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Burkholderia pseudomallei-derived miR-3473 ®
enhances NF-kB via targeting TRAF3 and is
associated with different inflammatory
responses compared to Burkholderia
thailandensis in murine macrophages
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Abstract

Background: Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a kind of tropical disease.
Burkholderia thailandensis (Bt), with a high sequence similarity to Bp, is thought to be an avirulent organism. Since
there are numerous similarities between Bp and Bt, their differences in pathogenesis of host response and related
mechanism are still undermined. In recent years, microRNAs have been researched in many diseases, but seldom
involved in bacterial infection, bacteria-host interaction or explaining the differences between virulent and avirulent
species.

Results: We found that Bp and Bt had similar phenotypes in terms of intracellular replication, dissemination
(reflected by multinucleated giant cell formation), TNF-a release and apoptosis in RAW264.7 macrophages or TC-1
pulmonary cell but in different level. Especially, at the late infection phases (after 12 h post infection), Bp showed
faster intracellular growth, stronger cytotoxicity, and higher TNF-a release. After microRNA array analysis, we found
some microRNAs were significantly expressed in macrophages treated by Bp. miR-3473 was one of them specifically
induced, but not significantly changed in Bt-treated macrophages. In addition, TargetScan suggested that miR-3473
possibly target TRAF3 (TNF receptor-associated factor 3), a well-known negative regulator of the NF-kB pathway,
which was probably involved in the TNF-a induction and apoptosis in cells with Bp infection. In vivo, it was found
that miR-3473 expression of total lungs cells from Bp-treated was higher than that from Bt-treated mice. And miR-
3473 inhibitor was able to decrease the TNF-a release of mice and prolong the survival of mice with Bp infection.

Conclusion: In sum, miR-3473 plays an important role in the differential pathogenicity of Bp and Bt via miR-3473-
TRAF3-TNF-a network, and regulates TNF-a release, cell apoptosis and animal survival after Bp treatment. In this
study, we have found a specific microRNA is related to bacterial virulence and provide insight into the mechanism
for host-bacteria interaction, which suggests that potential oligonucleotides should be applied against bacterial
infection.
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Burkholderia pseudomallei is an opportunistic pathogen
and the causative agent of melioidosis, which is well-
known in tropical zones and has spread to boarder areas.
In contrast, Burkholderia thailandensis is less known
and even considered an avirulent organism before, but
now it has been proved to be associated with human
pulmonary cystic fibrosis, and also infectious to mice in
certain circumstance. Though there are some similarities
between these two species, the mechanism behind these
difference is still underground and may be the key to
understand their pathogenesis, vaccine development
and drug design. Apart from some secreted virulence
factors and bacterial structure proteins, microRNAs
have been classified as important factors in the patho-
genesis of some bacterium, such as Burkholderia
pseudomallei and Salmonella typhi, which have been
proved to manipulate host autophagy or innate im-
munity through microRNA-mRNA network. In this
study, a specific microRNA, miR-3473, has been iden-
tified to associate with the pathogenesis of Burkhol-
deria pseudomallei in macrophages through a
microRNA-TRAF3-TNF-a network, and influence the
survival of mice with Bp infection through regulating
TNEF-a release. Though there may be other influence
factors involved in differences between Bp and Bt,
miR-3473 has provided a novel explanation and shed
a light on the mechanism for bacterial infection from
a view of microRNA.

Background

Burkholderia pseudomallei (Bp) is the causative agent of
the human disease melioidosis, which is endemic in
southeast Asia and northern Australia, with manifesta-
tions ranging from fever to pneumonia to life-threatening
sepsis. Bp causes hundreds of human infections and a
heavy economic burden in these regions [1]. Burkholderia
thailandensis (Bt) is first identified as a Bp-like species
since their genomes are highly syntenic and their intracel-
lular behaviours are similar [2—4]. Burkholderia thailan-
densis is basically considered to be an avirulent organism,
a possible substitute for Bp and even a candidate for an
attenuated vaccine [5, 6].

