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Abstract

Background: Ruminants burp massive amounts of methane into the atmosphere and significantly contribute to
the deposition of greenhouse gases and the consequent global warming. It is therefore urgent to devise strategies
to mitigate ruminant’s methane emissions to alleviate climate change. Ruminal methanogenesis is accomplished by
a series of methanogen archaea in the phylum Euryarchaeota, which piggyback into carbohydrate fermentation by
utilizing residual hydrogen to produce methane. Abundance of methanogens, therefore, is expected to affect
methane production. Furthermore, availability of hydrogen produced by cellulolytic bacteria acting upstream of
methanogens is a rate-limiting factor for methane production. The aim of our study was to identify microbes
associated with the production of methane which would constitute the basis for the design of mitigation strategies.

Results: Moderate differences in the abundance of methanogens were observed between groups. In addition, we
present three lines of evidence suggesting an apparent higher abundance of a consortium of Prevotella species in
animals with lower methane emissions. First, taxonomic classification revealed increased abundance of at least 29
species of Prevotella. Second, metagenome assembly identified increased abundance of Prevotella ruminicola and
another species of Prevotella. Third, metabolic profiling of predicted proteins uncovered 25 enzymes with homology to
Prevotella proteins more abundant in the low methane emissions group.

Conclusions: We propose that higher abundance of ruminal Prevotella increases the production of propionic acid and,
in doing so, reduces the amount of hydrogen available for methanogenesis. However, further experimentation is
required to ascertain the role of Prevotella on methane production and its potential to act as a methane production
mitigator.
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Background
Greenhouse gases include carbon dioxide (CO2), me-
thane (CH4), nitric oxide (N2O) and ozone (O3) [1]. The
atmospheric content of CO2 and CH4 has increased dra-
matically since the industrial revolution [1] and are
major contributors to global warming [2]. It has been es-
timated that methane may constitute up to 20% of
greenhouse gases [3] and wetland and ruminant me-
thane emissions have been on the rise since 2007, mainly
in tropical and subtropical regions [4].
Livestock production systems may account for up to

14% of all anthropogenic methane emissions [5]. Conse-
quently, more than 100 countries committed, in the Paris
agreement of 2015, to reduce greenhouse emissions from
agricultural activities [6]. In order to achieve this, however,
a full understanding of methanogenesis and its associated
microbes is needed. Methane is produced during enteric
fermentation in ruminants by anaerobic microorganisms
collectively known as methanogens in the Archaea do-
main and the phylum Euryarchaeota [7]. Plants fix atmos-
pheric CO2 through photosynthesis and generate biomass
rich in carbohydrates that is used to feed ruminants. Poly-
saccharides digestion then takes place under anoxic condi-
tions in the rumen and hindgut [7] and includes a
complex of anaerobic bacteria, fungi and protozoa that
progressively process carbohydrates through hydrolysis
and fermentation to produce acetic acid, CO2 and H2. Fer-
mentation also generates short-chain fatty acids, like acet-
ate, propionate and butyrate, which constitute an energy
source for many cell metabolic processes and contribute
to homeostasis of the digestive system [8]. Finally, metha-
nogens convert CO2 and H2 to methane via the hydroge-
notrophic pathway. Alternatively, the methylotrophic
pathway produces methane using methylamines and
methanol as substrates [9]. Methanogenesis is considered
an essential process for ruminants because if hydrogen
generated during carbohydrate fermentation is not re-
moved, it may inhibit microbiome metabolism [7]. Finding
ways to redirect hydrogen metabolism is a promising av-
enue to mitigate methane emissions and also to improve
energy retention from grazing [10].
Changes in abundance of methanogens themselves

would definitely affect methane production, but it re-
mains also possible that changes in microbial compos-
ition and structure that result in perturbation of
hydrogen metabolism or accumulation may also impact
methanogenesis [11]. Indeed, application of candidate
hydrogenotrophic bacteria that could redirect hydrogen
away from methanogenesis has been proposed as a strat-
egy to mitigate methane emissions [10]. More complex
relationships are also possible. For example, it has been
proposed that not only the abundance of methanogens
but also the composition of methanogenic communities
in the rumen seems to exert a strong effect on methane

