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Small RNA sequencing of extracellular
vesicles identifies circulating miRNAs
related to inflammation and oxidative
stress in HIV patients
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Abstract

Background: Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. EVs carry nucleic acids that
hold promise as potential biomarkers in various diseases. Human immunodeficiency virus type 1 (HIV) infects CD4+
T cells and induces immune dysfunction, inflammation, and EV secretion, but little is known about EV small RNA
cargo in relation to immune dysregulation in HIV-infected individuals. Here, we characterize small RNA carried by
circulating EVs in HIV-positive subjects on antiretroviral therapy (ART) relative to uninfected controls by next-
generation RNA sequencing.

Results: Plasma EVs isolated from HIV-positive and HIV-negative subjects in test (n = 24) and validation (n = 16)
cohorts were characterized by electron microscopy, nanoparticle tracking analysis, and immunoblotting for exosome
markers. EVs were more abundant in plasma from HIV-positive compared to HIV-negative subjects. Small RNA sequencing
of plasma EVs in the test cohort identified diverse small RNA species including miRNA, piRNA, snRNA, snoRNA, tRNA, and
rRNA, with miRNA being the most abundant. A total of 351 different miRNAs were detected in plasma EVs, with the top
50 miRNAs accounting for 90% of all miRNA reads. miR-26a-5p was the most abundant miRNA, followed by miR-21-5p
and miR-148-3p. qRT-PCR analysis showed that six miRNAs (miR-10a-5p, − 21-5p, −27b-3p, − 122-5p, −146a-5p, − 423-5p)
were significantly increased in plasma EVs from HIV-positive compared to HIV-negative subjects in the validation cohort.
Furthermore, miR-21-5p, −27b-3p, −146a-5p, and − 423-5p correlated positively with metabolite markers of oxidative
stress and negatively with anti-inflammatory polyunsaturated fatty acids. Over-representation and pathway enrichment
analyses of miRNAs and their target genes predicted functional association with oxidative stress responses, interferon
gamma signaling, Toll-like receptor signaling, TGF beta signaling, and Notch signaling.

Conclusions: HIV-positive individuals on ART have increased abundance of circulating EVs carrying diverse small RNAs,
with miRNAs being the most abundant. Several miRNAs associated with inflammation and oxidative stress are increased
in circulating EVs of HIV-positive individuals, representing potential biomarkers of targetable pathways that contribute to
disease pathogenesis.
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Background
Human immunodeficiency virus type 1 (HIV) infection
is characterized by progressive decline of CD4+ T cell
counts, increased immune activation, and inflammation.
Although antiretroviral therapy (ART) increases CD4+ T
cell counts and improves overall health and life expect-
ancy of HIV-positive individuals, immune activation and
chronic inflammation persist. Causes of chronic inflam-
mation in ART-treated HIV patients are incompletely
understood, but likely include microbial translocation,
elevated expression of type I and II interferons, altered
chemokine and cytokine production, and co-infections
(e.g., Hepatitis C virus (HCV)) [1–3]. HIV infection and
chronic inflammation contribute to generation and accu-
mulation of reactive oxygen species (ROS), compromis-
ing antioxidant pathways and leading to oxidative stress,
a predictor of morbidity and mortality [4–6]. Identifica-
tion of biomarkers associated with HIV pathogenesis, in-
flammation, and oxidative stress is important to gain
insights into underlying mechanisms and discover prog-
nostic and diagnostic markers.
Extracellular vesicles (EVs) and their protein and nu-

cleic acid cargo have been extensively studied and used
as biomarkers in various diseases including HIV, cancer,
cardiovascular diseases, and neurological disorders [7].
EVs, including exosomes (30–150 nm), microvesicles
(MV; microparticles) (100 nm–1 μm), and apoptotic
bodies (> 1 μm), are secreted by most cell types and have
been isolated from plasma and other body fluids. EV
cargo includes proteins, lipids, mRNAs, long non-coding
RNAs (lncRNA), and several species of small non-coding
RNA, such as microRNA (miRNA), Piwi-interacting
RNA (piRNA), small nucleolar RNA (snoRNAs), and
small nuclear RNA (snRNA), or RNA fragments [8], and
provide a means for transfer of RNA between donor and
recipient cells. Specific cargo of EVs is dependent on the
cell of origin as well as biological conditions such as in-
fection, inflammation, and stress. EVs are involved in
cell-to-cell communication and are proposed to play a
role in maintaining homeostasis; they have also been im-
plicated in spreading infections via transport of viral and
microbial products [7]. EVs, particularly exosomes, can
also regulate gene expression by transporting miRNAs
to recipient cells and post-transcriptionally controlling
translation of corresponding miRNA targets in recipient
cells, thereby affecting cellular responses to stress, in-
flammation, and cell death [9].
Previous studies have shown that HIV-positive individ-

uals have higher abundance of circulating EVs compared
to healthy controls [10–12]. EV protein cargo in HIV in-
fection has been studied, revealing enrichment of HIV
virulence factors and pro-inflammatory cytokines and
chemokines [10, 13–16]. HIV infection induces EV se-
cretion, and EVs from HIV-infected cells transport viral

and host components that promote spreading of infec-
tion [13–15]. EVs can also inhibit HIV infection by
carrying protective factors such as APOBEC3 and inter-
ferons [17, 18]. Additionally, EV RNA exhibiting 5′-tri-
phosphate ends stimulates RIG-I, which induces an
interferon response [19]. We previously showed that
plasma EVs in ART-treated HIV-positive individuals
carry proteins related to immune activation and oxida-
tive stress, and have immunomodulatory effects on mye-
loid cells, suggesting functional links to inflammation
and redox pathways during pathogenesis [12]. Limited
studies have explored miRNA content of EVs, showing
enrichment of specific miRNAs associated with inflam-
mation and fatal liver disease in HIV-positive individuals
[11, 20], or lower neuropsychological performance [21].
Little is known about the small RNA repertoire of circu-
lating EVs in HIV-positive individuals. Given that small
RNAs are enriched in EVs, we characterized small RNA
cargo of plasma EVs in HIV-positive individuals on ART
relative to uninfected controls by small RNA sequencing.
We then validated some of the mapped miRNAs that
are upregulated in treated HIV disease in an independ-
ent cohort and examined their association with metabol-
ite markers and pathways related to inflammation and
oxidative stress.

Results
Characteristics of the study cohort
A total of 24 subjects (12 HIV-positive and 12 HIV-
negative) and 16 subjects (8 HIV-positive and 8 HIV-
negative) subjects comprised the test and validation
cohorts, respectively (Fig. 1). Demographic and clinical
characteristics are summarized in Table 1. The median
age across cohorts was 54 [interquartile range (IQR): 48,
50]. The test cohort was comprised of all males (63%
black), while the validation cohort was 63% male (38%
black). All HIV-positive subjects were on ART with sup-
pressed or low plasma viral load. Compared to the test co-
hort, HIV-positive subjects in the validation cohort had
lower median CD4 T cell counts, CD4 nadir, CD4:CD8 ra-
tio, and longer median duration of HIV infection, indicating
more advanced HIV disease. Both cohorts had high preva-
lence of smoking (54 and 56% in test and validation co-
horts, respectively) and cocaine use (50% in both cohorts).
HIV-negative and HIV-positive groups within each cohort
were balanced with respect to age, race, HCV status, and
cocaine use. Two subjects in the test cohort and no subjects
in the validation cohort were HCV-seropositive. All sub-
jects in both cohorts were negative for Hepatitis B virus
(HBV) surface antigen and/or DNA.

