem. In the execution
of CF on clinical data, the response variable Y is treated
simply as another predictor, Xi, with the prediction being
made as a function of patient similarity (Eq. 2).
In our applications, the selection of the number of

neighbors, k, was made based on 3-fold cross val-
idation. Implementation of CF was performed using
recommenderlab in the R programming language
(https://www.r-project.org).
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Simulation
Our objective is to assess the performance of CF based
recommender systems comparatively to logistic regres-
sion and random forests in clinical data with varying
degrees of missingness. To this end, we have designed
an experiment for manipulating the datasets to contain a
percentage of missing values (NA). Each dataset was first
examined at baseline, which is the data with no additional
missingness. For the NHANES and dermatology data this
corresponds to 3 and 5%missing at baseline, respecitively.
Chronic Kidney and SUPPORT 10 and 16% were missing
at baseline, respectively. On top of the baseline missing-
ness, a percentage of the data was deleted at random to
mimic low (<16%), moderate (20%), and severe (30%), lev-
els of missingness. Our simulation proceeds in six phases
(Fig. 3). (1) The data is input, and (2) divided into 3−folds,
(3) missing data is created at random, (4) the data is dis-
cretized, (5) CF and classification models are fit, and the
(6) performance is evaluated. Importantly, for each simu-
lated setting steps 1–4 are performed, and the algorithms
used for model fitting (step 5) utilizes same exact data
in order to gain a fair assessment of their relative per-
formance. We briefly detail each step in the simulation
pipeline below.

1. Input data: The following datasets were input into
the simulation pipeline: Chronic Kidney,
Dermatology, NHANES, SUPPORT and simulated
data.

2. Data divided into folds for cross-validation: Each
dataset is divided into K = 3 folds for
cross-validation. The analyses were performed
through 3-fold cross validation on each individual
data set. Therefore, two thirds of the data were used
as training data in each fold and the rest were used as
test data. We utilize repeated cross-validation. In our
applications to real data and simulation we repeat the
cross validation process 50 times. For each run the

folds are fixed throughout the simulation of different
levels of missingness to achieve a cumulative affect.

3. Creation of missing data: For the real datasets, a
fixed percentage of values in predictor variables were
randomly deleted with the goal to simulate MCAR
settings [22]. Since the deletion is random across all
predictor variables, each is affected to a comparable
extent. In all settings, the pattern of missing data is
cumulative across the varying levels of severity. For
example, for a given simulation, the missing values for
the 20% simulation include, those missing in the 10%
simulation. MAR was also imposed on the simulated
data by creating a dependency between X1 on X2.
Specifically, missingness was imposed on X1 if X2
was above a specified quantile. The specified quantile
was adjusted as to let in varying levels of missingness.
MCAR was also used in connection with the
simulated data. The MCAR rate of missingness was
matched to the MAR rate of missingness to enable
fair comparisons. For each missing data scenerio, we
simulated 50 unique patterns of missingness.

4. Discretization of continuous variables:
Recommender systems are designed to utilize ratings,
which are categorical or ordinal values by nature.
Moreover, the number of levels for each variable in
the predictor set is fixed and uniform over the set of
predictors. The datasets under consideration contain
a mixture of variable types. Notably, RFs can readily
accommodate a mixture of variable types in the
predictor set. However, in order to facilitate fair
comparisons, the predictor variables that have
continuous values were discretized. Specifically, for
each of the four data sets, the maximal levels taken by
categorical or ordinal variables were used to
discretize continuous variables. For example, if data
set X has 2 categorical variables that have values
{1, 2} and {1, 2, 3} respectively, the continuous
variables in this data set will be discretized into three

??

a Local Neighborhood of size k=3 b Collaborative filtering for P9 on neighborhood of size k=3

P9

P2P3

P6

P1

P4

P5

P7

P8

Fig. 3 a A schematic of a local neighborhood for collaborative filtering of size k = 3. The distance between individuals and patient 9 is quantified by
a cosine distance. b The predicted recommendations for patient 9 are aggregate estimates over the neighborhood. In this simple example, the
missing values are simply calculated as the average across the neighborhood, although in practice, the calculation is weighted by similarity
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levels and take on values {1, 2, 3}. The threshold for
discretization of a continuous variable is based on
quantiles to ensure a balance between the
discretization levels. Following these principles,
NHANES data were subject to 7-level discretization,
while SUPPORT and Chronic Kidney Disease data
were subject to 5-level discretizations, and
Dermatology data to 4-level discretization. Simulated
data was also subject to 4-level discretization.