emissions. Namely, the presence of species within the
Methanobrevibacter gottschalkii clade has been reported
associated with higher production of methane [12]. Mul-
tiple factors including breed, sex and diet, affect micro-
biome composition [13, 14], and host genetics play a
significant role in methane emissions without influen-
cing microbiome composition [15].
The buffalo rumen microbiome remains largely under-

explored. In preliminary studies, the rumen microbiome
of Surti and Mehsani buffalos was found to be domi-
nated by phylotypes belonging to the Bacteroidetes/
Chlorobi, Firmicutes and Protobacteria phyla, and the
metagenome was consistent with a genetic profile spe-
cialized in carbohydrate fermentation [16]. Although in
a very small cohort, Kala and collaborators reported that
bacteria in the genera Prevotella, Bacteroides, Clostrid-
ium, Ruminococcus, Eubacterium, Parabacteroides,
Fibrobacter and Butyrivibrio were the most abundant in-
habitants of the buffalo rumen, and that the abundance
of Ruminococcus flavefaciens and R. albus increased
when animal were fed with high-roughage diet [17]. Fi-
nally, it was found that abundances of individual taxa
and specific metabolites were correlated. For instance,
Acetobacter abundance was positively correlated with
acetate, propionate and butyrate content, and so was
Prevotella abundance and butyrate content [18]. Thus,
an important question that remains largely unanswered
is how changes in microbiome structure affect methano-
genesis. Clearly, more studies on the rumen microbiome
in different breeds and geographical regions are urgently
needed.
We conducted a microbiome survey in ruminal fluids of

two cohorts of buffalos from a dairy farm in the depart-
ment of Cordoba, Colombia, which were shown to pro-
duce low or high methane emissions. We hypothesized
that animals with greater emissions of methane contained
more abundant methanogenic microbes. However, our
study revealed that the overall microbial composition did
not appear very different among groups; instead, we de-
tected higher abundance of Prevotella in the group with
lower methane emissions. An hypothetical scenario to ex-
plain the inverse correlation between Prevotella abun-
dance and methane emissions is presented.

Results
With the advent of next generation sequencing
(NGS), the microbiome of ruminants is being profiled
at high resolution and throughput and a complex pic-
ture is emerging wherein host genetics and micro-
biome structure additively contribute to several
phenotypes, including methane emissions [13]. In
order to investigate the ruminal microbiome compos-
ition of two cohorts of Colombian buffalos found to
produce high or low levels of methane, we conducted
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shotgun metagenomics. The bioinformatics pipeline
used in this study is described in Fig. 1.

Alignment of individual sequences
Taxonomic classification of sequences was performed
using the software Kraken2 [19], and the standard data-
base complemented with all bacterial, fungal, viral and
archaeal sequences in the GenBank (including incom-
plete genomes) plus all sequences deposited in the Gen-
ome taxonomy database, GTDB (gtdb.ecogenomic.org).
The GTDB hosts 145,512 bacterial accessions and 2392
archaeal accessions [20]. We discarded Kraken2 hits
with less than 10% of the k-mers matching the reference
sequence. Then, we kept hits with a relative abundance
of at least 3 reads (sequences) per sample. A list of hits
obtained with Kraken2 pseudoalignments is presented in
Supplementary Table S1. A total of 582 taxa were

identified in our data. Five taxa corresponded to Archaea
(Supplementary Fig. S1), along with 576 taxa in the do-
main Bacteria, one fungus of unknown taxonomy and
two virus taxa of unknown taxonomy.
Principal coordinate analysis ordination of a Bray-

Curtis dissimilarity matrix showed that the microbiome
of both groups of buffalos is apparently different, al-
though there is considerable variability among animals
in each group (Fig. 2a). The PCoA plot depicted in Fig.
2a shows that, along the first component (PC1), which
capture 53% of the variance, most blue points (high me-
thane emissions) located on the left part of the plot,
while most red points (low methane emissions) clustered
on the right part of the plot. Permutational Analysis of
Variance (PERMANOVA), however, did not detect sta-
tistically significant differences between groups. We also
conducted Analysis of Similarity (ANOSIM) and