Characterization of plasma EV fractions
EV fractions were isolated from HIV-positive (n = 12)
and HIV-negative (n = 12) subjects in the test cohort
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Fig. 1 Study design summarizing the cohort, methodology, and data analysis. 500 μl plasma from subjects in test or validation cohorts were used
to isolate EVs using the PureExo kit. EVs were measured by nanoparticle tracking analysis followed by small RNA isolation. Small RNA libraries
were prepared and sequenced on Nextseq500, and data was analyzed using the exceRpt pipeline. Candidate miRNAs were validated by qPCR

Table 1 Clinical and demographic characteristics of test and validation cohorts

Test cohort Validation cohort

HIV-negative (n = 12) HIV-positive (n = 12) HIV-negative (n = 8) HIV-positive (n = 8)

Ageα 52 [44–59] 55 [45–60] 53 [51–54] 57 [53–61]

Black race 7 (58) 8 (67) 3 (38) 3 (38)

Male gender 12 (100) 12 (100) 3 (38) 7 (88)

Duration of HIV infection (years)α 13 [11–20] 19 [13–22]

Viral load (copies/ml) 40 [10–80] 40 [40–40]

Viral load < 200 copies/ml 11 (92) 8 (100)

CD4 count (cells/μl) 955 [776–1142] 619 [430–734] 382 [285–495]

CD4 nadir (cells/μl) 639 [539–796] 166 [92–257] 82 [26–221]

CD4/CD8 ratioα 1.4 [1.1–1.9] 0.73 [0.54–1.0] 0.41 [0.26–0.51]

ART use 12 (100) 8 (100)

Protease inhibitor use 7 (58) 6 (75)

HCV seropositive 1 (8) 1 (8) 0 (0) 0 (0)

Smoking 7 (58) 6 (50) 7 (88) 2 (25)

Cocaine use 6 (50) 6 (50) 4 (50) 4 (50)

Data shown are n (%) unless otherwise indicated
α median [IQR]
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using the PureExo exosome isolation kit and character-
ized by transmission electron microscopy (TEM), nano-
particle tracking analysis (NTA), and Western blotting
for exosome markers (Fig. 2). TEM revealed vesicles of
40–70 nm in diameter (Fig. 2a), consistent with the size
range of exosomes. NTA yielded distributions showing
that majority of particles were 30–150 nm diameter, with
a peak at 100–120 nm (Fig. 2b). Immunoblotting de-
tected the exosome markers CD9, Flotillin-1, Tsg101,
and CD81 in plasma EV fractions, with greater abun-
dance of these markers detected in HIV-positive com-
pared to HIV-negative subjects based on stronger band
intensities (Fig. 2c). The endoplasmic reticulum (ER)
marker calnexin was not detected by immunoblotting of
these plasma EV fractions, suggesting they were free of
ER membrane contamination and consistent with results
of our previous study [12]. Based on NTA measure-
ments, plasma EVs were more abundant in HIV-positive
compared to HIV-negative subjects (mean 5.9 vs. 2.5 X
1011 particles/ml, respectively, in 30–150 nm size range;
p = 0.001, Mann-Whitney test), while there was no sig-
nificant difference in median particle size (114 vs. 116
nm, respectively) (Fig. 2d).

Small RNA classes and distributions in plasma EVs of HIV-
positive and HIV-negative subjects
To characterize the plasma EV small RNA repertoire, we
sequenced small RNA libraries from all subjects in the
test cohort (12 HIV-positive and 12 HIV-negative) and
mapped reads to the human genome (hg38) and small
RNA databases (Fig. 1). Small RNA was isolated from
EV fractions and quality was assessed using the BioAna-
lyzer platform with a small RNA chip, which showed
that the quality of isolated small RNA was comparable
between HIV-positive and HIV-negative groups. cDNA
libraries were generated and subjected to single-read,
75-bp sequencing generating an average of 22 million
reads per library. Raw read data was processed using the
exceRpt Small RNA-seq Pipeline [22]. Reads were
mapped to human rRNA to exclude rRNA sequences
before mapping to the human genome. Size distributions
among mapped reads in each sample showed that major-
ity were between 16 nt to 60 nt in length with peaks at
21 nt and 26 nt, corresponding to miRNAs and piRNAs,
respectively (Fig. 3a).
To examine the diversity of plasma EV RNA cargo,

reads were mapped to human genome and small RNA

Fig. 2 Characterization of EV fractions isolated from plasma. a. TEM image of isolated EV fraction from a HIV-negative control subject. b. Size
distribution of EVs in a representative HIV-negative and HIV-positive subject by nanoparticle tracking analysis (NTA). c. Detection of exosome
markers CD9, Flotillin-1, Tsg101, and CD81 by western blotting in pooled HIV-positive (n = 3) and HIV-negative (n = 3) samples. Three individual
HIV-negative subjects were matched for age, gender, race, and cocaine use to three HIV-positive subjects to achieve matching between the
pooled samples. Equal amounts of protein (50 μg per lane) were loaded for western blotting; these samples contain exosomal proteins, as well as
co-purifying non-exosomal proteins from other sources such as microparticles and residual plasma proteins. Full-length blot images are shown in
Supplementary Figure S6. d. EV concentration (left) and median EV size (right) analyzed by NTA in HIV-negative and HIV-positive subjects
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databases for miRNA, piRNA, rRNA, tRNA, circular
RNA, and snoRNA. Figure 3b shows a comparison of
distributions of different RNA species identified in
plasma EVs of HIV-negative (left) and HIV-positive
(right) subjects in the test cohort. Protein coding reads
were the most abundant RNA species in both groups,
while miRNA was the most abundant small RNA spe-
cies. A few subjects had miRNA as the most abundant
RNA species instead of protein coding reads, or more
snoRNA or tRNA as the most abundant small RNA spe-
cies instead of miRNA; these findings were not associ-
ated with any distinctive subject characteristics. HIV-
positive subjects had a higher proportion of protein cod-
ing reads compared to HIV-negative subjects (35% vs.
26%, respectively), and HIV-negative subjects had a
higher proportion of miRNA reads compared to HIV-
positive subjects (19% vs. 13%, respectively) (p < 0.0001,
chi-square test). The next major classes of small RNAs
detected were small nuclear RNA (snRNA), transfer
RNA (tRNA), antisense RNA, long intergenic non-
coding RNA (lincRNA), ribosomal RNA (rRNA), piRNA,
small nucleolar RNA (snoRNA), and miscellaneous RNA
(RNAs mapped to human genome, but not to any
known RNA species in human genome). Supplementary
Table 1 shows the complete list and total counts of each
RNA species mapped across all samples. Number of
uniquely mapped RNAs of different species is shown in
Fig. 3c and summed read counts for each species are
shown in Supplementary Figure S1. 26 and 35% of

protein coding reads (Fig. 3b) mapped to 11,051 and 11,
617 unique protein coding species in HIV-negative and
HIV-positive subjects, respectively. Nineteen percent
and 13% of miRNA reads mapped to 313 and 226
unique miRNAs in HIV-negative and HIV-positive sub-
jects, respectively (Supplementary Table 2).
We identified a total of 14,500 unique protein coding se-

quences; among these, 392 (top 2.7%) had counts > 10 in
at least 25% of the samples and accounted for 60% of all
protein coding reads. Although fragments derived from
protein coding sequences were the most abundant RNA
species in terms of overall reads and number of different
protein coding sequences, differential expression analysis
of these protein coding sequences for the top 70 genes (fil-
tered for genes with counts > 10 in at least 25% samples
and not identified in blank samples) did not reveal any sig-
nificantly altered protein coding sequences in HIV-
positive vs. HIV-negative subjects after correction for mul-
tiple testing (Benjamini–Hochberg FDR adjusted p-value
> 0.1) (Supplementary Table 3). The most abundant pro-
tein coding sequence reads were NPFFR1 (Neuropeptide
FF Receptor 1), which is associated with G protein-
coupled receptor activity and neuropeptide receptor activ-
ity, followed by WDR74 (WD Repeat Domain 74), a regu-
latory protein of the MTREX-exosome complex. Protein
coding sequences for STEAP4 (STEAP4 Metalloreduc-
tase) and UTRN (Utrophin) showed an increasing trend in
HIV-positive compared to HIV-negative subjects that did
not reach significance (FDR > 0.1). Small nucleolar RNAs

Fig. 3 Mapping statistics of RNA species detected by small RNA-seq across 24 libraries. a. Size distribution of individual sequencing library inserts.
b. Pie charts show distribution of small RNA species in plasma EVs of HIV-negative (left) and HIV-positive (right) subjects. Data shown are means
of HIV-negative (n = 12) and HIV-positive (n = 12) subjects and depicted as percentage biotype counts. ‘Others’ category includes 36 additional
RNA species listed in Supplementary Table 1. c. Total number of mapped unique RNA references in HIV-positive versus HIV-negative subjects
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SNORD104, SNORD2, SNORD69, and SNORD63 were
the most abundant snoRNAs, accounting for 50% of all
snoRNA reads. Small nuclear RNAs U2, RNU1 and RNU2
were the predominant snRNAs, and were detected in ma-
jority of samples. PiRNA was the least abundant type
of small RNA detected, with hsa-piR-018780 being
the most abundant; however, majority of samples had
counts < 10 for this piRNA. Mapping to the tRNA
database identified 25 distinct tRNA species; among
these tRNAGly (21%) and tRNAGlu (20%) were the
predominant tRNAs and were detected in all samples,
while none of the remaining tRNAs exceeded 9% of
total tRNA counts. These results show that circulating
EVs in HIV-positive and HIV-negative subjects carry
diverse small RNA species including miRNA, piRNA,
snRNA, tRNA, and rRNA, with miRNAs being the
most abundant small RNA species.