5. Application of algorithms for model fitting: CF
and classification methods were applied to each data
set as described above. Briefly, different types of
imputation are described as follows: (1) Mean
imputation was used for each predictor variable in
the training data. Imputation values were calculated
as the average of the non-missing values within this
predictor variable. Subsequently, this mean value
replaced all of the missing values for the
corresponding variable. The mean value for the
training data was also used for missing data in the
test set. (2) k-NN imputation was implemented
through preProcess and predict functions in
the caret package in R. The missing predictor
variable values in training data and testing data were
filled in through k-NN imputation respectively.
Cross validation (3-fold) was used for the selection of
k. (3) RF-Impute is an imputation within the
randomForest package in R. RF-impute begins
with a median imputation, and the imputation is
updated based on proximities after running an initial
forest on the imputed data, see [5] for details.
Missing values in testing data were imputed through
mean imputation (as described above) instead of rf
imputation. (4) Multivariate Imputation by Chained
Equations (MICE) was applied using the R package
mice [7]. MICE uses Gibbs sampling to complete a
multivariate data set by iterating over a set of
conditional densities representing the variabes in the
dataset. Five datasets were imputed for each missing
data setting.

6. Evaluation of Performance: Performance was based
on the mean misclassification rate (0 − 1 loss) across
all the folds, and the standard error of this mean
estimate was calculated as standard deviation across
the folds.

Results
Baseline and simulated scenarios of low, moderate, and
severemissing data were implemented for the chronic kid-
ney, dermatology, NHANES, and SUPPORT datasets. For
each simulation the data was divided into 3-folds, miss-
ing data was created, discretization was performed. The
following methods and imputations were evaluated: RF-
RFImpute (RF Imp), RF with mean imputation (RF-MI),

RF with kNN imputation (RF-kNN), RF withMICE impu-
tation (RF-MICE), LR with mean imputation (LR-MI),
LR with kNN imputation (LR-kNN), and LR with MICE
(LR-MICE), and user-based CF. Performance was evalu-
ated using the misclassification rate (Fig. 4), sensitivity
(Table 1) and specificity (Table 2).
For the real data, every variation of LR and RFs out-

performed recommender systems for every data set in
each scenario of missing data (Fig. 4). The dermatology
dataset was by far the worst performing, which has six
classes in the response variable. MI proves to be espe-
cially problematic for the dermatology data, especially
when the the level of missingness increases (Fig. 4c–d).
For the large datasets (NHANES and SUPPORT)MI, kNN
and MICE imputation led to only marginal differences in
the misclassification rate when the level of missingness is
low-moderate (Fig. 4a–b). The advantages if MICE can
be observed when the level of missingness is more severe
(Fig. 4b–c).
LR offers clear advantages over RF for the dermatology

data. Otherwise, the performance of LR and RF is com-
parable, especially when used in connection with MICE
(Fig. 4c-d). The HL test indicates good calibration of
LR models (P-value> 0.05) (Additional file 1: Table S5).
The HL test generally revealed improved calibration with
increasing missingness. This was observed with NHANES
for MI, kNN, and MICE, and with SUPPORT using MICE
(Additional file 1: Table S5). This is not surprising, espe-
cially given the conditional nature of the imputation for
MICE, but is potentially misleading as it may not reflect
the underlying population well. The Brier score for RF and
LR notably small, which also supports good calibration
(Additional file 1: Table S6). The improving nature of the
fit as a function of missingness was not observed in the
Brier score as it was with the HL test.
For datasets with a dichotomous response, the sensitiv-

ity and specificity was calculated for CF, along with LR
and RF for imputation methods, MI and MICE (Tables 1
and 2). Both the sensitivity and specificity of CF is often
inferior for CF, with the exception of the sensitivity of
the Kidney data with low-moderate levels of missingness
(Tables 1 and 2). Generally, there is not a major differ-
ence or trend between in sensitivity or specificity that
differentiates LR and RF for a given imputation method.
For the simulated datasets, we observed results that

mimicked those of the real data for bothMAR andMCAR.
Specifically, CF was predominately poor when compared
to traditional classification methods (Fig. 5). The MAR
misclassification rate was slightly lower than the MCAR
across increasing levels of missingness. The exception is
that MAR performance degrades in the most severe miss-
ingness setting considered (Fig. 5f). TheMICE imputation
was found to improve results considerably for MCAR in
severe missingness settings when used in connection with
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Fig. 4 Simulation results for Chronic Kidney, Dermatology, NHANES, and SUPPORT are shown for a less than 10% missing data, b 10–16% missing
data, c 20% missing data, d 30% missing data. Graphs depict the mean estimate of misclassification and standard error calculated via repeated
3-fold cross validation for 50 simulated patterns of missingness for each level of severity. The results for the baseline levels of missingness for each
data sets is captured in a and b