There are some similarities between Bp and Bt in
terms of the ability of intracellular replication, cytokines
induction, and immune cell differentiation [7, 8]. Bt has
exhibited reduced replication in human macrophages
and deficient invasion into epithelial cells compared to
Bp [9, 10]. In vivo, it requires 2 x 10>-fold more Bt by
intranasal inoculation to infect and induce inflammation
in C57BL/6 mice than Bp, and an inhalation model of Bt
has been successfully established with an infection
dosage of 3 x 10* cfu/lung [6]. Bt infections have been
also associated with human pulmonary cystic fibrosis
[11, 12]. To date, it needs more research into Bt or Bp-
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specific pathogenesis or mechanism for their different
phenotypes.

Macrophage modeling has been applied in studies with
Burkholderia spp, as well as other pathogens (e.g. Yersi-
nia pestis, Yersinia pseudotuberculosis, Francisella tular-
ensis, and Bacillus anthracis). It provides a protected
niche for these intracellular pathogens against host im-
mune responses, including Bp or Bt strains. Increasing
investigations have beenfocused on the mechanisms of
Burkholderia pathogenesis within macrophages and ex-
ploring the application of specific macrophage pheno-
type as a potential biomarker for Burkholderia related
infections. A previous microarray analysis has indicated
that bcl2 gene expression was 2-fold higher in the Bp-
infected A549 cells than that in the Bt-infected A549
cells [13]. Clinical studies have suggested that elevated
TNEF-qa, IL-10, IL-1p, IL-8, IL-6 and IEN-y have been as-
sociated with mortality among patients with melioidosis
[14]. Specifically, TNF-a has been even considered as a
‘death factor’ in melioidosis, closely related with the out-
come of clinical melioidosis [15].

microRNAs are small non-coding RNA molecules
found in plants, animals, and even microorganisms and
have been involved in many diseases, including inherited
disease, cancer, metabolic disease, heart disease, kidney
disease, nervous disease, obesity and viral infection [16, 17].
Recently, microRNAs have also been reported to associate
with the biochemical process of certain pathogens, such as
Burkholderia pseudomallei and Salmonella typhi-related
autophagy or innate immunity [18, 19]. Additionally,
dual RNA sequencing has revealed that some noncod-
ing RNAs in Salmonella are correlated with the ex-
pression of virulence genes related with bacterial
infection and host response [20].

In our previous microRNA-mRNA array analysis, we
have found that Bp infection elevates the levels of apop-
totic inflammatory cytokines, in particular TNF-«, with
the fold-change value of 74.94 at 24 hpi (hours post in-
fection, compared to negative control), which was much
more higher than that of Bt. It was similar to the apop-
tosis induced by Bp and Bt. Since several microRNAs
significantly changed as the same time, we wondered
whether there are some microRNAs specifically induced
by Bp infection or related to host responses, like TNF-a
release or apoptosis. We hypothesized that microRNA-
mRNA regulation network could play an important role
in the Bp and Bt-induced cell or animal phenotypes and
might provide a novel mode of research on virulent and
avirulent bacterial strain.

Methods

Bacterial strains and cells

The clinical strain Burkholderia pseudomallei BPC006
was obtained from the Hainan province, China, and was



Fang et al. BMC Microbiology (2016) 16:283

completely sequenced [21]. Burkholderia thailandensis
E264 (ATCC® 700388) was purchased from American
Type Culture Collection (ATCC, Maryland, USA). Bacteria
were grown overnight on LB agar or in LB broth shaken at
200 rpm at 37 °C for 16 h prior to use.

RAW?264.7 cell line (ATCC® TIB-71) was purchased
from ATCC, and the TC-1 cell line was a gift from Profes-
sor Guansong Wang (Institute of Respiratory Diseases,
Xinqgiao Hospital, Third Military Medical University). The
cells were maintained in DMEM or RPMI-1640 supple-
mented with 10% heat-inactivated foetal bovine serum
(FBS) (Gibco-BRL, New York, USA) at 37 °C in a humidi-
fied atmosphere of 95% oxygen and 5% carbon dioxide.