Analysis of miRNA profiles in circulating EVs
A total of 351 unique miRNAs were identified (Fig. 4a and
Supplementary Table 2). The top 50 most abundant miR-
NAs accounted for 90% of all miRNA reads (aqua bars and
embedded graph). miR-26a-5p was the most abundant
miRNA, followed by miR-21-5p and miR-148-3p. HIV-
positive and HIV-negative subjects had similar distributions
of number of unique miRNAs detected (Fig. 4b, p = 0.89,
Mann-Whitney test). To identify outliers, we performed
principal component analysis (PCA) on the top 50 most
abundant miRNAs. PCA analysis revealed 3 outliers (HIV-
negative) (Supplementary Figure S2) that were excluded
from downstream analyses, along with one sample with low
number of identified miRNAs (0 count for > 94% of miR-
NAs). PCA analysis after outlier exclusion did not reveal
distinct clusters differentiating HIV-positive and HIV-
negative subjects (Fig. 4c). Additionally, there were no obvi-
ous outliers or clusters associated with age, race, cocaine, or
smoking. Differential expression analysis of the top 50 miR-
NAs in HIV-positive vs. HIV-negative subjects is shown in
Table 2. No miRNAs were significantly upregulated in
HIV-positive compared to HIV-negative subjects by
DEseq2 analysis after correction for multiple testing (FDR <
0.1), while only one miRNA (miR-181a-5p) was signifi-
cantly downregulated (log2 FC = − 5.88, FDR-adjusted p-
value = 0.0008). Two HCV-positive samples (HIVn-7 and
HIVp-10) did not have distinctive miRNA profiles com-
pared with HCV-negative samples in Supplementary Table
2, and analyzing the data after removing these two samples
did not significantly alter the main findings in Table 2.

miRNAs associated with HIV infection, inflammation, and
oxidative stress are increased in plasma EVs of HIV-
positive compared with HIV-negative subjects
We selected 8 miRNAs identified by small RNA-
sequencing (miR-27b-3p, − 21-5p, −125b-5p, − 122-5p,

−10a-5p, − 423-5p, −146a-5p and let-7a-5p) for qRT-
PCR validation based on the following criteria: an in-
creasing trend in HIV-positive compared to HIV-
negative by DEseq2 analysis (miR-10a-5p, − 122-5p,
−146a-5p, −27b-3p, − 423-5p, and let-7a-5p), and/or pre-
viously shown to be associated with HIV infection (miR-
122-5p, −125b-5p, −146a-5p, − 21-5p, −27b-3p, and −
423-5p) [23–27], or inflammation and oxidative stress
(miR-10a-5p, −125b-5p, −146a-5p, − 21-5p, and -27b-
3p) [28–31].
To confirm the identity of specific miRNAs detected

by small RNA-seq, we performed manual alignment of
miRNA reads using the CodonCode Aligner tool. To ac-
complish this, all reads from a sample mapping to a spe-
cific miRNA were manually aligned to the original
miRNA stem-loop sequence from miRbase v21. Repre-
sentative alignments for miR-27b-3p and miR-146a-5p
from HIV-positive and negative samples are shown in
Fig. 5, which shows that 100% of reads mapped to miR-
146a-5p with 1 or 0 nucleotide mismatch and > 95% of
reads mapped to miR-27b-3p with 1 or 0 nucleotide
mismatch, suggesting these miRNAs and their isoforms
(isomiRs) [32] are indeed present in these plasma EV
samples.
The miRNAs in plasma are associated with lipopro-

teins (LDL/HDL) and ribonucleoproteins, which protect
extracellular RNAs against RNase-mediated degradation
and can be coprecipitated during EV isolation [33–35].
To exclude extra-vesicular miRNAs, EVs were isolated
using the PureExo exosome isolation kit with the follow-
ing modification: Proteinase K was added to plasma sam-
ples to release protein-associated miRNAs followed by
RNase A treatment to degrade extravesicular RNAs. Pro-
teinase K and RNase treatment resulted in reduction of
small particles (10–30 nm) corresponding to lipoprotein
particles as seen by TEM, particle size distribution, and
particle concentration measurements (Supplementary
Figure S3). Elimination of lipoprotein particles was
further confirmed by Western blotting for ApoA1
(major structural protein component of HDL), soluble
exosome markers (Alix and Tsg101), and membrane exo-
some markers (CD81- outer membrane and Flotillin-1
inner membrane). Proteinase K and RNase treatment de-
graded extra-exosomal proteins, while retaining intra-
exosomal cargo as indicated by absence of CD81 and
ApoA1 bands, and retention of Flotillin-1, Alix, and
Tsg101 bands (Supplementary Figure S3).
To validate selected miRNAs in plasma EVs by qRT-

PCR, we isolated small RNA from EV fractions of 8
HIV-positive and 8 HIV-negative subjects from the val-
idation cohort. EV small RNA was isolated from equal
plasma volumes and equal volumes of RNA were loaded
for validation of candidate miRNAs by qRT-PCR ana-
lysis. Analysis of plasma EV fractions by NTA showed
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that HIV-positive subjects had higher EV numbers com-
pared to HIV-negative subjects (Fig. 6a, p = 0.081), while
EV size distribution was similar between groups. We de-
tected significantly higher levels of miR-27b-3p, − 21-5p,
− 122-5p, −10a-5p, −146a-5p, and − 423-5p in plasma
EVs from HIV-positive compared to HIV-negative sub-
jects by qRT-PCR (Fig. 6 b, p < 0.05, Mann-Whitney
test), whereas miR-125b-5p and let-7a-5p did not show
a significant difference (p = 0.24 and 0.067, respectively).
As an additional control for qRT-PCR validation, we
tested miR-7-5p, which showed no significant difference
in plasma EVs from HIV-positive compared to HIV-
negative subjects (p = 0.112), consistent with results in
Table 2 (p = 0.991). Unsupervised hierarchical clustering

in heatmaps show that significantly altered miRNAs
(miR-27b-3p, − 21-5p, − 122-5p, −10a-5p, −146a-5p, and
− 423-5p) distinguished between HIV-positive and HIV
negative subjects based on z-scored qRT-PCR measure-
ments (Fig. 6c). Given that cocaine abuse promotes oxida-
tive stress and inflammation in HIV-positive subjects, we
compared levels of these miRNAs between HIV-positive
and HIV-negative subjects stratified by cocaine use. These
miRNAs remained elevated in HIV-positive cocaine users
and non-users compared to HIV-negative cocaine users
and non-users, respectively (Supplementary Figure S4). In
contrast, there was no change in miRNA levels associated
with cocaine use within the HIV-positive or HIV-negative
groups. Thus, the observed changes in plasma EV miRNA

