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Chicken adaptive response to low energy
diet: main role of the hypothalamic lipid
metabolism revealed by a phenotypic and
multi-tissue transcriptomic approach
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Abstract

Background: Production conditions of layer chicken can vary in terms of temperature or diet energy content
compared to the controlled environment where pure-bred selection is undertaken. The aim of this study was to
better understand the long-term effects of a 15%-energy depleted diet on egg-production, energy homeostasis
and metabolism via a multi-tissue transcriptomic analysis. Study was designed to compare effects of the nutritional
intervention in two layer chicken lines divergently selected for residual feed intake.

Results: Chicken adapted to the diet in terms of production by significantly increasing their feed intake and
decreasing their body weight and body fat composition, while their egg production was unchanged. No significant
interaction was observed between diet and line for the production traits. The low energy diet had no effect on
adipose tissue and liver transcriptomes. By contrast, the nutritional challenge affected the blood transcriptome and,
more severely, the hypothalamus transcriptome which displayed 2700 differentially expressed genes. In this tissue,
the low-energy diet lead to an over-expression of genes related to endocannabinoid signaling (CN1R, NAPE-PLD)
and to the complement system, a part of the immune system, both known to regulate feed intake. Both
mechanisms are associated to genes related polyunsaturated fatty acids synthesis (FADS1, ELOVL5 and FADS2), like
the arachidonic acid, a precursor of anandamide, a key endocannabinoid, and of prostaglandins, that mediate the
regulatory effects of the complement system. A possible regulatory role of NR1H3 (alias LXRα) has been associated
to these transcriptional changes. The low-energy diet further affected brain plasticity-related genes involved in the
cholesterol synthesis and in the synaptic activity, revealing a link between nutrition and brain plasticity. It
upregulated genes related to protein synthesis, mitochondrial oxidative phosphorylation and fatty acid oxidation in
the hypothalamus, suggesting reorganization in nutrient utilization and biological synthesis in this brain area.

Conclusions: We observed a complex transcriptome modulation in the hypothalamus of chicken in response to low-
energy diet suggesting numerous changes in synaptic plasticity, endocannabinoid regulation, neurotransmission, lipid
metabolism, mitochondrial activity and protein synthesis. This global transcriptomic reprogramming could explain the
adaptive behavioral response (i.e. increase of feed intake) of the animals to the low-energy content of the diet.
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Background
The egg-production sector uses genetically selected
chicken breeds bought from a few breeding companies.
While the purebred selection process usually takes place
in a controlled environment, commercial layers are ex-
posed to a wide diversity of environments, some being
more challenging than others because of stressors like
high heat, sub-optimal diet composition or low diet en-
ergy content. In this study we investigated, on laying
hens, the effects that a 15%-energy depleted diet pro-
vided ad libitum over a long period (14 weeks) has on
the transcriptome of several energy-related tissues to
verify if animal performance changes related to the low
energy intake were due to underlying mechanisms at the
transcriptomic level. The low-energy diet used in this
study resembles the type of diet that can used for layer
production in countries where, for diverse reasons, ac-
cess to protein or oil happens to be too costly or impos-
sible due to the lack of supply. While several studies
have investigated the effect of a low-energy diet on the
performances of laying hens, no study has analyzed the
tissue mechanisms underlying performance variations at
the transcriptomic level. As examples, Grobas et al. [1]
observed an increase in feed intake, a decrease in body
weight gain and no difference in egg production rate
and egg weight in layers fed ad libitum a 2680 kcal/kg
diet compared to a 2810 kcal/kg diet, both with the same
protein content levels per kilocalorie of energy, from 22
to 65 weeks of age. Harms et al. [2] observed the same
results regarding feed intake, body weight gain, egg pro-
duction rate and egg weight for layers fed a 2519 kcal/kg
diet compared to a 2798 kcal/kg control diet from 36 to
44 weeks of age, with adjusted levels of amino-acids. On
the contrary, Murugesan and Persia [3] observed no ef-
fects on egg production, body weight and feed intake,
but only a reduction of the abdominal fat pad mass in
layers fed ad libitum a 2790 kcal/kg diet, compared to a
2880 kcal/kg control diet, both diets having approxi-
mately the same crude proteins content, from 28 to 39
weeks In this context, we investigated the effects of a
low-energy diet on the performances and feed intake to-
gether with the transcriptomes of four tissue of adult
layers fed ad libitum two diets differing in energy con-
tent (2321 kcal/kg for the low-energy diet versus 2710
kcal/kg for the commercial diet) from 17 to 31 weeks of
age. Since feed efficiency is a key factor for energy allo-
cation and is a trait of economic importance, we hypoth-
esized a possible interaction between feed efficiency and
the response to the energy-depleted diet. We therefore
compared the response to the low-energy diet between
two brown egg layer lines divergently selected for the re-
sidual feed intake (RFI) [4] to evaluate such a potential
interaction between diet and feed efficiency factors. The
RFI is the difference between the predicted feed intake