Fig. 1 Bioinformatics pipeline used for data analysis. Twelve buffaloes were included in each group. After quality control, individual sequences were
taxonomically classified with Kraken2 and functionally analyzed with HUMAnN2. Combined assembly was conducted with SPAdes and assembled
contigs were annotated with Prokka. In parallel, binning of contigs was conducted with MetaBAT2 and such bins were phylogenetically analyzed with
MAGpy. De novo assembly of proteins was carried out with PLASS. Protein sequences annotated with Prokka or assembled with PLASS were
consolidated and clustered with Linclust to determine a set of non-redundant representative sequences, which were aligned against several protein
databases using Diamond. All statistical comparisons were conducted with LEfSe. A description of all command lines used is in the bitbucket
repository (https://github.com/buffGenomic/PipelineColBuff)
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obtained a significant p-value (0.02), which again sug-
gests that the groups under comparison are not statisti-
cally different. At the phylum level, the microbiome was
dominated by Bacteroidetes and Firmicutes, and in de-
creasing abundance Actinobacteria and Protobacteria.
Euryarchaeota was among the seven most abundant
phyla, but with abundance much lower than that the rest
of phyla (Fig. 2b). At the genus level, Prevotella was
somewhat more abundant in the group of animals with
lower methane emissions (Fig. 2e). At higher taxonomic
levels, family, order and phylum, the same subtle trend
was observed for Bacteroidaceae, Bacteroidales and Bac-
teroidota, respectively, which showed a moderately
higher abundance in the group with lower methane

emissions. However, high variability is evident inside
each group.
We subjected the 100 most abundant taxa to hierarchical

clustering of their Bray-Curtis dissimilarity indices using the
hclust algorithm, which led to the identification of two clus-
ters (Fig. 3). Namely, a larger cluster comprising 14 samples
was integrated by 9 animals (64%) from the low-methane-
emissions group and 5 animals (36%) from the high-
methane-emissions group. This group exhibited higher
abundance of the majority of the 100 most abundant bac-
teria, including 23 species of Prevotella (green bars), seven
species of Butyrivibrio (blue bars), five species of Ruminococ-
cus (red bars), also Selenomonas ruminantium, and Fibrobac-
ter intestinalis, among others. The other cluster (on the

Fig. 2 Characterization of the rumen microbiome in buffalo cohorts. a Principal coordinate analysis plot. Permanova analysis between groups
showed a non-significant p-value. Taxonomic classification of sequences at the phylum (b), order (c), family (d), and genus (e). Prevotella or upper
taxa containing it are in pink colors in panels b-e
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right), was more heterogeneous and contained mostly ani-
mals from the high-methane-emissions group.
We compared the abundance of the five taxa in the family

Methanobacteriaceae detected in our libraries. In general, a

subtle higher abundance in four out of five Methanobacteria-
ceae taxa in the group of animals with higher methane emis-
sions was observed (Supplementary Fig. S1). Such differences
did not reach statistical significance, but they are clearly

Fig. 3 Hierarchical clustering of the 100 most abundant taxa using Bray-Curtis dissimilarities and the hclust method. Green bars on the right side
of the heatmap indicate Prevotella species. Red bars indicate Ruminococcus species. Blue bars indicate Butyrivibrio species
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appreciated in the boxplots, although considerable variability
inside groups was also observed (Supplementary Fig. S1).
We subjected the abundance of all taxa detected to

linear discriminant analysis, using the software LEfSe
[21]. Interestingly, based on uncorrected p-values,
LEfSe suggested that at least 29 species in the genus
Prevotella were more abundant in the low-methane-
emissions group (Fig. 4a). However, although LEfSe
reported increased abundance of those Prevotella spe-
cies, in most cases p-values lost significance after cor-
rection for multiple comparisons with the Benjamini-
Hochberg method. To better characterize this

observation, we plotted the relative abundance of
twelve species of Prevotella (Fig. 4b) and a clear trend
is observed, although variability inside each group is
considerably large.
We also conducted metabolic profiling with

HUMAnN2 [22], but as is usual with non-human sam-
ples, results were incomplete and not very informative.