Infection, intracellular multiplication, MNGC formation
and apoptosis assay

RAW264.7 cells were seeded at a concentration of
5x10° cells per well into 12-well plates 12 hpi. Cells
were infected with bacteria grown for 16 h (stationary
phase) at the indicated multiplicity of infection (MOI)
ratios and incubated at 37 °C in 5% CO, for 2 h. The
culture medium was then removed and replaced with
medium containing 250 pg/mL kanamycin (TIANGEN,
Beijing, China) to prevent any further extracellular bacter-
ial replication. Incubation was continued up to 28 hpi,
depending on experimental design. After the infection
assays, macrophages were washed and permeabilized
using 1% Triton X-100 at different intervals. Intracellular
bacteria that were liberated were quantitated by dilution
and plating on trypticase soy agar. The number of bacter-
ial colonies was counted after 24 to 36 h of incubation.

MNGC (Multinucleated giant cell) formation was
shown by Giemsa staining. Cells were seeded and grown
overnight on glass cover slips. At different time points
after infection with Bp, the cover slips were washed with
PBS, fixed with 1% paraformaldehyde for 10 min, and
then washed with PBS for 5 min. The cover slips were
air dried before staining with the Giemsa stain. For
evaluation of MNGC formation, at least 1,000 nuclei per
cover slip were counted, and the percent of MNGC for-
mation was calculated as follows: (number of nuclei
within multinucleated cells/total number of nuclei
counted) x 100%.

The cells were trypsinized with 0.5 ml of 0.25% trypsin
for 3 min, collected, and resuspended in 1 ml of PBS. The
cells were then treated with Annexin V-FITC/PI kit ac-
cording to the manufacturer’s instructions and detected
using flow cytometry (BD FACScan flow cytometer).
Apoptotic cells were classified as normal cells, early apop-
tosis cells, late apoptosis cells and necrosis cells.

Plasmids construction, transfection and luciferase assay
The plasmids pMIR-Report and pRL-TK were purchased
from Ambion. The fragments of the TRAF3 3 -UTR

Page 3 of 12

containing the miR-3473 target site were amplified from
genomic DNA (primers details in Table 1) and cloned into
the pMIR-Report plasmid downstream of a reporter
synthetic Renilla luciferase gene (hRluc) using Spel
and HindIIl. Firefly luciferase located downstream of
the 3 -UTR fragment served as a transfection internal
control. To generate plasmids with one or more mutations
in the binding site for miR-3473, the seed regions were
mutated from TCTCTCCA to TGTTTGCA at 1186-1193
of the 3 -UTR and synthesized by Sangon (Shanghai,
China) followed by cloning into the pMIR-Report
plasmid.

RAW264.7 cells were seeded in 24-well plates (1 x
10°/well) one day before transfection. Cells were
transfected with the indicated vectors for each
experiment using Lipofectamine 2000 (Life Technologies,
USA). Luciferase activity was determined using the dual
luciferase assay system (Promega, USA) according to the
manufacturer’s instructions.

Quantitative RT-PCR (qRT-PCR)
To confirm the validity of the microarray, the expres-
sion levels of TNF-a, TRAF3 and miR-3473 were
detected by qRT-PCR. Given the replacement of
medium during infection, qRT-PCR was used to
detect TNF-a« mRNA expression rather than to meas-
ure the concentration of TNF-a in supernatant by
ELISA. Total RNA was extracted from cells using the
phenol-chloroform method and was subsequently
reverse transcribed using the PrimeScript RT reagent
kit (TaKaRa, Japan). The cDNA preparations were
stored at —20 °C until PCR amplification. The qPCR
for TNF-a and TRAF3 was performed using the
primers in Table 1. Reactions containing SYBR Green I
MasterMix (TOYOBO, Japan) were prepared in final
volumes of 20 pL in 96-well plates. The amplification
protocol consisted of an initial hot start (95 °C for 1 min),
followed by 40 cycles of 95 °C for 10 s, 55 °C for 5 s and
72 °C for 20 s, and ended with a melt analysis by ramping
amplicons from 60 °C to 95 °C with 0.5 °C increments. The
Bio-Rad IQ5 (Bio-Rad Laboratories, Inc.) System was used
for the PCR step and data analysis. We evaluated the
mRNA level of TNF-« rather than its protein level because
the cell medium was replaced with antibiotic-containing
medium after 1 to 2 h of incubation with bacteria to avoid
interfering with the concentration of TNF-a in supernatant.
miR-3473 was measured using TagMan microRNA
assays (Ambion, 4465407) in a Bio-Rad IQ5 detection
system. The reactions were performed using the follow-
ing parameters: 95 °C for 5 min followed by 40 cycles of
95 °C for 20 s and 60 °C for 30 s. U6 small nuclear RNA
(001973) was used as an endogenous control for data
normalization. Relative expression was calculated using
the comparative threshold cycle method.
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Table 1 Primers used in this study
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Target gene Sequence Length (nt) Note
TNF-o-F CCCCTCAGCAAACCACCAAG 20
TNF-0-R CTTGGCAGATTGACCTCAGC 20
TRAF3-F GAGCAAGGAGGCTACAAGGAG 21 [32]
TRAF3-R CATGCAGCTCTCGCAGAAC 19
Actin-F TGGCACCCAGCACAATGAA 19 [32]
Actin-R CTAAGTCATAGTCCGCCTAGAAGCA 25
P-1rar3-overexpressF ATGGAGTCAAGCAAAAAGATGGA 23
P-rrar3-overexpress R GGGGTCAGGCAGATCCGA 18
miR-3473-TRAF3-F CTAGTGGTTCTAGAAAGTGTCAGTTTAACCAGA 60 Sangon
TCTCTCTCCACCACCAGAACTTTGTCTCTGCCA
miR-3473-TRAF3-R AGCTTGGCAGAGACAAAGTTCTGGTGGTGGAG
AGAGATCTGGTTAAACTGACACTTTCTAGAACCA
miR-3473-TRAF3-mut-F CTAGTGGTTCTAGAAAGTGTCAGTTTAACCAGA 60