estimated considering body weight and egg production,
and the observed feed intake. The four tissues used to
explore the transcriptomic mechanisms at work in re-
sponse to the low-energy diet on the same animals as
those used for the performance analysis were the liver,
the adipose tissue, the blood and the hypothalamus, all
related to energy homeostasis. The adipose tissue is
crucial for fatty acid storage, the main form of energy
storage, and mobilization. The liver is a key organ for
lipogenesis in birds [5], in addition to many other
physiological processes such as oxidation, secretion and
detoxification. The hypothalamus is an important center
for the regulation of feed intake, and blood is a circulat-
ing tissue that gathers and transports nutrients, hor-
mones, proteins and cell waste throughout an organism.
To the best of our knowledge, such a study analyzing
both laying performances and four tissue transcriptomes
in response to an energy-depleted diet has not yet been
undertaken in layers.

Results
Diet energy change had little effect on production traits
but affected feed intake and body composition
The line, diet and interaction effects on body weight, egg
production and shell strength, feed intake (FI), residual
feed intake (RFI) and abdominal adipose weight after 14
weeks of the low-energy diet are summarized in Table 1.
The diet energy content difference had no effect on egg
production, i.e. on laying rate, egg weight and egg mass.
In contrast, we observed a significant decrease in body
weight at 31 weeks (on average for both lines, − 4.4%,
p < 0.05) in the LE group compared to the CT group,
despite the fact that at the beginning of the trial (17
weeks of age), the LE group was slightly heavier than the
CT group (on average, + 3%, p < 0.05, Additional file 1).
We also observed a significant (p < 0.05) increase of feed
intake in the LE group over 28 to 31th week of age,
without significant interaction with the line (p = 0.50). It
can however be noted that the increase in feed intake in
response to the LE diet is smaller in the R- line (+ 145 g)
than in the R+ line (+ 270 g), which can be related to the
fact that the R- line generally eats less; the interaction
between diet and line remains however not significant.
The calculated RFI was significantly higher in the LE
group, meaning that the animals were less feed efficient
than the CT group. Finally, the LE group had at 31
weeks of age a significantly lower ratio of abdominal adi-
pose tissue weight to body weight compared to the CT
group (on average, − 0.72, p < 0.05), even if the body
weight significantly decreased at the same age (on aver-
age − 4.4%, p < 0.05) indicating a higher decrease of ab-
dominal tissue (on average, − 20.6%, p < 0.05).
Concerning the line factor, as expected, we observed sig-
nificant differences on FI, RFI and abdominal adipose
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weight. The significant line effect for the body weight at
31 weeks, for which the interaction p-value was the low-
est and close to 0.10 is due to the {R-,LE} group, the ani-
mals of which are lighter than in the three other groups.
However, we observed no significant differences between
the body weight of R+ and R- from the control group, as
expected since the divergent selection on RFI was per-
formed at constant body weight. Both lines, regardless of
their RFI, reacted in a similar way to the energy-depleted
diet by increasing their feed intake. However, this in-
crease in feed ingestion was not sufficient to avoid body
weight loss in the R- fed with the LE diet and depletion
of the energy reserves (body fat). To explore the molecu-
lar mechanisms underlying this adaptation, we analyzed
gene expression of several tissues of birds from these
two lines and diets.