Combined assembly and identification of bacterial
genomes
NGS libraries are a very fragmentary representation of
the metagenome [23]. Thus, recovery of bacterial

Fig. 4 Statistical comparison of taxa. a Linear discriminant analysis results. LEfSe was run with default parameters. b Box plots presenting the
relative abundance of 12 Prevotella species in samples associated with high or low methane emissions
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genomes is incomplete and somewhat stochastic. This
implies that in two or more samples harbouring the
same bacterium, different parts of the genome might be
recovered. Therefore, it makes sense to conduct se-
quence assembly combining all samples and after identi-
fication/annotation of assembled contigs, alignment of
individual samples to assembled contigs will determine
the relative contribution, if any, of each sample to each
contig. Therefore we conducted combined assembly of
all 24 samples. The assembly of reads generated 3.6 mil-
lion contigs with an N50 of 481 bp (min. 373; max. 53,
776; average 491). We then subjected such contigs to
binning with metaBAT2 [24]. From those, MetaBAT2
was able to cluster 78 putative bacterial genomes (bins),
which were subjected to phylogenetics analysis and an-
notation with MAGpy [25]. Hereinafter, bins are referred
to as MAGs.
The phylogenetic tree generated by MAGpy comprised

three major clusters. The larger cluster (Fig. 5a; in black)
contained many putative genomes that were very similar
among them. The other two branches of the phylogen-
etic tree were more heterogeneous. The annotation
assigned to each bin can be found in Supplementary
Table S2. LEfSe analyses suggested that the genera
Fibrobacter, Oscillibacter, Prevotella and the species
Ruminococcaceae bacterium, Prevotella ruminicola, Bac-
teroidetes bacterium and a phage from Bacteroidetes
were more abundant in the low-methane-emissions
group, but p-values lost significance after correction for
multiple comparisons. Because contigs used in this study
are the result of an assembly procedure that included all
samples, the relative contribution of each sample to each
MAG is presented in Fig. 5b. Essentially, most MAGs
were represented in all samples, with rather few excep-
tions (black cells in the lower half of heat map). The
relative abundance of MAGs reported above is visibly
larger in the group with lower methane emissions, but
considerably heterogeneity is observed inside groups.

Protein predictions and annotation
We predicted a total of 4,467,657 representative non-
redundant protein sequences that were aligned against
the protein databases UniRef100 [26], RumiRef100 [26]
and Hungate1000 [27]. RumiRef and Hungate1000 are
databases of bacterial sequences from ruminal samples.
Alignments were conducted with Diamond and the top
hits were recovered. The best hit from each of the three
alignments was selected for annotation.
To quantify the contribution of each sample to each

protein sequence, individual samples sequences were
aligned to the protein reference sequences with the
method blastx of Diamond. An astringent filtering proced-
ure was implemented as described in the Methods section.
A total of 1309 protein sequences passed such filtering

process (Supplementary Table S3). Among proteins most
frequently detected were FAD-dependent oxidoreductase,
Acyl-CoA dehydrogenase, Urocanate hydratase (homolo-
gous to Prevotella), subunit beta of a DNA-directed RNA
polymerase, Methylmalonyl-CoA mutase, Pyridine
nucleotide-disulfide oxidoreductase (homologous to Eu-
bacterium cellulosolvens) and a Glutamate formimidoyl-
transferase (homologous to Prevotella sp. HUN102),
among many others (see Supplementary Table S3).
When we conducted hierarchical clustering on the 100

most abundant proteins, the exact same larger cluster of
samples identified with Kraken2 taxonomy assignments
(Fig. 3a) was recapitulated (Fig. 6a). Based on linear dis-
criminant analysis, 60 enzymes were more abundant in
the group with lower emissions of methane, and only 10
were more abundant in the group with higher emissions
of methane. Interestingly, 25 enzymes with homology to
Prevotella proteins are among the hits more abundant in
the low-methane-emissions group (Fig. 6b). All those
hits, however, were not statistically significant after cor-
rection for multiple comparison.
In summary, we conducted a thorough characterization

of the rumen microbiome of two small cohorts of buffalos
that were found to produce either high or low methane
emissions. The main findings suggest increased abun-
dance of Prevotella species in the group of low methane
emissions. This was very clear in results from several ana-
lytical approaches presented here, however statistical sig-
nificance was not reached in many cases, which probably
is derived from intra-group variability. Lack of statistical
significance in microbiome means comparisons is often
the result of the large number of taxa detected, which
makes correction of p-values very stringent. The number
of animals in each of our experimental groups was rela-
tively small (n = 12), which will also result in relatively
high p-values. Nonetheless, and apparent higher abun-
dance of Prevotella in the group of animals with lower
methane emissions is evident.