miR-3473-TRAF3-mut -R

TCTGTTTGCACCACCAGAACTTTGTCTCTGCCA

AGCTTGGCAGAGACAAAGTTCTGGTGGTGCAA
ACAGATCTGGTTAAACTGACACTTTCTAGAACCA

Protein extraction and western blot analysis

Twelve hours prior to infection, RAW264.7 cells were
seeded in a 35-mm dish (2 x10° cells per dish) and
infected for 1 h with the Bp strain (BPC006) or Bt E264
at an MOI of 10. Proteins of RAW?264.7 cells were
prepared by Protein Extraction Reagent (Thermo Fisher,
USA) according to manufacturer’s instructions. Pro-
tein content was determined using a NanoDrop-1000
(Thermo Fisher, USA). Equal amounts of protein were
separated by SDS-PAGE and transferred onto PVDF
membranes (Millipore, Massachusetts, USA) by elec-
troblotting. Membranes were blocked with 5% skim
milk in PBST for one hour at room temperature and
subsequently incubated overnight at 4 °C with a
rabbit anti-TRAF3, NF-kB p65 (D14E12), phospho-
NE-kB p65 (Ser536) and Actin (Cell Signalling Tech-
nology, Boston, USA) in PBS (pH 7.6), 5% (w/v) BSA
and 0.1% (v/v) Tween-20. Horseradish peroxidase
(HRP)-conjugated anti-rabbit IgG (Jackson Immuno-
Research Lab, Pennsylvania, USA) was used as a second-
ary antibody for one hour at room temperature. The Gel
Image system (Bio-Rad, USA) and Image ] programme
were used for detection.

Animal experiments

Specific-pathogen-free BALB/c mice were obtained
from Ding guo Chang sheng Biotechnology (Beijing,
China). Animals were housed in individual ventilation
cages and air was filtered by high efficiency filters.
Euthanasia was accomplished with CO,. Experiments
associated with bacteria or infected-mice were con-
ducted in Biological safety protection third-level labora-
tory (BSL-3) in Beijing Institute of Microbiology and
Epidemiology. Mice were inoculated with drops

containing determined number of bacteria in nasal cav-
ity, approximately 25-50 puL every mice. Animals were
examined daily for illness or death.

Total lung cells were extracted from fresh lung tissue of
Bp or Bt-infected BALB/c mice. Lung tissues were sepa-
rated quickly and washed with PBS for 5 times. Then the
tissue was homogenized in TriZol with a homogenizer.
Total RNA was extracted from cells using phenol-
chloroform method and prepared for qRT-PCR test. Ana-
lysis of miR-3473 was conducted as described above. The
levels of serum TNF-a from mice were measured by Elisa
Kit (Ding guo Chang sheng, Beijing, China) and conducted
as the manufacturer’s introduction. siRNAs or oligonucleo-
tides (miR-3473 mimics, inhibitors, mimic control and in-
hibitor control) were purchased from Ribobio Corporation
(Guangzhou, China) and suspected oligonucleotide was de-
livered through aerosol inhalation (15 pg in 50 pL PBS/
every dose) [22].