Diet energy change leads to transcriptomic modifications,
mainly in hypothalamus and blood
To explore the genes involved in the response of birds
to the two diets, we analyzed the transcriptomic changes
associated with diet changes in the adipose tissue, blood,
hypothalamus and liver. A total of 16,461 genes were
expressed in at least one of the four tissues considered,
and represents 66% of the 24,881 genes from Ensembl
v93 annotation (Fig. 1a and b). Of these 16,461 genes,
13,567, 11,440, 15,307 and 12,873 were expressed in the
adipose, blood, hypothalamus and liver, respectively
(Fig. 1b), and 10,314 (41%) were expressed in all four tis-
sues (Fig. 1a). Some of these genes were tissue-specific,
representing 1.34% (adipose) to 10.8% (hypothalamus) of
the total number of genes expressed in the tissues

(Fig. 1a, Additional file 2). The hypothalamus had mark-
edly higher gene-specificity, with 1653 genes expressed
only in this tissue. It also had the greatest number of
total expressed genes (15307). Strikingly, diet change
had a large effect on the hypothalamic and blood tran-
scriptomes, with 2700 and 1334 differentially expressed
genes (DEG), respectively, while the hepatic and adipose
tissue transcriptomes were almost unaffected (15 and 2
DEG, respectively) (Fig. 1c and d, Additional file 3). The
line had a major effect in all tissues, with 3143, 4631,
1874 and 2480 DEG in the adipose, blood, hypothalamus
and liver, respectively. As only a very small number of
significant interactions (pFDR < 0.05) were observed
(Fig. 1c), allowing for an independent analysis of the line
and diet factors, the present paper focuses only on the
diet effect.

Functional characterization of hypothalamic
transcriptome changes upon diet energy challenge
Among the 2700 DEG detected in the hypothalamus in
response to the diet energy change, 1438 and 1262 genes
were over- and under-expressed, respectively, in the LE
group compared to the control. We characterized these
two DEG lists using KEGG pathway term enrichment as
described in Methods. For the over- and under-expressed
gene lists, 26 and 44 pathways (pFDR < 0.05) were signifi-
cantly enriched (Additional file 4). The 10 top terms with
the lowest pFDR for both DEG lists are presented in
Table 2.
Pathways associated with the under-expressed genes

(Table 2A) comprised 91 under-expressed genes related to
different types of synapses: glutamatergic, dopaminergic

Table 1 Means (±SD) and significance for production, feed efficiency and body composition traits, for the effect of the diet, the line
and their interaction

{R+,CT}a {R+,LE}a {R-,CT}a {R-,LE}a Dietb Lineb Diet × Lineb

Body weight, week 31 (g) 2162.35 (±165.33) 2142.46 (±129.28) 2089.44 (±216.87) 1925.40 (±217.32) * ** 0.11

Laying intensity (%) 86.17 (±11.92) 87.73 (±7.81) 86.87 (±5.44) 84.59 (±8.58) 0.70 0.50 0.54

Egg number 60.94 (±9.33) 62.18 (±9.93) 61.17 (±6.16) 60.47 (±7.43) 0.93 0.86 0.60

Egg weight (g) 47.91 (±3.11) 46.80 (±2.98) 48.08 (±2.25) 47.61 (±1.82) 0.21 0.53 0.60

Egg mass (g)c 1166.41 (±181.31) 1182.36 (±210.53) 1118.36 (±108.85) 1055.80 (±126.99) 0.43 * 0.27

Static stiffness (N.mm−1) 109.68 (±18.75) 104.64 (±15.58) 126.75 (±18.39) 118.95 (±18.76) 0.12 *** 0.75

Feed intake (g)c 4128.47 (±426.94) 4398.10 (±551.14) 2583.92 (±308.26) 2728.73 (±419.65) * *** 0.50