Discussion
In this report we present the characterization of the
microbiome of two cohorts of Colombian buffalos that
produced either high or low methane emissions, in
search for microbial determinants of methane produc-
tion. Our original hypothesis was that a difference in
methananogens abundance was the underlying cause of
differential methane emissions. We did find subtle differ-
ences in four out of five Methanobacteriaceae taxa de-
tected in our data. In all four cases, although
considerable variability inside groups was evident, ani-
mals of the group associated with higher emissions ex-
hibited higher abundance of such methanogens. So, it is
possible that subtle differences in methanogens are suffi-
cient to influence methane emissions.
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More generally, and in agreement with previous re-
ports, we found that the buffalos microbiome was mainly
composed by Bacteroidetes and Firmicutes phyla [17, 18,

28]. At the family level, Bacteroidaceae, Lachnospiraceae
and F082 predominated, while at the genus level, Prevo-
tella and Butyrivibrio were dominant. High abundance

Fig. 5 Metagenome assembled genomes (MAGs). a Phylogenetic tree generated by MAGpy. b Relative contribution of each sample to each
putative genome
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of Prevotella in the rumen microbiome has been re-
ported by several groups in the past [29–33]. Import-
antly, at all taxonomic levels, the abundance of
Prevotella, or the upper taxa containing it, were visibly
more abundant in the group of animals with lower me-
thane emissions. This effect was more pronounced at
the genus level, where 10 out of 12 animal showed high
proportion of Prevotella.

Taxonomic classification of sequences with Kraken2
[19] also suggested higher abundance of Prevotella in
the group with lower methane emissions. This was con-
firmed by phylogenetic analyses with MAGpy [25]. This
approach suggested that Prevotella ruminicola and an-
other species in the genus Prevotella were more abun-
dant in the group of lower methane emissions.
Furthermore, after prediction an annotation of bacterial

Fig. 6 Summary of bacterial protein identification. a Hierarchical clustering of the 100 most abundant proteins delineated two clusters of samples
(see upper dendrogram). b Relative abundance of proteins in animals with high or low methane emissions. Proteins with homology to Prevotella
proteins are highlighted with green squares
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proteins, 60 enzymes were found to be more abundant
in the group of lower methane emissions and from those
25 corresponded to protein sequences with high hom-
ology to Prevotella proteins. Thus, from these three lines
of evidence we conclude that sequences with homology
to Prevotella were more abundant in the group of ani-
mals with lower methane emissions. However, we do ac-
knowledge that after correction of p-values for multiple
comparisons, most comparisons were statistically non-
significant, but the trend observed is very clear and fa-
vors the notion that Prevotella is more abundant in ani-
mals producing less methane. We want to point out that
Prevotella is likely not the only cause of lower methane
emissions and other factors, like animal genotype for ex-
ample, might also exert an effect on such phenotype, as
has been previously suggested [15].
The above-described observation poses the central

question of this discussion. How can we explain reduc-
tion in methane emissions based on increased abun-
dance of ruminal Prevotella? We favor the hypothesis
that increase in the production of propionic acid by Pre-
votella reduces availability of hydrogen for methane pro-
duction. In different contexts, it has been suggested that
hydrogenotrophic bacteria might be used to divert
hydrogen away from methane synthesis [10].
Diet of herbivores consists mostly of complex polysac-

charides that are not digestible by host cells and most
energetic requirements are satisfied through microbial
fermentation [34]. In a simplified manner, polysaccha-
rides breakdown starts with the adhesion of cellulolytic
bacteria like Ruminococcus and Fibrobacter to the sub-
strate. Solubilized polymers, formate, succinate, but also
CO2 and H2, are then intercepted by butyrate-producing
bacteria like Butyrivibrio and Roseburia and succinate-
and propionate-producing bacteria like Bacteroides and
Prevotella. Methanogenic archaea compete for the
hydrogen pool [34]. Experimentally, it has been demon-
strated that adherent fibers and the liquid fraction of the
rumen contain similar microbial ensembles, which vary
in relative abundance, while the rumen epithelium har-
bor unique microbial taxa. Namely, adherent fibers are
rich in fibrolytic microorganisms like member of the
family Ruminococcaceae and the genus Fibrobacter,
while the aqueous phase have abundant members of
Prevotellaceae [35, 36]. Interestingly, in our phylogenetic
analyses with MAGpy we found increased abundance of
Fibrobacter, Oscillibacter, Ruminococcaea bacterium,
Prevotella, and Bacteriodetes bacterium in the group
with lower methane emissions, which perhaps suggests a
microbiome with higher fermentative capabilities.
Taxonomy of Prevotella ruminicola, one of the best