Statistics

Bacterial counts were log-transformed to improve the
normality of the data and expressed as the mean
SEM. Significant differences between two groups were
assessed using unpaired t-tests. All data analyses were
carried out using Prism version 5.0 (GraphPad
Software).

Results

Intracellular survival and cytotoxicity of Bp and Bt in
murine macrophages

Bp and Bt showed a similar intracellular growth rate in
the early phase (<4 hpi), while Bp grew more rapidly
from 16 hpi to 28 hpi, reflecting an accelerating growth
rate of Bp in the late infection phase (Fig. 1la). We did
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not evaluate the intracellular bacterial load after 28 hpi
since infected cells began to collapse at that time. Multi-
nucleated giant cells (MNGCs) generally indicate the
replication and dissemination of Burkholderia species.
We found there was no significant difference between
that of Bp- and Bt-infected macrophages until 20 hpi
(Fig. 1b) and Bt caused an equally high percent (>95%)
of MNGC formation after 28 hpi. On the contrary, Bp
was showing a relative mild cytotoxicity and growing
slowly at the early infection phase (prior to 12 hpi), but
followed by an accelerating growth burst after 12 hpi.
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Apoptosis detection and cytokine expression, particu-
larly for TNF-a, were also the same case. At an early
infectious phase (<12 hpi), Bt caused more severe apop-
tosis than Bp, but this case reversed after 12 hpi (Fig. 1c).
TNEF-a is considered to be a deleterious cytokine and
defined as an important inflammatory marker of apop-
tosis [15]. We observed that TNF-a expression was
always higher in Bp-treated macrophages than that of Bt
at various MOI value or infectious phase (Fig. 1d). In
addition, MNGC formation and TNF-a expression in-
creased dependent on the dose of Bp infection (Fig. 1e, f).
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miR-3473 was specifically induced in Bp-infected murine
macrophages

Based on microRNA array analysis, several microRNAs
were found significantly expressed (fold change value > 1.5)
in Bp-infected murine macrophages compared to untreated
macrophages, including four up-regulated microRNAs
(miR-714: +4.56, miR-3734: +2.31, miR-5105: +1.77,
miR-326: +1.60, at 24 hpi) and three down-regulated
microRNAs (miR-3082-5p: -2.26, miR-466i-5p: -1.74,
miR-574-5p: —1.73, at 24 hpi). But, miR-3473 specific-
ally increased in Bp-infected murine macrophages,
rather than that in Bt-treated macrophages and in-
creased significantly at 12 hpi (Fig. 2a). In addition,
miR-3473 increased in a dose-dependent manner after
Bp infection, but no alteration of miR-3473 in Bt-
infected cells was observed, even at a high MOI
(Fig. 2b). Moreover, other Gram-negative bacterium,
like Salmonella typhi and Escherichia coli DH5a, were
not able to induce miR-3473 significantly (Fig. 2c).
We also tested the expression of miR-3473 in TC-1
cell (a type of murine respiratory epithelial cells) treated
by Bp, but it did not changed significantly as that in mac-
rophages (Fig. 2d). This indicated that miR-3473 was
induced specifically in murine macrophages rather than
murine pulmonary cell after Bp infection.
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TRAF3, not TNF-a, was a direct target of miR-3473

At first, predictions with TargetScan Mouse 6.2 and
miRDB suggested that miR-3473 may be not a regulator
of TNF-a. While, among the list of targets of miR-3473,
TNF receptor-associated factor 3 (TRAF3) was included
and suggested it should be a potential target of miR-
3473 (Fig. 3a). Previous studies have proved that TRAF3
is a key negative regulator of the NF-xB pathway
[23, 24]. This way, we hypothesized that miR-3473
regulated TNF-a expression through targeting TRAF3
rather than direct anchoring.