RF or LR (Fig. 5e, f). In more severe settings, MICE was
also the superior imputation method for both MAR and
MCAR (Fig. 5d, e and f). MAR and MCAR patterns of
missingness of the same type were also simulated on data
with class imbalance. The overall results are consistent
with the real data and balanced simulations. Traditional
classification methods outperform CF in every setting
(Additional file 1: Figure S1). The differences in perfor-
mance between CF and traditional classification methods
are much more pronounced in the severe imbalanced set-
tings for both MAR and MCAR (Additional file 1: Figure
S1G-I). Notably, for the traditional classification methods,

the degree of imbalance had a lesser impact on perfor-
mance compared to the level of missingness. In fact,
with low levels of missingness (Additional file 1: Figure
S1 A, D, G) MAR and MCAR are almost indistinguish-
able, although performance degrades slightly. Whereas,
high class imbalance leads to more variability between
methods (Additional file 1: Figure S1 C, F, I).

Discussion
The objective of this study was to examine user-based CF
on medical data with a categorical outcome. Hassan et al.
evaluated CF on a rich dataset (< 4, 500 patients) for the
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Table 1 Sensitivity for the most competitive classifiers and imputation combinations and CF

Dataset (% missing) RF-MI RF-MICE LR-MI LR-MICE CF

NHANES (baseline=3%) 0.99 0.99 0.99 0.99 0.56

NHANES (10%) 0.98 0.99 0.98 0.99 0.63

SUPPORT (baseline = 16%) 0.99 0.98 0.98 0.97 0.98

Kidney (baseline =10%) 0.99 0.98 0.97 0.99 0.99

NHANES (20%) 0.98 0.98 0.99 0.99 0.49

SUPPORT (20%) 0.96 0.96 0.84 0.98 0.86

Kidney (20%) 0.98 0.99 0.98 0.98 0.98

NHANES (30%) 0.89 0.99 0.89 0.95 0.25

SUPPORT (30%) 0.86 0.99 0.81 0.93 0.82

Kidney (30%) 0.98 0.98 0.97 0.96 0.92

prediction of adverse outcomes following a heart attack
[21]. In this context, they demonstrated superior results
(although slight) to competing statistical and machine
learning methods for risk prediction. These comparisons
were made to logistic regression models and support
vector machines. The data inherently contained miss-
ing values, as was the case for the data in the present
study, but additional missing data was not pushed in to
the study and the focus was on a single dataset that is
not publicly available. Our study has arrived at different
conclusions regarding superiority of CF to classification
methods. However, the overall study design and datasets
are fundamentally different, and should be viewed
as complimentary (not contradictory) to the work of
Hassan et al.
At present, we are in the “Big Data” era, and it is becom-

ing commonplace to reach for methods like CF, that are
frequently used in other disciplines, to solve challenging
problems in biomedical research. To this end, we antic-
ipate more activity and attraction to this area. However,
there remain many open questions regarding the utility of
recommender systems on biomedical data for the purpose
of clinical prediction, ormore generally, classification. The

study by Hassan et al. represents a novel framework for
prediction of this type and has motivated further research
in this direction [32, 34]. Their study, and ours, is limited
in terms of size and uses cohorts from population studies
or clinical trials. In our case, this was due to the lack of
accessibility to medical databases, which are generally not
publicly available.
The study by Hassan et al., and the present study, are

fundamentally different to other research in the area that
has centered on CF for comorbidity prediction on dis-
eased codes [9, 17, 18]. It is natural to consider combining
disease codes with additional attributes such as clinical
data, patient history, and demographics to improve pre-
diction. Data integration is a major challenge for “Big
Data” and the translation of data to knowledge [26].
Although the present study is of small scale, we demon-
strate the clinical data that can be modeled using tra-
ditional classification methods is preferable to CF. This
study may be informative to developing and understand-
ing approaches to data integration on a large-scale. On the
other hand, there are several situations that may be inher-
ent to a “Big Data” application that would prohibit the
use of traditional classification methods. For example, the