studied species of Prevotella, has been revised several
times considering microbiological and biochemical evi-
dence. P. ruminicola was originally known as Bacteroides

ruminicola [37]. As far back as 1966, it was demon-
strated, using isotopic and enzymatic techniques, that B.
ruminicola used the acrylate reductive pathway (using
acrylyl-CoA as an intermediate) to produce propionate
[38]. Not long after, Van Nevel and collaborators ele-
gantly showed that inhibition of methanogenesis by
chloral hydrate led to accumulation of gaseous hydrogen
and an increase in propionic acid production. It is there-
fore accepted that metabolic hydrogen produced during
ruminal fermentation is partitioned between production
of methane, propionic acid and butyric acid [39].

Conclusions
We propose that higher abundance of Prevotella in the
rumen of animals with lower methane emissions nega-
tively influences methane production. More abundant
Prevotella species would outcompete methanogens for
hydrogen utilization, which will be diverted for produc-
tion of propionic acid.
Of course, our hypothesis needs experimental valid-

ation. A simple way to test it would be to measure the
content of propionate in animals with high or low abun-
dance of Prevotella and methane emissions. Artificial en-
richment of Prevotella from cultures is also an appealing
approach to study metabolic flow. Ultimately, if proven
true, microbiota from low methane emission animals
could be transferred via ruminal liquid to animals with
high production of methane and colonization of the
rumen in the latter group would be monitored as well as
methane emissions. Transferring the whole microbiome
has the obvious advantage that any other microorganism
contributing to the hypothesized role of Prevotella
would also be transferred. Finally, we do not discard a
role of genetic factors on methane production. Studies
to characterize the genotype in animals with low or high
methane production are currently underway.

Methods
Description of animals and collection of ruminal samples
The buffalo dairy farm is located at 8°10′34″ N and
76°03′46″ W in the Tierra Alta locality, in the depart-
ment of Cordoba, Colombia. The dairy farm contains 11,
718 animals, and a database with records that extend
back 22 years. For the measurement of CH4 emissions,
four breathing chambers of metal structure with walls
and roof covered with high-density polyethylene and
sealed with velcro were used. Dimensions of each cham-
ber were 2.2 m × 1.7 m × 0.9 m length, height and width,
respectively, and allowed to control measurement condi-
tions by confining the animals in small spaces and acting
as flow accumulators of the gases belched and coming
from the excreta. A Gases PRO Sensor Board (Cali-
brated) from Waspmote (Libelium®) was used, together
with a Methane and Fuel Gas Sensor (Calibrated)
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reference CH-A3, also from Libelium®. The sensor can
perform CH4 measurements in the environment every
30 s, with a nominal low explosive level (LEL) between
zero and 100% with an accuracy of ±0.15% LEL. One
buffalo was placed in each of the chambers and the walls
were sealed 5 min before the measurement correspond-
ing to each chamber. The measurement was performed
individually for each animal for a period of 10 min with
captures of CH4 in the environment of the breathing
chamber by the sensor every 30 s, followed by a meas-
urement of CH4 in the environment outside the cham-
ber for a period of 5 min with the same sensor settings.
In this way it was possible to obtain the difference be-
tween the CH4 concentration inside the chamber and
the surrounding environment. In total 115 female and
six male buffaloes were used to measure methane breath
emissions. Each animal was measured three times a day,
each measurement lasting 10 min.
Twelve animals, which were found to emit either high

(1.36 ± 0.11 g CH4/ kg dry matter ingested) or low (−
1.36 ± 0.16 g CH4/ kg dry matter ingested) amounts of
methane were included in each group.