First, TRAF3 expression in Bp or Bt-treated murine mac-
rophages was analysed by western blotting. TRAF3 reduced
significantly and specifically in Bp-infected macrophages
(approximately 45% amount of control, 24 hpi) compared
to that of Bt-infected or untreated cells (Fig. 3b). TRAF3
mRNA was detected by qRT-PCR and also showed a sig-
nificant decrease in Bp-infected macrophages at 12 hpi than
that of Bt-treated or untreated cells (Fig. 3c).

To verify that TRAF3 is a molecular target of miR-
3473, a fragment of the 3 -UTR of TRAF3, containing
the putative miR-3473 binding site (Fig. 3a) or a mutant
miR-3473 binding site (Fig. 3c), was individually cloned
into a pMIR-Report luciferase plasmid, with pRL-TK as
an internal control. A mimic and inhibitor of miR-3473
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western blotting in Bp, Bt or uninfected macrophages at 24 h

were transfected into macrophages using Lipofectamine
2000™, and transfection efficiency was confirmed by
qRT-PCR (Fig. 3e). After luciferase assay on ma-
crophages which were carrying the 3 -UTR TRAF3 lu-
ciferase reporter, it was found that induction of miR-
3473 would significantly inhibit the luciferase activities
but there was no inhibition in those macrophages trans-
fected with the mutant 3 -UTR TRAF3 luciferase
reporter (Fig. 3f). It suggested that TRAF3 (3 -UTR)
should be a probable target of miR-3473.

miR-3473 was involved in TRAF3-NF-kB-TNF-a regulation
axis

Since TRAF3 has been known as a negative regulator of
NF-kB pathway, the mechanism for how miR-3473 regu-
lates TNF-a expression is unknown. miR-3473 mimic and
inhibitor were used to change the expression level of miR-
3473. TRAF3 expression and NF-«B activity of macro-
phages treated by Bp, Bt or PBS control were evaluated by
western blot (Fig. 4a&b). After transfection of miR-3473
mimics, NF-kB pathway was enhanced significantly
(showed by phospho-NF-«B p65 level) with or without Bp
infection (Fig. 4a). On the contrary, miR-3473 inhibitor

would decrease the activity of NF-kB in Bp-infected mac-
rophages, but not in Bt-infected macrophages (Fig. 4a&b).
It suggested that there should be a miR-3473-TRAF3-NF-
KB regulation axis which would play a vital role in Bp-
mediated inflammatory response in macrophages.

To further clarify the regulation of TRAF3 on TNF-«
expression, murine TRAF3 coding sequence was cloned
into pcDNA3.1 plasmid and the construction was trans-
fected into the murine macrophages, then verified by
qRT-PCR (Fig. 4c). Significantly, TNF-a mRNA de-
creased after enhancement of TRAF3-UTR in macro-
phages (Fig. 4d). These results suggested that miR-3473
manipulated TRAF3-NF-kB-TNF-a regulation axis to
affect TNF-a expression in Bp-infected macrophages.

miR-3473 was responsible for the differences of TNF-a
release and cell apoptosis between Bp and Bt

Based on the above results, we wondered whether miR-
3473 alone can influence TNF-a mRNA expression, cell
apoptosis and bacterial replication in macrophages. We
found that treatment with miR-3473 mimics markedly
enhanced TNF-a mRNA expression in uninfected or
Bp-infected macrophages (Fig. 5a). Conversely, miR-
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of TRAF3 mRNA in TRAF3-overexpressed and negative control macrophages, with actin as an internal control. d TNF-a mRNA was evaluated in
TRAF3-overexpressed or untransfected macrophages at 12 h after Bp infection. *P value < 0.05, **P value < 0.01

3473 inhibitor oligonucleotides would decrease TNF-a
mRNA in Bp-infected macrophages and abrogate the
difference of TNF-a« mRNA levels between Bp and Bt-
infected cells (Fig. 5a). As Fig. 1d and Fig. 5b shown, Bt
can upregulate TNF-a mRNA expression at the late
infectious phase (>16 hpi), but it would not change
TNEF-a expression after treatment of miR-3473 mimics
or inhibitors like that in Bp-treated macrophages (Fig. 5b).
It was the same case for the regulation of miR-3473 on cell
apoptosis in Bp or Bt-infected macrophages (Fig. 5¢). This
indicated that miR-3473, as an independent regulation fac-
tor, can play a key role in Bp-induced TNF-a expression
and cell apoptosis.