Table 2 Specificity for the most competitive classifiers and imputation combinations and CF

Dataset (% missing) RF-MI RF-MICE LR-MI LR-MICE CF

NHANES (baseline=3%) 0.99 0.98 0.98 0.99 0.88

NHANES (10%) 0.97 0.96 0.99 0.99 0.88

SUPPORT (baseline = 16%) 0.98 0.98 0.99 0.98 0.91

Kidney (baseline = 10%) 0.99 0.99 0.94 0.99 0.85

NHANES (20%) 0.97 0.96 0.96 0.98 0.88

SUPPORT (20%) 0.97 0.96 0.97 0.97 0.85

Kidney (20%) 0.97 0.94 0.96 0.98 0.84

NHANES (30%) 0.93 0.93 0.94 0.96 0.83

SUPPORT (30%) 0.95 0.96 0.96 0.95 0.83

Kidney (30%) 0.98 0.98 0.95 0.97 0.82
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Fig. 5 Results for simulated data under MAR and MCAR for a 10% missing data, b 20% missing data, c 30% missing , d 40% missing data, e 50%
missing data and f 60% missing data. Graphs depict the mean estimate of misclassification and standard error calculated via repeated 3-fold cross
validation for 50 simulated patterns of missingness for each level of severity

fusion of databases that have unified data representation,
or the use of real time predictions that do not require re-
training or tuning of the database, but rather merge new
patient data in a seamless manner.
The present study was motivated by a desire to develop

a more comprehensive understanding as to (1) how rec-
ommender systems perform on medical data, and (2)
how this performance changes with an increased num-
ber of missing values. To address these questions, we
set out to examine CF in a variety of controlled (simu-
late missing data) yet realistic (medical data sets) settings.
We examined four different publicly available data sets,
NHANES, SUPPORT, Chronic Kidney, and Dermatology.
These datasets differed in both scope and size, but each
had an outcome and could be framed as a classification
problem.
Our simulation pipeline involved division into folds,

creation of missing data, discretization, application of

classifiers, and the evaluation of performance. Our sim-
ulation approach has exposed some major weaknesses in
CF based recommender systems for prediction in medical
data, but is not without limitations. Notably, there is not
a one size fits all solution to classification problems. We
selected logistic regression and random forests, but there
are several other classificationmethods that could be used
in this context. Importantly, it was not our objective to
compare performance between classifiers, but rather to
evaluate traditional and cutting edge classification meth-
ods as an appropriate alternative to recommender sys-
tems. Logistic regression is perhaps the most widely used
statistical model for classification with a dichotomous
response variable. Random Forests are a machine learning
approach that leverages ensemble learning of CARTmod-
els for classification. Recently, in a comprehensive study
RF was found to be superior overall when compared to
179 different classifier on 121 datasets in the UCImachine
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learning repository [16]. RF is an attractive competitor
for this study because of the ensemble nature, ability to
handle missing data, and it is generally robust to noise
and outliers [4]. Moreover, variations of the RF approach
have been shown to be effective in “Big Data” settings,
such as electronic health records [27]. Had recommender
systems not been consistently inferior, a deeper investiga-
tion of alternative classification methods would have been
warranted.
Another limitation of our study is the amount and pat-

tern of missing data. Limitations on the amount of missing
data were largely a function of the CF implementation in
recommenderlab, where 30% was the maximum that
could be achieved without errors related to the identi-
fication of k nearest neighbors (even for small k). The
missingness of the data was simulated as missing com-
pletely at random. In realistic settings, this may not be
the case, especially in databases housing electronic health
records. However, the simulation of not missing at ran-
dom is notably more difficult and subject to intense bias.
Finally, a discretization of the data is required for recom-
mender systems. Our approach to discretization was to
have it dictated by the number of levels in non-continuous
variables, and assigning the data according to quantiles.
However, recommender systems often work on a likert
scale and are ordinal in nature. We found this makes the
discretization process rather awkward for medical data.
In general, the discretization process results in a substan-
tial amount of information loss. To this end, LR models
and RFs are inherently flexible in that mixed predic-
tors (continuous, categorical, etc.) can be accommodated.
However, in order to level the playing field and facilitate
the most fair comparisons, we discretized (unnecessarily)
the continuous predictors. Application of classifiers to the
original (non-discretized) data would have led to improve-
ments in performance, and consequently widened the gap
between CF and traditional classification methods. The
relative size of the classes for the response variable also
influences performance, especially in situations of severe
imbalance. Our simulations showed that CF was particu-
larly sensitive to class imbalance (Additional file 1: Figure
S1). One possibility for this is the discretization will be
negatively impacted. In our simulated data, we also dis-
cretized continuous variable for traditional classification
methods. However, for CF, we hypothesize that the dis-
cretization has more of an impact on the model due to
the nature of the the class assignment and the depen-
dency on similarities (Eq. 1–2). The clinical data that we
considered was relatively well balanced, with most severe
imbalance for NHANES (35% minority class rate). Since
imposing class imbalance on the real data would require
subsetting or resampling the data, and consequently cut-
ting down the sample size, we examined the impact of
class imbalance on simulated data with missingness that