Fig. 4 Small RNA-seq miRNA profiles in test cohort HIV-positive and HIV-negative subjects. a. Percentage (sorted from high to low) of each
detected mature miRNA in all mapped miRNA reads in 24 subjects. The top 50 miRNAs (90%) are highlighted in aqua and shown in the
embedded graph. b. Distribution of number of unique miRNAs in HIV-negative and HIV-positive subjects (p = 0.89, Mann-Whitney test). c.
Principal component analysis of top 50 miRNAs in HIV-positive (red, n = 12) and HIV-negative subjects (blue, n = 8)
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Table 2 Differential expression analysis of top 50 miRNAs in HIV-positive (n = 12) versus HIV-negative (n = 8) subjects from the test
cohort

baseMean Log2 FC P value P adj

hsa-miR-26a-5p 620 −0.106 0.8216 0.9831

hsa-miR-148a-3p 514.38 0.798 0.2256 0.6636

hsa-miR-21-5p* 493.5 −0.405 0.4709 0.981

hsa-let-7i-5p 318.91 −0.191 0.7614 0.9831

hsa-miR-122-5p* 288.3 0.953 0.4941 0.9831

hsa-miR-1-3p 243.23 0.662 0.6196 0.9831

hsa-let-7a-5p* 224.95 1.512 0.0699 0.3493

hsa-let-7f-5p 216.84 −1.594 0.1263 0.4859

hsa-miR-423-5p* 210.36 0.239 0.8054 0.9831

hsa-let-7b-5p 181.67 1.098 0.2963 0.7134

hsa-miR-126-3p 134.04 3.067 0.0056 0.1169

hsa-let-7 g-5p 113.18 −0.108 0.9161 0.9831

hsa-let-7c-5p 109.04 2.39 0.0466 0.259

hsa-miR-30d-5p 102.88 −1.677 0.2039 0.6371

hsa-miR-99a-5p 96.3 0.527 0.6449 0.9831

hsa-miR-92a-3p 86.99 0.779 0.4643 0.981

hsa-miR-10a-5p* 83 2.9 0.0213 0.1779

hsa-miR-100-5p 80.05 1.389 0.2811 0.7134

hsa-miR-22-3p 79.59 2.307 0.0898 0.3743

hsa-miR-143-3p 73.61 1.308 0.3139 0.7134

hsa-miR-486-5p 69.46 1.373 0.3024 0.7134

hsa-miR-1246 64.35 −2.662 0.0342 0.2441

hsa-miR-155-5p 64.01 −0.322 0.7998 0.9831

hsa-miR-151a-3p 59.85 −0.261 0.8725 0.9831

hsa-miR-7-5p 57.03 0.038 0.9751 0.9917

hsa-miR-99b-5p 51.54 −0.933 0.7672 0.9831

hsa-miR-27a-3p 50.45 1.684 0.1728 0.5761

hsa-miR-320a 50.4 0.352 0.811 0.9831

hsa-miR-30c-5p 49.92 −1.558 0.2631 0.7134

hsa-let-7d-5p 44.98 2.287 0.0391 0.2447

hsa-miR-101-3p 44.39 −0.6 0.674 0.9831

hsa-miR-192-5p 41.22 2.429 0.0795 0.3615

hsa-miR-222-3p 41.18 0.194 0.8841 0.9831

hsa-miR-199a-3p 40.5 0.08 0.9438 0.9831

hsa-miR-199b-3p 40.5 0.08 0.9438 0.9831

hsa-miR-10b-5p 34.17 0.197 0.8896 0.9831

hsa-miR-181a-5p 33.66 −5.884 1.59E-05 0.0008

hsa-miR-27b-3p* 31.04 2.583 0.0112 0.1169

hsa-miR-26b-5p 30.29 0.012 0.9917 0.9917

hsa-miR-378a-3p 29.32 3.691 0.0117 0.1169

hsa-miR-24-3p 28.94 1.696 0.1589 0.5674

hsa-miR-191-5p 28.19 −0.71 0.676 0.9831

hsa-miR-25-3p 25.4 0.235 0.8851 0.9831
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levels were likely related to effects of HIV infection rather
than cocaine use.

Functional over-representation analysis of miRNAs
We performed functional over-representation analysis
(ORA) of differentially expressed miRNAs identified in
the validation cohort using the web-based application
miEAA (miRNA Enrichment Analysis and Annotation).
ORA of miRNAs: miR-27b-3p, − 21-5p, − 122-5p, −10a-
5p, −146a-5p, and − 423-5p found significant enrichment
of categories: Pathways (176 terms), Gene Ontology
(GO, 732 terms), and Diseases (7 terms). ORA results
are shown in Supplementary Table 4; HIV-positive ver-
sus HIV-negative subjects had significant enrichment of
miRNA targets mapping to pathways such as oxidative
stress response, interferon gamma signaling, Toll-like re-
ceptor signaling, T cell activation, TGF beta signaling,
and Notch signaling among the top 20 most significant
pathways (p = 0.008). Among the top 25 GO terms
enriched were response to stress, positive regulation of
T cell cytokine production, cytoplasmic membrane
bound vesicle, microtubule-based movement, late endo-
some, and endocytosis (p ≤ 0.008). Furthermore, ≥ 5 of 6
up-regulated miRNAs supported these ORA results (‘ob-
served’ column in Supplementary Table 4). Disease
terms enriched by ORA were autoimmune diseases, in-
flammation, metabolic diseases, and obesity (p < 0.05).
These results suggest that miRNAs associated with fac-
tors related to HIV infection and EV secretion are
enriched in plasma EVs of HIV-positive subjects.

miRNA-target enrichment and functional analysis
Target genes of differentially expressed miRNAs identified
in the validation cohort (miR-27b-3p, − 21-5p, − 122-5p,
−10a-5p, −146a-5p, and − 423-5p) were predicted using
predictor algorithms queried by miRDIP v4.1.11.1 and
miRWalk v3.0, along with experimentally validated targets
deposited in miRTarbase v7.0. The complex interaction
relationship between these 6 miRNAs and their target
genes was visualized as a network (Fig. 6d) for a set of 61

predicted and validated targets (Supplementary Table 5).
miR-21-5p and miR-27b-3p showed the highest number
of overall target genes (n = 33 genes each), followed by
miR146a-5p and miR-122-5p. Majority of these target
genes were associated with more than one miRNA
(36 genes, orange nodes). For example, NFAT5 is a
predicted target of 5 of the 6 miRNAs, while DDHA1
is a predicted target of 4 of the 6 miRNAs. We per-
formed functional enrichment analysis of the miRNA-
target genes with REACTOME pathways using the
ClueGO v2.5.5 plugin of Cytoscape 3.7.2 (Fig. 6e). A
set of 31 statistically significant pathways (p < 0.005)
were identified including Toll-like receptor signaling
cascade, MyD88 cascade, IRAK1 recruits IKK com-
plex, TGF-beta receptor signaling, Notch signaling
pathway, and NOD1/2 signaling (Supplementary
Table 6), in accordance with the over-representation
analysis (Supplementary Table 4). TNF receptor-
associated factor 6 (TRAF6) and IL-1 receptor associ-
ated kinase (IRAK1) genes were associated with ma-
jority of these pathway terms; both genes are
predicted and validated targets of miR-146a-5p.

EV miRNAs correlate with oxidative stress markers
We previously showed positive correlation of oxidative
stress metabolites (methionine and cysteine metabolism)
and kynurenine:tryptophan ratio (K:T ratio, immune
activation marker), and negative correlation of anti-
inflammatory polyunsaturated fatty acid (PUFA) metab-
olites (n-3 and n-6 PUFA metabolism) with exosome
markers [12]. Based on these findings, we performed
untargeted metabolomic profiling of plasma from sub-
jects in the validation cohort using the platform de-
scribed in [12], which detected 655 endogenous
metabolites from which we selected 12 metabolites or
ratios (Supplementary Table 7) related to: 1) tryptophan
catabolism (increased with immune activation) [36, 37];
2) methionine and cysteine metabolism (altered with
oxidative stress) [38, 39]; and 3) n-3 and n-6 PUFA me-
tabolism (anti-inflammatory pathway). Metabolite