Energy intake (kcal)c 11,188.16 (±1157.00) 10,207.97 (±1279.19) 7002.41 (±835.38) 6333.39 (±974.01) ** *** 0.52

RFI (g/21d−1)c 868.36 (±329.66) 1152.32 (±390.52) − 614.35 (±134.93) − 196.81 (±211.78) *** *** 0.28

Abdominal adipose weight
at 31 weeks (g)

73.33 (±21.10) 57.10 (±18.61) 129.83 (±44.23) 105.00 (±31.67) * *** 0.64

Ratio of abdominal adipose
weight to body weight
at 31 weeks (%)

3.37 (±0.83) 2.65 (±0.78) 5.96 (±1.39) 5.24 (±1.09) * *** 1

aValues represent the line/treatment group means for each trait (±standard deviation). R+ refers to low feed efficient layers and R- to high feed efficient layers, CT
to control group and LE to low energy diet. The number of animals analyzed are: R+,CT n = 34, R+,LE n = 11, R-,CT n = 36, R-,LE n = 15
b***: p < 0.001, **: p < 0.01, *: p < 0.05
cFeed-related traits were measured between 28 and 31 weeks of age
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and GABAergic synapses, as well as the synaptic vesicle
cycle or axon guidance. Among these genes were notably
GRIA1, GRIA3 and GRIA4 that code for subunits of the
glutamate receptor, the predominant excitatory neuro-
transmitter in the nervous system; DDC, that code for an
enzyme involved in the synthesis of dopamine, a neuro-
transmitter involved in the reward system, and DRD3 that
code for a subunit of the dopamine receptor; GABRQ,
GABRG2, GABRR2 that code for subunits of the receptor
to the gamma-aminobutyric acid (GABA), the major in-
hibitory neurotransmitter.
Pathways associated with over-expressed genes in LE

compared to CT (Table 2B) were related to the “Ribo-
some” and several metabolic pathways. “Ribosome”
comprises 83 ribosomal Protein genes, of which 41
Ribosomal Protein L (RPLx) genes, 27 Ribosomal

Protein S (RPSx), as well as 8 Mitochondrial Ribosomal
Protein L (MRPLx) and 5 Mitochondrial Ribosomal
Protein S (MRPSx). Among the metabolic pathways,
energy-related pathways appear to be most affected. In-
deed, we found an over-representation of genes associ-
ated with oxidative phosphorylation, a process that
involves a series of oxidation-reduction reactions in
mitochondria, resulting in the phosphorylation of ADP
to produce ATP. Among these genes, 31 were related
to one of the 5 protein complexes constituting the re-
spiratory chain located in the inner mitochondrial
membrane: 15 genes for the complex I (NADH:ubi-
quinone oxidoreductase), 8 genes the complex II (suc-
cinate:ubiquinone oxidoreductase), 3 genes for the
complex III (ubiquinol:ferricytochrome C oxidoreduc-
tase), 2 genes for the complex IV (cytochrome C