is MAR or MCAR. Therefore, CF did not appear to offer
any obvious advantage in these settings, but teasing out
the contributions of the imbalance and the missingness in
a real clinical data set would prove to be more challenging,
and will be an area of future research. Notably, RFs have
shown promise in class imbalance problems via down
sampling and weighted loss [10], and we hypothesize that
they would be generally more effective in imbalanced
settings.
The size of the feature space is a major consideration.

If the feature space is high-dimensional (N << p) there
are many conceptual issues that arise with the concept of
nearest neighbor that are rooted in the inherent sparsity
of the feature space [19, 23]. The proximity of a neigh-
bor increases considerably as the size of feature space
increases. The local nature of k-NN calls into question
the value and quality of a neighbor [19]. In the context
of a rich marketing database, issues related to the dimen-
sion of the feature space issue are often secondary to the
extreme sparsity of the data. However, in the case of med-
ical data, the issue of poor neighbor quality may not only
arise, but may also be masked by the discretization pro-
cess. This would certainly be the case in the classic “Big
Data” settings, where the population itself is severely het-
erogenous. These weaknesses for large, sparse databases
are also recognized in more classical, non-medical
applications [20, 30].
Lack of stability and quality of the neighbor is also

reflected in the implementation of RFs with kNN impu-
tation with severe missing data for dermatology (Fig. 4d).
On the other hand, CF did not exhibit this instabil-
ity, although the performance was uniformly poor. The
underlying models for kNN imputation in a RF and CF
based recommender systems are essentially identical in
how the predictor set is imputed. The difference lies in
how the response is handled. The problem is treated as
a supervised one for kNN imputation in a RF, and unsu-
pervised for CF based recommender systems. Generally,
re-casting problems that are unsupervised as supervised is
a popular trick in data mining, as there are several advan-
tages due to the fact that there is an outcome, and loss can
be measured [19]. On the contrary, casting a problem that
is supervised as unsupervised, as in this approach, does
not offer the same advantages.
Our focus is restricted to user-based CF under basic

assumption that the number of levels for the variables are
equivalent. The cosine distance is often used for a sim-
ilarity measure. Pearson correlation is another popular
choice. In our applications, there were negligible differ-
ences between the two. Another consideration is that
alternative similarity measures can be used that would
enable more flexibility in terms of the variable constraints.
Likewise, variations of CF may lead to improved perfor-
mance and is a topic of future research [2]. Regardless, the
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quality of neighbor issue would still remain for alternative
similarities and methods. Therefore, we hypothesize that
datasets modeled using traditional classification methods
will likely achieve better performance when compared to
CF-based methods.

Conclusions
In summary, our results consistently put CF in a poor light
for clinical prediction. We observed overwhelming evi-
dence that traditional classification methods outperform
user based-CF in simulation and real clinical datasets,
across different levels of missing data mechanisms of
missingness, as well as class imbalance in the response
variable. The results of this work call into question CF
as a general strategy for risk prediction in datasets where
classification is an acceptable alternative [21, 32, 34]. In
this setting, recasting a supervised learning problem as
unsupervised was demonstrated to be suboptimal. This
is not to say that CF does not, and will not, have utility
for medical data. Scalability, dynamic learning, and merg-
ing of database are practical challenges that make CF an
attractive option. However, we strongly suggest exercising
caution if the objective is classification, and the size of the
data can be accommodated with traditional classification
methods or alternative machine learning approaches.

Additional file

Additional file 1: Contains Supplemental Figure 1 and Supplemental
Tables 1–6.
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