Table 2 Differential expression analysis of top 50 miRNAs in HIV-positive (n = 12) versus HIV-negative (n = 8) subjects from the test
cohort (Continued)

baseMean Log2 FC P value P adj

hsa-miR-125a-5p 22.86 −4.3 0.0104 0.1169

hsa-miR-451a 22.8 0.443 0.7961 0.9831

hsa-miR-146a-5p* 22.33 0.856 0.5596 0.9831

hsa-miR-125b-5p* 14.62 −0.665 0.6723 0.9831

hsa-miR-218-5p 14.38 1.004 0.5147 0.9831

hsa-miR-423-3p 12.6 0.485 0.7753 0.9831

hsa-miR-30a-5p 10.24 −0.284 0.8542 0.9831

* miRNAs selected for qRT-PCR validation are indicated with an asterisk. Significant raw p-values are in bold
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markers of oxidative stress (cysteine, cystine, cysteine s-
sulfate, cysteinyl glycine, N1-methyladenosine; p < 0.05,
Mann-Whitney test) and K:T ratio (p = 0.08) were
increased in HIV-positive compared to HIV-negative
subjects; two additional markers of oxidative stress
(cysteinyl glycine, oxidized and methionine sulfone)
showed similar trends (Fig. 7a). Given greater abundance
of miR-27b-3p, − 21-5p, −146a-5p, and − 423-5p in HIV-
positive vs. control subjects in the validation cohort, we
examined relationships between these miRNAs and
plasma metabolite markers of oxidative stress, immune
activation, and EV abundance in HIV-positive and HIV-

negative subjects. Increased EV numbers in HIV-positive
subjects correlated positively with miR-27b-3p, − 21-5p,
−146a-5p, and − 423-5p (Fig. 7 b, p < 0.05). Metabolites
of the cysteine metabolism pathway (i.e. cysteine, cystine,
oxidized cys-gly, cysteine s-sulfate) correlated positively
(Fig. 7c), while PUFA metabolites (docosahexaenoate
(22:6n3) (DHA), n-3 (22:5n3) and n-6 (22:5n6) docosa-
pentaenoate (DPA), and eicosapentaenoate (20:5n3)
(EPA)) correlated negatively with each of the 4 miRNAs
tested (Supplementary Figure S5). The immune activa-
tion marker K:T ratio did not correlate with any of the
miRNAs tested (data not shown). We also tested

Fig. 5 Alignment of miR-146a-5p and miR-27b-3p reads using CodonCode Aligner tool. miR-146a-5p (a) and miR-27b-3p (b) reads from
representative HIV-positive (top) and HIV-negative samples (bottom) were aligned to corresponding miRNA stem-loop sequence from miRbase
v21 showing matched nucleotides depicted by dots and mismatch nucleotides depicted by red font. Tables on the right show unique sequence
number (seq), counts for each unique sequence (count), percentage of total counts (pct.), and number of mismatches (mm)
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Fig. 6 (See legend on next page.)
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correlation of miRNAs miR-10a-5p and miR-122-5p
with these metabolites, but did not find any significant
correlations (data not shown).

Discussion
In this study, we applied next generation small RNA se-
quencing to characterize RNA cargo of plasma EVs in
HIV-positive subjects on ART relative to healthy con-
trols and evaluated abundance of different RNA species
and association of miRNAs with disease-related factors.
To our knowledge, this is the first study exploring EV
small RNA cargo in treated HIV patients. We found
higher abundance of plasma EVs in treated HIV-positive
subjects compared to HIV-negative controls, consistent
with our previous study [12]. Small RNA sequencing of
libraries from plasma EVs showed similar sequencing
depth between HIV-positive and HIV-negative subjects
(23 versus 21.8 million average reads, respectively). Map-
ping to the human genome and small RNA databases
revealed distributions of diverse coding and non-coding
RNA species including protein coding sequences,
miRNA, rRNA, tRNA, lincRNA, snRNA, and snoRNA,
with protein coding sequences being the most abundant
RNA species and miRNA being the most abundant small
RNA. Consistent with our findings, a previous study of
plasma EVs from healthy volunteers identified protein
coding sequences as the most abundant RNA species
[40]. Yuan T et al. reported miRNAs as the most abun-
dant plasma extracellular RNA species followed by piR-
NAs in a study of cancer patients [41], whereas piRNA
was among the least abundant RNA species in our study.
Based on detection of mostly exosome-sized vesicles in
isolated EV fractions together with prior studies showing
miRNAs enrichment in exosomes, EV miRNAs charac-
terized in our study most likely reflect exosomal
miRNAs.
miRNAs are abundant in biofluids and widely studied

as biomarkers of diseases and biological processes. We
detected a total of 351 different miRNAs in plasma EVs,
with the top 50 miRNAs accounting for 90% of all
miRNA reads. miR-26a-5p was the most abundant

miRNA, followed by miR-21-5p and miR-148-3p, con-
sistent with another report studying small RNA signa-
tures in different body fluids where miR-26a-5p and
miR-21-5p were the most abundant miRNAs in plasma
[42]. Liver specific miRNAs miR-122 and miR-22 were
among the top 50 miRNAs identified in the test cohort,
suggesting liver is one potential source. miR-122 showed
an increasing trend in the test cohort and was signifi-
cantly elevated in HIV-positive subjects in the validation
cohort. Elevated miR-122 is implicated in viral hepatitis
and contributes to hepatotoxicity in HIV-positive indi-
viduals on ART [20, 43, 44]. Other abundant sources of
miRNAs in plasma are LDL and HDL particles. While
LDL-miRNA profiles align more closely with EV-
miRNAs, HDL-miRNAs have distinct miRNA profiles
[35]. Importantly, miR-135a-3p, an HDL-associated
miRNA, was not among the top 50 miRNAs detected in
our samples. Likewise, a platelet-associated miRNA,
miR-223, was not detected in majority of samples (mean
count < 5), suggesting platelets were not a major source
of detected miRNAs. The diversity of miRNA species
was similar in HIV-positive and HIV-negative subjects
(Fig. 4b), and we did not detect any significantly altered
miRNAs in HIV-positive versus HIV-negative subjects
by DEseq2-differential expression analysis of the top 50
miRNAs. The inability of DEseq2 to detect significantly al-
tered miRNAs in our study could be due to the low RNA
input from small volume of plasma used to isolate EV
fractions, and/or PCR bias during library preparation.
We selected miRNAs showing an increasing trend in

HIV-positive subjects in the test cohort, or previously
linked to HIV infection, inflammation, and/or oxidative
stress, for qRT-PCR validation in an independent cohort,
and confirmed the identity of selected miRNAs by align-
ing reads to their corresponding stem-loop sequence
from miRbase. Six miRNAs quantified by qRT-PCR
(miR-27b-3p, − 21-5p, − 122-5p, −10a-5p, − 423-5p, and
-146a-5p) were increased in HIV-positive compared to
HIV-negative subjects in the validation cohort. Possible
reasons why these six miRNAs were significantly in-
creased in the validation cohort, while only two of these

(See figure on previous page.)
Fig. 6 qPCR validation of candidate miRNAs and functional associations of differentially expressed miRNAs. a EV concentration (left) and median
size (right) measured by NTA in exosome fractions isolated from HIV-positive and HIV-negative subjects from the validation cohort. b Comparison
of Cq values of candidate miRNAs isolated from plasma EVs of HIV-positive and HIV-negative subjects using miRCURY LNA RT-qPCR kits. Mean
and SEM are shown. Significance was calculated using Mann Whitney test. (n = 8 HIV-positive and n = 8 HIV-negative subjects). c Heatmap shows
unsupervised hierarchical clustering of miRNAs (n = 6) that distinguish HIV-positive from HIV-negative subjects (p < 0.05, Mann-Whitney test). d .
miRNA target–gene network was constructed using Cytoscape for 61 target genes of 6 differentially expressed miRNAs in the validation cohort.
miRNAs are depicted by yellow nodes. 36 genes (60%) are targeted by more than one miRNA (orange nodes); genes targeted by one miRNA are
depicted by green nodes. e Functionally grouped network of enriched categories was generated for miRNA-target genes with REACTOME
pathways using the ClueGO plugin in Cytoscape as described in the Methods. Node sizes are indicative of p-values (larger size corresponds to
smaller p-values and vice versa). Nodes belonging to one functional group share the same color. Similar pathway terms with identical genes were
fused and pathway term ‘TP53 regulation of cell cycle genes’ was omitted for clarity. Complete list of pathway terms and associated genes is
shown in Supplementary Table 6
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Fig. 7 Correlation of candidate miRNAs with EV numbers and oxidative stress associated metabolites. a. Metabolites associated with oxidative
stress and immune activation are increased in HIV-positive versus HIV-negative subjects. Medians are represented by horizontal bars, boxes span
the IQR, and whiskers extend to extreme data points within 1.5 times IQR. Outliers are plotted outside 1.5 times the IQR. P-values were calculated
by Mann-Whitney test (n = 8 HIV-negative, n = 8 HIV-positive subjects). Scatter plots show correlation of miR-21-5p, miR-27b-3p, miR-146a-5p, and
miR-423-5p with EV numbers (b) and oxidative stress associated metabolites cystine, cysteine, cysteine-s-sulfate, and cys-gly, oxidized (c) in HIV-
positive (n = 8) and HIV-negative (n = 8) subjects. Correlation coefficients and p-values are shown above each plot. K:T ratio, kynurenine:tryptophan
ratio; RQ, relative quantity
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(miR-27b-3p and -10a-5p) had a statistically significant
increase (unadjusted p < 0.05) in the test cohort, include
the following: 1) validation cohort consisted of HIV-
positive subjects with more advanced HIV disease com-
pared to the test cohort; 2) higher specificity of targeted
qRT-PCR as compared to whole library amplification
during RNA-seq; and 3) normalization was performed
for the test cohort during differential expression analysis
by DEseq2, while Cq values from qRT-PCR were directly
compared in the validation cohort for equal volumes of
starting plasma and EV RNA.
Among the six miRNAs elevated in plasma EVs of