Fig. 1 Overview of gene expression and differential expression between diets in the adipose tissue, blood, hypothalamus and liver. a Venn
diagram of the genes expressed and shared in the four tissues. b Total number of genes expressed in each tissue; between brackets, percentage
of v87 annotation (24,881 genes). c Differentially expressed genes (DEG) in each tissue (columns) and each factors, Line, Diet and Interaction
(rows). The total number of DEG (left) and the details of the number of up- (↗) and down-expressed genes (↘) in LE diet (or R+ line) compared
to CT (to R- line) are indicated. Hypoth.: Hypothalamus. d Venn diagram of the DEG between diets in the four tissues. Single genes in the
diagram are: (a) ENSGALG00000002503 (SFTPA2) (b) ENSGALG00000031497 (no HGNC), (c) ENSGALG00000026507 (FDX1) and (d)
ENSGALG00000006099 (ZFPM1)
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oxidase) and 2 genes for the complex V (FoF1-ATP
synthetase), in addition to SLC25A4, the ADP/ATP
translocase 1. More than 21 of them are located in the
mitochondrial genome. In addition, genes involved in
fatty acid transport (ACSBG1, APOA1, APOC3, DBI,
SLC27A1, FABP4, FABP7, SCP2), the fatty acid β-
oxidation in the mitochondria (CPT2, CACT, ACADL,
ACADS, ECHS1, ECI1, HADH, HADHB, ACAA2), and
to a lesser extent, in the peroxisomes (ACAA1, ACOX,
ECI2) were also over-expressed. On the contrary, genes
involved in the de novo lipogenesis were significantly
under-expressed, in particular FASN, that codes for a
key enzyme of the saturated fatty acid synthesis, and
ACLY that codes for the primary enzyme involved in
the synthesis of cytosolic acetyl-CoA from citrate. Simi-
larly genes involved in the cholesterol synthesis such as
HMGCR, FDFT1, SQLE, CYP51A1, DHCR7, and
DHCR24 were also under-expressed. Interestingly, we
observed an over-expression of genes involved in the
biosynthesis of ω3 and ω6 polyunsaturated fatty acids,
with FADS2, ELOVL5, FADS1, ELOVL2 and (see top 5
and 19 KEGG term). It is noteworthy that one of the
products of this pathway, the arachidonic acid, can be
used by the enzyme coded by NAPEPLD, which is over-

expressed (FC = 1.93, pFDR = 6.86 × 10− 11) as a sub-
strate for the synthesis of anandamide. Since the lipid
metabolism was largely impacted (Fig. 2a), we studied
the transcription factors related to this metabolism
(Fig. 2b). The expressions of PPARA, SREBF2 and
SREBF1 genes were not affected (FC = 1; 0.88 and 1.08
respectively, with pFDR = 0.99; 0.44 and 0.79, respect-
ively). On the other hand, NR1H3 (alias LXRA) was sig-
nificantly over-expressed (FC = 1.55, pFDR = 2 × 10− 6).
The 30 genes most correlated (r > 0.8) to NR1H3 are
showed in Fig. 2c in which can be found FADS2 and
NAPE-PLD (r = 0.81 and r = 0.84, pFDR < 2.24 × 10− 5 and
pFDR < 5.4 × 10− 6, respectively, Fig. 2d).

Functional characterization of blood transcriptomic
changes upon diet energy change
Among the 1334 DEG detected in the blood in re-
sponse to the dietary change, 719 and 615 genes were
over- and under-expressed, respectively, in the LE com-
pared to the CT group. KEGG characterization of the
over- and under-expressed DEG lists reveals 2 and 8
significantly enriched pathways, respectively (pFDR <
0.05) (Additional file 5). The terms for both DEG lists
are presented in Table 3.

Table 2 Top 10 (based on pFDR) KEGG pathways associated with under-expressed (A) and over-expressed DEG (B) in the
hypothalamus