Given that it was different for intracellular growth rate
between Bp and Bt (shown in Fig. 1a), we tested whether
miR-3473 affected bacterial survival in macrophages.
Intracellular bacteria load was determined through cul-
ture on LB plate at different time points (from 4 hpi to
28 hpi). However, miR-3473 inhibitors had no obvious
effect on the intracellular growth of Bp or Bt (Fig. 5d). It
suggested that miR-3473 can manipulate bacteria-induced
host inflammatory but do not influence the recycle of
intracellular Bp or Bt.

miR-3473 was induced significantly in lung cells from
Bp-infected mice but would not affect murine survival
In vivo test showed that TNF-a level was higher in
blood of Bp-infected mice compared to that of Bt-

infected or uninfected mice (Fig. 6a). Previous studies
and above results both suggested that TNF-a was an
important inflammatory factor associates with difference
between Bp and Bt infectious process. As described in
material and method, qRT-PCR was applied to test the
expression of miR-3473 in murine lung cells. We found
that miR-3473 was induced higher in lung cells from
Bp-infected mice than that from Bt-infected or unin-
fected mice (Fig. 6b). In addition, miR-3473 inhibitor
was administered into mice and its regulation on TNF-«
release was equally obvious like that in vitro (Fig. 6c).
Furthermore, miR-3473 had a detrimental impact on the
survival period of mice infected with lethal dose of Bp
(Fig. 6d). These results suggested miR-3473 was
indulgent for excessive inflammatory response and asso-
ciated with acute death of mice after lethal Bp infection.

Discussion

Melioidosis is notorious for its complex nature, resist-
ance to antibiotics and poor outcomes and has been an
unexpected threat to public health and caused heavy
economic burden in endemic regions. The pathogen,
Burkholderia pseudomallei (Bp), has been researched for
many years but the effective way against intracellular
replication, resistance and serious clinical outcomes is
still unavailable since several possible vaccines are un-
derway [25]. It is widely distributed and endemic in
tropical regions, including southeast Asia and southern
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Australia [26]. The increasing number of sporadic cases
have been reported around the world, showing the dis-
semination of this pathogen beyond the original scope
[27]. Its homologous and avirulent species, Burkhol-
deria thailandensis (Bt), a Bp-like and avirulent specie,
has been also classified as an opportunistic bacteria
and found related with human pulmonary cystic fibro-
sis [11]. Bt has been investigated for possible vaccine
candidate against melioidosis or taken as a model for
melioidosis research [6].

Some previous studies have compared Bp and Bt, their
intracellular phenotypes and associated host inflammatory
response [4, 7, 8, 10, 13]. Wand et al. [28] observed an in-
verse association with their macrophage cytotoxicity and
the virulence in mice after Bt infected. While in this study,
we found that Bp’s cytotoxity in cell (at late infectious
phases) and lethality to mice were both stronger than Bt’s.
This difference may associate with different using of bacter-
ial strain, infectious dose or testing time point. Also, what
we focus is about the different inflammatory response in
murine macrophages treated by Bp and Bt in vitro and the
reasons behind. Since the inflammatory response is more
complicated than that in cell infectious models. Based on
comparative genomic analysis, metabolic and virulence dif-
ferences between these two species have been ascribed to
their divergent gene clusters, including capsular

polysaccharides and the Type III secretion needle complex.
Recently, it has been reported that inhalation of Bt also
could result in lethal necrotizing pneumonia and death in
mice with a dose of 10° CFU/lung [6]. Considering these
findings, Bt could not be simply taken as an innocuous
agent, but a Bp-like opportunistic pathogen, with remark-
able intracellular expansion and cytotoxicity. Therefore, it is
meaningful to study the mechanism between Bp and Bt
and their related cellular process, which may help us to
understand their difference of virulence and provide pro-
motion for vaccine development with avirulent strain from
suspected pathogen.