HIV-positive subjects in the validation cohort, miR-
125b-5p, −146a-5p, − 21-5p, −27b-3p, and − 423-5p were
previously associated with HIV infection. miR-125b-5p
may play a role in HIV latency [25], while miR-146a is
elevated in plasma of HIV-positive subjects, and may in-
hibit HIV by disrupting RNA-mediated Gag assembly
and virion budding [24, 45]. Elevated levels of miR-27b
decreased viral gene expression levels of HIV in vitro
[23]. Thus, increased levels of these miRNAs may play a
protective role during HIV infection. miR-27b and other
miRNAs including miR-10a, − 21, −125b, and -146a are
increased in vascular tissues during inflammation and
oxidative stress [28]. One factor that can promote in-
flammation and oxidative stress in HIV-positive subjects
is cocaine abuse [46, 47], which was prevalent in both
the test and validation cohorts (50%). However, we did
not detect significantly altered miRNAs with cocaine use
in HIV-positive or healthy control groups in either
cohort.
Our previous studies identified changes in plasma me-

tabolites related to chronic immune activation, oxidative
stress, and inflammation in HIV patients on ART [12].
Oxidative stress metabolites correlated positively, while
anti-inflammatory PUFA metabolites correlated nega-
tively, with exosome markers. Oxidative stress increases
exosome secretion in vitro, which can communicate pro-
tective messages to other cells in part by exosomal shut-
tling of RNA cargo [48]. EV-associated miRNAs, miR-
27b-3p, − 21-5p, −146a-5p, and − 423-5p were increased
in HIV-positive subjects compared to HIV-negative con-
trols and correlated positively with metabolites associ-
ated with oxidative stress (cysteine, cystine, oxidized cys-
gly, cysteine s-sulfate). miRNAs miR-27b and miR-21
are increased in response to oxidative stress in macro-
phages and regulate macrophage functions via the NF-
kB pathway [49], while miR-423 targets the HIV genome
in Gag regions and may interfere with HIV replication
[50]. Our finding that oxidative stress- and HIV-
associated miRNAs within plasma EVs correlate posi-
tively with oxidative stress metabolites is consistent with
a functional role for exosomes in modulating HIV
pathogenesis and redox homeostasis.

Over-representation and pathway enrichment analysis
of differentially expressed miRNAs and their target
genes predicted functional associations of these upregu-
lated EV miRNAs with oxidative stress response, inter-
feron gamma signaling, Toll-like receptor signaling, TGF
beta signaling, and Notch signaling. Interestingly, our
previous report investigating the EV proteome identified
Notch4 in plasma EVs and showed that EV-associated
Notch4 was increased in HIV-positive individuals and
correlated with immune activation markers [12]. Major-
ity of terms in pathway enrichment analysis were associ-
ated with TRAF6 and IRAK1 genes, which are targeted
by miR-146a-5p [51]. miR-146a-5p negatively regulates
type 1 interferon and inflammatory cytokine production
by targeting TRAF6 and IRAK1 [52, 53]. Transfection of
a miR-146a mimic in THP-1 cells leads to reduction in
levels of major cytokines/chemokines induced by LPS
[52]. Collectively, these data suggest that increased levels
of these miRNAs in circulating EVs may have protective
anti-inflammatory effects during HIV pathogenesis.
We acknowledge limitations of the study, particularly

those related to purity of EV preparations [54]. Although
plasma is a good source of EVs, it is challenging to sep-
arate plasma EVs from abundant plasma proteins, larger
microvesicles, lipoprotein particles, and ribonucleopro-
teins. In plasma, RNAs are associated with lipoproteins
(LDL/HDL) and ribonucleoproteins, which protect
extracellular RNAs against RNase-mediated degradation;
these particles can be coprecipitated during EV isolation,
leading to contamination of EV preparations with extra-
vesicular RNAs. In the validation cohort, we attempted
to eliminate extravesicular RNAs by Proteinase K
followed by RNase A treatment. This method resulted in
higher purity of EV fractions, but lower EV yield. Our
study was also limited by small volumes of plasma avail-
able for EV RNA isolation, leading to low RNA input.
Batch effects could be another confounding factor. Add-
itional potential confounders include effects of smoking,
HCV infection, and ART treatment, which could influ-
ence some findings [55, 56]. In particular, given known
effects of smoking on inflammation and miRNA expres-
sion and different proportions of smokers between
groups in the validation cohort, we cannot exclude the
possibility that smoking contributed to some of our re-
sults. Further studies in larger cohorts are needed to ad-
dress the impact of cigarette smoking, HCV infection,
ART drugs, and other factors on EV RNA cargo and to
assess whether target genes of upregulated miRNAs
identified in plasma EVs are downregulated in cells from
the same individuals.

Conclusions
In conclusion, our study shows that HIV-positive indi-
viduals on ART have elevated abundance of circulating
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EVs compared to HIV-negative individuals, and these
EVs carry diverse small RNA cargo including miRNA,
piRNA, snRNA, tRNA, and snoRNA, with miRNAs be-
ing the most abundant. Given their functional role in
post-transcriptional regulation, we focused on miRNAs
for validation studies and showed that six miRNAs
(miR-27b-3p, − 21-5p, − 122-5p, −10a-5p, − 423-5p, and
-146a-5p) were increased in plasma EVs of HIV-positive
compared to HIV-negative individuals, and these miR-
NAs correlated with metabolite markers of inflammation
and oxidative stress. These upregulated EV miRNAs are
predicted to have functional associations with oxidative
stress responses, interferon gamma signaling, Toll-like
receptor signaling, TGF beta signaling, and Notch sig-
naling based on over-representation and pathway enrich-
ment analyses. These findings suggest that circulating
EV miRNAs may reflect ongoing pathophysiological pro-
cesses in HIV-infected individuals on ART, serving as
potential biomarkers of inflammation and oxidative
stress and targetable mechanisms involved in disease
pathogenesis.

Methods
Study subjects
The study was performed in accordance with guidelines
in the Declaration of Helsinki. Test cohort plasma sam-
ples were obtained from HIV-positive (n = 12, age 43–
60 years) and HIV-negative subjects (n = 12, age 31–62
years) enrolled in the Chicago site of the Multicenter
AIDS Cohort Study (MACS), an ongoing prospective
study of HIV-infected and -uninfected MSM. All sub-
jects were enrolled with written informed consent and
IRB approval at Northwestern University Feinberg
School of Medicine. Validation cohort plasma samples
were obtained from HIV-positive subjects (n = 8, age
45–67 years) enrolled in the National NeuroAIDS Tissue
Consortium (NNTC) and healthy control plasma sam-
ples (n = 8), were from HIV-negative donors (from Bior-
eclamation IVT) with informed consent and IRB
approval at each NNTC study site (Manhattan HIV
Brain Bank, National Neurological AIDS Bank, Califor-
nia NeuroAIDS Tissue Network, Texas NeuroAIDS Re-
search Center) and Dana-Farber Cancer Institute,
respectively. Subjects were tested for HCV and HBV, but
not HIV-2, HTLV-I/II, or other infectious agents. HIV-
negative groups were frequency-matched to correspond-
ing HIV-positive groups to achieve overall balance in
distributions of age, race, cocaine use, and HCV infec-
tion between the HIV-negative and HIV-positive groups
in test and validation cohorts. Inclusion criteria for HIV-
positive subjects in both cohorts were: adults over 40
years old on ART with HIV plasma viral load undetect-
able or below 1000 HIV RNA copies/ml. Exclusion

criteria for all subjects were testing positive for HBV
surface antigen and/or HBV DNA.