Sample collection, DNA extraction, library construction
and sequencing
For collection of ruminal samples, animals were sedated
with Xylazine (10%). The jaw of animals was immobi-
lized and a 1/2 in. siliconized probe was introduced and
ruminal liquid was extracted using a manual Humboldt
pump into sterile glass bottles. Samples were then ali-
quoted into 50 ml Falcon tubes and snap-frozen in liquid
nitrogen.
DNA was extracted using the QIAamp PowerFecal

DNA Kit (QIAGEN) according to manufacturer’s in-
structions, which includes bead-beating. DNA was then
quantified using Qubit and a dsDNA HS Assay kit
(Thermo Fisher Scientific). NexteraXT (Illumina) librar-
ies were constructed from 1 ng of genomic DNA accord-
ing to manufacturer’s protocols. Indexed libraries were
then inspected on a high sensitivity Bioanalyzer 2000
chip (Agilent) and quantified using Qubit as above. For
library pooling, molarity of libraries was calculated using
the average library size and the DNA concentration and
a 4 nM pool was prepared. Libraries were sequenced at
10 pM on a MiSeq instrument (Illumina) using a 300 cy-
cles paired-end protocol that included demultiplexing.

Bioinformatics analysis
Sequence’s quality was inspected with fastqc and bases
with Q scores < 30 were trimmed off with fastq-mcf
keeping only sequences with a final length > 100 bases.
These are referred to as ‘clean-sequences’ and were used
for all downstream procedures.

Taxonomic classification
Sequences were classified using Kraken2 [19]. We used
the Kraken standard database complemented with all
whole-genome and partial sequences of bacteria, ar-
chaea, fungi and viruses found in NCBI. Such database
was complemented with the Genome Taxonomy Data-
base, GTDB [20] (Fig. 1). Kraken2 results were filtered
to allow only hits with at least 10% k-mers aligned.

Combined assembly
We conducted combined assembly of all our 24 samples
with SPAdes [40], with default parameters. For deconvo-
lution of assembled contigs, each individual sample was
mapped to each contig and the number of aligned reads
to each contig was normalized by library size and was
considered the relative contribution of each sample to
each contig.

Metagenome-assembled genome prediction
Contigs generated with SPAdes were also subjected to
phylogenetic analysis with MAGpy [25]. Initially, contigs
were binned with MetaBAT2 [24] and such bins were
then analyzed with MAGpy. MetaBAT2 generates a file
where the relative contribution of each sample to each
bin is indicated. We normalized such a table for compar-
isons of bins after MAGpy annotation.

Protein sequences generation
In order to maximize chances of detecting putative bac-
terial proteins, two complementary approaches were im-
plemented. First, we annotated in silico translated
contigs from combined assembly with the software
Prokka [41]. Prokka utilizes third-party feature predic-
tion tools to identify genomic features contained in con-
tigs. It translates in silico the features identified and
annotates them by comparison with bacterial protein da-
tabases. One of the outputs is a FASTA file containing
protein sequences predicted from the scaffolds. Second,
we used PLASS [42] to assemble protein sequences de
novo. See Fig. 1 for a schematic of our workflow. Since
the Prokka translated and the PLASS predicted protein
sets may be partially redundant, we concatenated them
and conducted clustering with Linclust [43] to obtain a
non-redundant set of representative sequences.

Alignments of protein against several databases
We conducted Diamond [44] alignments against the
database UniRef [26] and against two databases contain-
ing ruminal bacterial proteins, UniRef [29] and Hun-
gate1000 [27]. Because RumiRef includes annotations
derived from alignments against multiple databases
(CAZy, KEGG, UniRef and Hungate) when possible, we
recovered all annotations. To determine the relative con-
tribution of each sample to each protein sequence, each
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library was aligned with Diamond (method blastx)
against the database of non-redundant protein represen-
tative sequences and to account for the resolution lost
during clustering of protein sequences, a hit was consid-
ered true if it had an identity of at least 90% over a
stretch of at least 50 amino acids. Moreover, we dis-
carded hits for which less than five reads per sample, on
average, were registered and hits that were present in
less than three samples in each group.

Statistical analysis
In all cases, statistical comparisons were conducted using
linear discriminant analyses with the software LEfSe [21]
or by conducting Wilcoxon test in R. A detailed workflow
and required scripts describing the implementation of our
analysis is publicly available in GitHub (https://github.
com/buffGenomic/PipelineColBuff).
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