Recently years, microRNA screening has been applied
to explore the mechanism for bacterial infectious process
and related host defence [29, 30]. This study also identi-
fied a specific microRNA associating with differences of
Bp and Bt infectious process, especially on the inflamma-
tory response of Bp and Bt-infected cells or animals. With
a same infective dose, Bp would induce higher TNF-a re-
lease and apoptosis levels compared to Bt, especially at
the late infection phase. Based on microRNA chip ana-
lysis, several highly expressed microRNAs were found
from Bp-infected cells compared to Bt-infected cells.
Among them, miR-3473 was found to be specific to Bp
infection and significantly induced along with the infec-
tion process both in murine macrophages and pulmonary
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Fig. 6 miR-3473 expressed significantly in lung cells from Bp-infected mice, involved in the TNF-a release and animal survival. a TNF-a release
was measured by ELISA on blood samples from Bp, Bt-infected or uninfected mice on the fourth day after infection (4 dpi, with the dose of 2 x 10°
CFU Bp or 8 x 107 CFU Bt or no bacteria, both in 50 L PBS and injected into mice). b Lung cells were separated from Bp-infected, Bt-infected or
uninfected mice at 4 dpi. and miR-3473 expression was measured by gRT-PCR described as above. ¢ miR-3473 inhibitor oligonucleotide
was administrated to mice (i.n., through breathing) on the day before inoculation and TNF-a release was measured at 4 dpi. d Survival curves of mice
infected with Bp, Bt or PBS for 7 days with or without treatment of miR-3473 inhibitor oligonucleotides. *P value < 0.05, **P value < 0.01

cell line (TC-1). In addition, we found that miR-3473 was
able to affect the TNF-a release, cell apoptosis and inflam-
matory response via a miR-3473-TRAF3-TNF-a network.
However, there was no direct effect on intracellular bac-
terial replication. It suggested that these oligonucleotides
could manipulate biological procedure and influence
intercellular bacterial growth or host response indirectly.

In vivo, it was also a similar case. As described above,
miR-3473 expressed significantly and specifically in total
lung cells of mice infected with Bp. On the contrary,
after intravenous administration with miR-3473 inhibi-
tor, the survival period of Bp-infected mice extended
although the death rate could not be altered at the end.
Temperately, we attributed this protection effect to the
inhibition of TNF-« release. Actually, it is probable that
there are some other influence factors involved in these
biochemical events.

Additionally, we have found some other different
phenotypes between Bp and Bt-treated macrophages.
For example, Bp induced more autophagosomes (named
as LC3-associated phagocytosis because of the unique
single autophagosome structure) compared to Bt. Re-
cently, we have proved that Bp-associated regulation on
host autophagy relates to some bacteria-induced micro-
RNAs [19]. miRNA chips screening may uncover more

hidden network associating with some special miRNAs
or specific virulence factors and find the reason for those
differences of virulence, intracellular persistence and in-
fection outcomes between virulent and avirulent
pathogens [31].

Conclusion

Burkholderia pseudomallei (Bp) and Burkholderia thai-
landensis (Bt) are both belonging to Burkholderia spp.
As a Bp-like specie, Bt has many similar phenotypes to
Bp, including replication capacity in various type of cells,
cytotoxicity to host cells and inflammatory responses,
maybe only differing in the degree or intensity. It was
found that Bt replicated slower in macrophages, indu-
cing slighter apoptosis and inflammatory reaction com-
pared to Bp. In vivo, Bp is highly lethal but Bt is totally
not lethal even at a very high dose. As our gene chips ana-
lysis shown, TNF-a expression showed an extremely high
degree in Bp-infected murine macrophages, which have
been proved to associate with a bad outcome of melioid-
osis patients in clinic. From a view of upper stream of regu-
lation, rather than bacterial T3SS-associated factor
previously reported, we explored microRNA-mRNA
network to find the role of miRNAs for bacteria-host inter-
action, including different inflammatory responses between
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pathogens. Through microRNA screening, we found a sig-
nificantly changed microRNA (mmu-miR-3473) raised
along with TNF-a release and cell apoptosis after Bp
infection (compared to Bt). In vivo, the miR-3473-TRAF3-
TNEF-a network was also regulating the TNF-a release and
the survival of mice. This is a first research on the mechan-
ism for host responses after Bp or Bt infection from a view
of microRNA. In the future, more microRNA-associated
regulation networks would be revealed and shed more light
on the pathogenesis research on differences between
virulent and avirulent pathogens.
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