EV isolation and size measurements
Fresh frozen plasma samples (0.5 ml) were thawed and
centrifuged for 15 min at 3000 X g. Cleared plasma was
incubated with thromboplastin D for 5 min at room
temperature to de-fibrinate plasma, followed by centrifu-
gation at 10,600 x g for 5 min. RNAse A treatment was
performed (10 μg/ml, at 37 °C for 15 min) to degrade
extra-exosomal RNA, followed by addition of RNAse in-
hibitor (150 U/ml, New England Biolabs) [57]. EV frac-
tions were isolated using PureExo Exosome Isolation kit
(101Bio, Mountain View, CA) per manufacturer’s in-
structions. Treated plasma was mixed with sample buffer
and a 1:1:1 mixture of reagent A, B, and C was added
and mixed by inverting tubes several times. The mixture
was incubated at 4 °C for 1 h and centrifuged at 5000 X
g for 3 min. The middle fluffy layer containing EVs was
collected and final EV pellet was resuspended in PBS.
The resulting EV fraction was passed through 0.22 μm
filter to remove EVs larger than exosomes. EV morph-
ology was characterized by imaging EV fractions on a
Tecnai G2 Spirit BioTWIN Transmission Electron
Microscope (TEM) equipped with an AMT 2 k CCD
camera at the Harvard University TEM core. Size distri-
bution and concentration of EV fractions was measured
by nanoparticle tracking analysis (NTA) on a ZetaView
instrument (Particle Metrix).

Small RNA isolation, library construction, and high-
throughput sequencing
Seven hundred μl Qiazol was added to EV fractions and
frozen at − 80 °C. Small RNA was isolated using miR-
Neasy micro kit (Qiagen) as per manufacturer’s instruc-
tions. RNA quality was assessed with Agilent
BioAnalyzer using a small RNA chip. All samples were
treated with T4 polynucleotide kinase (New England
Biolabs) to facilitate 5′ hydroxyl terminus phosphate la-
belling and allow greater binding of adaptors during li-
brary preparation [58]. Small RNA libraries were
prepared by processing 12 samples per batch (6 HIV-
positive and 6 HIV-negative), using NEBNext small
RNA Library Prep kit (New England BioLabs) according
to the manufacturer’s instructions, except 5′ and 3′
adaptors were diluted 1:3 with nuclease-free water to re-
duce adaptor dimer formation. The amplified libraries
were resolved on a 10% Novex TBE gel (Life technolo-
gies) and a library size range from 140 to 160 bp (derived
from adapter-ligated constructs from 21 to 40 nucleotide
RNA fragments) was excised from the gel for size selec-
tion and recovered in DNA elution buffer. Average size
distribution of each library was determined with the Agi-
lent Bioanalyzer System using High Sensitivity DNA
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Analysis Kit and quantified on ABI 7900HT Fast RT-
PCR instrument using the KAPA Library Quantification
kit. All libraries were pooled and sequenced on the Illu-
mina NextSeq 500 platform for single read 75 cycles at
the Center for Cancer Computational Biology, Dana-
Farber Cancer Institute.

Small RNA sequence data processing and mapping
Raw sequence data from Illumina NextSeq 500 were
converted to fastq format. Small-RNAseq reads were
processed and quantified using the exceRpt small RNA-
seq pipeline (version 4.6.2) available on the Genboree
Workbench [http://www.genboree.org/] (Fig. 1). The
software processes each sample independently through a
cascade of read-alignment and filtering steps designed to
remove likely contaminants before aligning to endogen-
ous sequence databases. Adapters were trimmed and
read quality assessed by FASTQC to filter out reads with
a PHRED score lower than 30 (FASTX-Toolkit v0.0.13).
Reads < 16 nt were excluded. Likely contaminant se-
quences derived from laboratory or rRNA contamination
were removed by mapping to the UniVec (library of
common contaminant sequences maintained by the
NCBI) and human ribosomal RNA (rRNA) sequences
using Bowtie2. Post filtering, reads were mapped to
human genome and pre-miRNA sequence databases
allowing for only a single mismatched base in each
alignment. First, reads were mapped to miRbase
version 21, gtRNAdb, piRNABank, circBase, and
snoRNA-LBME databases to assign reads to miRNAs,
tRNAs, piRNAs, circular RNAs, and snoRNAs, re-
spectively. Then, remaining sequences were annotated
to gencode version 24 (hg38), which includes biotypes
such as protein coding transcripts, mitochondrial
rRNA, mitochondrial tRNA, small nuclear RNA, long
intergenic noncoding RNA (lincRNA), pseudogenes,
and miscellaneous RNA.

qPCR validation of miRNAs
To validate candidate miRNAs from sequencing data, we
performed qPCR analysis of miR-10a-5p, miR-122-5p,
miR-125b-5p, miR-146a-5p, miR-21-5p, miR-27b-3p,
miR-423-5p, and let-7a-5p. miRNA-specific miScript Pri-
mer Assays were purchased from QIAGEN (hsa-miR-10a-
5p: YP00204778, hsa-miR-122-5p: YP00205664, hsa-miR-
125b-5p: YP00205713, hsa-miR-146a-5p: YP00204688, hsa-
miR-21-5p: YP00204230, hsa-miR-27b-3p: YP00205915,
hsa-miR-423-5p: YP00205624, hsa-let-7a-5p: YP00205727,
and spike-in control, UniSp6: YP00203954). EV fractions
were isolated following the same protocol as described
under ‘EV isolation and size measurements’ with the
following modifications to eliminate extravesicular RNAs:
defibrinated plasma was treated with proteinase-K (0.5mg/
ml for 30min at 55 °C) to release protein-associated RNAs

[34, 59]. Following isolation of EV fraction, PMSF (5mM
final concentration) was added to inhibit proteases. RNAse
A and RNAse inhibitor treatment was performed on EV
fractions as described in ‘EV isolation and size measure-
ments’. UniSp6 spike-in RNA was added to each sample
lysate and RNA isolation was performed as described above
and eluted in 14 μl nuclease-free water. Equal volumes of
EV RNA (6 μl) from each sample were reverse transcribed
using the miRCURY LNA RT Kit (Qiagen) at 42 °C for 60
min, and then the enzyme was inactivated at 95 °C for 5
min. After activation of the polymerase enzyme at 95 °C for
2min, 45 cycles of 95 °C for 10 s, and 56 °C for 60 s were
performed using miRCURY LNA SYBR Green PCR Kit
(Qiagen), on the BioRad CFX96 Real-Time System. Since
qPCR was performed in multiple batches, UniSp6 spike-in
was assayed in each batch to monitor variation between
batches. Each miRNA was assayed in duplicate and means
of 2 Cq values were calculated. Cq values were normalized
(ΔCq) by the global mean to account for inter-individual
sample differences.

Western blot analysis
EV fractions were lysed in lysis buffer (Triton X-100 1%,
NaCl 150 mM, sodium deoxycholate 0.5%, Tris-HCL 50
mM, SDS 0.1%, pH 7.4) and protein content measured
by BioRad DC protein assay. Fifty micrograms of protein
were separated in each lane of Tris SDS polyacrylamide
gels (4–12% gradient) and transferred onto PVDF mem-
branes. Blots were blocked with 5% milk and probed
overnight at 4 °C with primary antibodies against exo-
some markers CD9, Alix (sc-59,140, sc-53,540, Santa-
Cruz Biotechnology), CD81 (NB100–65805, NovusBio),
Flotillin-1, Tsg101 (610,821, 612,696, BD BioScience),
and Apo A1 (3710–3-1000, MabTech), followed by ap-
propriate secondary antibodies for 1 h; signal was devel-
oped by enhanced chemiluminescence (ECL). Images
were captured using a BioRad ChemiDoc™ Imaging
System.

Metabolomic profiling
Untargeted metabolomic profiling was performed by
Metabolon (Durham, NC) combining three independent
platforms: ultra-high performance liquid chromatog-
raphy and tandem mass spectrometry (UHLC/MS2/MS)
optimized for detection of acidic metabolites, UHLC/
MS2/MS optimized for detection of basic metabolites,
and gas chromatography (GC)/MS. Plasma samples
(100 μl) were extracted using the MicroLab STAR sys-
tem and processed for analysis on the three platforms as
described [12]. Samples derived from pooled experimen-
tal samples served as technical replicates, extracted water
samples served as blanks, and a cocktail of standards
spiked into every analyzed sample allowed instrument
performance monitoring. Compounds were identified by
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automated comparison of the ion features in the experi-
mental samples to a reference library of over 4000 chem-
ical standard entries that included retention time,
molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra and curated by
visual inspection for quality control using software devel-
oped at Metabolon.

Functional over-representation analysis of miRNAs
We assessed functions of differentially expressed miR-
NAs from HIV-positive versus HIV-negative subjects
using miRNA enrichment analysis and annotation tool
(miEAA; https://ccb-compute2.cs.uni-saarland.de/mieaa_
tool/ accessed in December 2019) [60]. MiEAA is a web-
based application that offers a variety of commonly ap-
plied statistical tests such as over-representation analysis
(ORA) and facilitates the functional analysis of sets of
miRNAs. MiEAA performs rich functional analysis in
terms of miRNA categories such as gene ontology, path-
ways, diseases, immune cells, and species conservation,
and tests whether a category is significantly enriched
(FDR adjustment) in a given miRNA set with respect to
a reference using statistical tests implemented in the
gene set analysis toolkit, GeneTrail.

Identification of miRNA-target genes
Predicted and validated miRNA–target relationships
were assessed by the web-based multiple predictor tools
mirDIP v4.1.11.1 [61], and miRWalK v3.0 [62]. These
tools query a series of miRNA target predictors and
show which target is predicted by one or more algo-
rithms. We also used experimentally validated targets
deposited in miRTarBase v7.0 [63]. Targets from mirDIP
were filtered to include only those that were predicted
by at least 20 different sources and score class was set to
‘very high’ (top 1%). Targets from miRWalk were filtered
to include target genes present in all three databases
queried by miRWalk (TargetScan 7.2, miRDB 5.0, and
miRTarBase 7.0). The final set of target genes (Supple-
mentary Table 5) for validated miRNAs was selected
based on: 1) being present in both miRDIP and miR-
Walk filtered lists; or 2) present in either list and experi-
mentally validated in miRTarbase. Predicted miRNA
target–gene networks were constructed using Cytoscape
v3.7.2 [64].

Pathway enrichment analysis
Functional enrichment analysis of miRNA-target genes
was performed with REACTOME pathways using the
ClueGO v2.5.5 [65] plugin of Cytoscape 3.7.2. To iden-
tify enriched pathways in the REACTOME database, we
used two-sided (enrichment/depletion) tests based on
hyper-geometric distribution. Pathways with p ≤ 0.05
were selected and Benjamini-Hochberg adjustment was

used to correct p-values for terms and groups created by
ClueGO. Kappa score threshold was set to 0.6; GO tree
interval was 3–8; Leading Group was selected by ‘highest
significance’; % of Group Merge was 50.

Data processing and statistical analysis
For small RNA-sequence data analysis, raw read counts
obtained from the Genboree Workbench’s exceRpt small
RNA-seq pipeline were further analyzed using R (version
3.5.2). Differential expression fold-changes and p-values
were calculated with the DEseq2 package (version
1.22.2), adjusting for library concentration, in conjunc-
tion with adjustment for ‘nuisance factors’ estimated
from glm residuals using the RUVseq package (version
1.16.1). Altered miRNAs or protein coding sequences
with absolute fold change > 1.3 and FDR < 0.1 were con-
sidered significant. miRNAs with < 5 counts per million
reads (cpm) in ≥75% of the samples were excluded and
the top 50 most abundant miRNAs were selected for DE
analysis. Unsupervised hierarchical clustering using the
ComplexHeatmap R package (version 2.2.0) was used to
evaluate clustering in heatmaps. For metabolite profiling,
metabolite data was normalized by median centering.
Missing values were imputed with the lower limit of de-
tection for a given metabolite. Pearson correlations were
used to evaluate relationships between plasma metabo-
lites and miRNA levels (p < 0.05). qPCR miRNA levels
were compared between groups using the Mann Whit-
ney U-test in PRISM (GraphPad) (p < 0.05).
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Additional file 1: Supplementary Figure S1: Comparison of total read
counts for each RNA biotype in HIV-positive (n = 12) versus HIV-negative
(n = 12) subjects. Supplementary Figure S2. Principal component ana-
lysis of the top 50 miRNAs identified by small RNA sequencing of plasma
EV RNAs from HIV-positive (n = 12) and HIV-negative (n = 12) subjects.
Three HIV-negative outliers (circled in green) were excluded from down-
stream differential expression analysis. Supplementary Figure S3.
Plasma EV isolation and purification to exclude extravesicular RNAs. EV
fractions were isolated from pooled plasma of healthy control subjects
(n = 3) using the PureExo kit. Defibrinated plasma was either untreated, or
treated with RNAse A, or with Proteinase-K followed by RNAse A, to elim-
inate extravesicular RNAs. TEM (top), particle size distribution (bottom
left), particle concentration (bottom middle), and immunoblotting for
exosome markers and ApoA1 (bottom right) are shown for each treat-
ment condition. Supplementary Figure S4. Comparison of Cq values of
miRNAs in plasma EVs of HIV-positive and HIV-negative subjects in the
validation cohort, stratified by cocaine use. Mean and SEM are shown.
Significance was calculated using Mann Whitney test. (n = 8 HIV-positive
and n = 8 HIV-negative subjects). Supplementary Figure S5: Scatter
plots showing inverse relationships between PUFA metabolites and EV-
associated miRNAs. Pearson correlation coefficient and p-value are shown
above each plot. n = 16 subjects (8 HIV-positive and 8 HIV-negative). DHA,
docosahexaenoate (22:6n3); n3 DPA, docosapentaenoate (22:5n3); n6
DPA, docosapentaenoate (22:5n6) and EPA, eicosapentaenoate (20:5n3).
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Additional file 2: Supplementary Table S1 - Biotype counts of
different RNA species identified by RNA-sequencing of plasma EV small
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Additional file 3: Supplementary Table S2 - Read counts (normalized
RPM) of all mapped mature plasma EV miRNAs in the test cohort.

Additional file 4: Supplementary Table S3 - Differential expression
analysis of top 70 protein coding reads showing fold change between
HIV-positive (n = 8) versus HIV-negative (n = 12) subjects in the test co-
hort. 70 genes were selected from a total of 14,500 genes by filtering for
protein coding sequences with counts > 10 in at least 25% samples, and
not identified in a blank sample from an independent experiment.

Additional file 5: Supplementary Table S4 - Over-representation ana-
lysis of differentially expressed plasma EV-miRNAs in the validation cohort
using miEAA (miRNA Enrichment Analysis and Annotation) tool.

Additional file 6: Supplementary Table S5 - Predicted and validated
target genes of 6 differentially expressed plasma EV-miRNAs in the valid-
ation cohort. Shown are 61 target genes selected based on the rule: 1)
present in both miRDIP and miRWalk predicted target lists; OR 2) present
in either miRDIP or miRWalk predicted target lists and experimentally vali-
dated (miRTarbase).

Additional file 7: Supplementary Table S6 - Enriched pathway terms
of networks associated with 61 predicted and validated target genes of 6
miRNAs upregulated in the validation cohort using ClueGo software
(.xlsx)

Additional file 8: Supplementary Table S7 - Levels of plasma
metabolites associated with oxidative stress, polyunsaturated fatty acid
(PUFA), and tryptophan/kynurenine metabolism in HIV-negative (n = 8)
and HIV-positive (n = 8) subjects in the validation cohort.

Additional file 9: Supplementary Figure S6 – Full-length images of
blots shown in Fig. 2c.
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