Term # of genes pFDR

A. Under-expressed genes in LE compared to CT

Synaptic vesicle cycle 22 7.36 × 10−11

Glutamatergic synapse 26 1.79 × 10−08

Dopaminergic synapse 26 2.37 × 10−07

Axon guidance 25 5.62 × 10−07

Oxytocin signaling pathway 27 2.46 × 10−06

Circadian entrainment 20 2.50 × 10−06

Oocyte meiosis 21 7.03 × 10− 06

Protein processing in endoplasmic reticulum 26 2.04 × 10−05

Nicotine addiction 12 2.04 × 10−05

GABAergic synapse 17 5.18 × 10− 05

B. Over-expressed genes in LE compared to CT

Ribosome 83 1.03 × 10−67

Metabolic pathways 166 2.57 × 10−25

Oxidative phosphorylation 46 3.26 × 10−22

Glycine, serine and threonine metabolism 15 7.73 × 10−08

Fatty acid metabolism 15 1.81 × 10−06

Fatty acid degradation 14 2.52 × 10−06

Valine, leucine and isoleucine degradation 14 3.18 × 10−06

PPAR signaling pathway 16 3.65 × 10−05

Carbon metabolism 19 1.54 × 10−04

Alanine, aspartate and glutamate metabolism 10 4.70 × 10−04
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The pathways associated with under-expressed genes in
blood are related to “Metabolic pathways”, in particular
amino acids biosynthesis (ACO2, ALDH7A1, CPS1, CTH,
ENO2, GOT1, PFKP, TALDO1, TKT, TPI1), fructose and
mannose metabolism (AKR1B1, AKR1B10, PFKFB4,
PFKP, PMM2, TPI1) or galactose metabolism (AKR1B1,
AKR1B10, GALK2, PFKP, PGM2). Genes involved in
cholesterol biosynthesis were under-expressed in blood

(FDFT1, SQLE, CYP51A1, NSDHL and DHCR24) as in
hypothalamus. The two pathways associated with over-
expressed genes are “RNA degradation”, with EDC3,
EXOSC5, PABPC1, PAN2, PAN3, PATL1, RQCD1,
SKIV2L and TOB2, and “Ribosome”, which contains 3
RPL, 3 MRPL, 3 Ribosomal Protein Lateral Stalk Subunit
P (RPLPx) and 4 RPS genes, 11 out of these 13 genes were
also over-expressed in hypothalamus.

Fig. 2 Lipid metabolism modulation in the hypothalamus in response to the LE diet and genes highly correlated to NR1H3 (LXRα). a Schematic
summary of the lipid metabolism related genes found to be differentially expressed in the hypothalamus of LE group. b Boxplot of the
expression of the key lipid transcription factor/nuclear receptors. c Top 30 genes which expression is correlated to NR1H3. d Co-expression plot
of NR1H3 with NAPE-PLD (right) and FADS2 (left). n.s: not significant; ***: p < 0.001

Table 3 KEGG pathways associated with over-expressed (A) and under-expressed DEG (B) in the blood

Term # of genes pFDR

A. Under-expressed genes in LE compared to CT

Metabolic pathways 61 7.92 × 10−05

Biosynthesis of amino acids 10 2.18 × 10−03

Carbon metabolism 11 8.02 × 10−03

Fructose and mannose metabolism 6 9.32 × 10−03

Steroid biosynthesis 5 9.32 × 10− 03

Amino sugar and nucleotide sugar metabolism 7 9.32 × 10−03

Pentose phosphate pathway 5 2.20 × 10−02

Galactose metabolism 5 3.82 × 10−02

B. Over-expressed genes in LE compared to CT

Ribosome 13 2.95 × 10−02

RNA degradation 9 3.24 × 10− 02
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Detection of co-expressed genes with WGCNA within
hypothalamus and blood DEG lists
To detect gene subsets in our DEG lists, we used the R
package WGCNA to identify and cluster co-expressed
gene modules (see Methods). As shown in Fig. 3,
WGCNA separated for hypothalamus (Fig. 3a) and blood
(Fig. 3c) different co-expression groups (noted by a color)
for both “LE > CT” (in red) and “LE < CT” (in blue) DEG
lists. Interestingly, 2 modules of the same DEG list were
not positively correlated in the blood (Fig. 3d, pink color
in the correlation matrix) with the blue and purple mod-
ules for the red “LE > CT” DEG list and the red and tur-
quoise modules of the blue “LE < CT” DEG list, while all
modules were positively correlated in the hypothalamus
(Fig. 3b). The plots of module eigengenes of these two
pairs can be found in Fig. 3e. We can clearly distinguish in
the two plots, two distinct parallel series of points that
correspond to the R+ and R- lines. This parallelism reveals
two facts: first, a difference of expression between the lines
with a positive “R- / R+” expression ratio for the purple
module (i.e., the x-axis of the plot in Fig. 3e top) whereas
it is negative for the blue module (i.e., the y-axis). Second,
the eigengene expression differential between the LE and
CT groups (symbolized by a Δdiet in Fig. 3e) is similar for
both lines confirming the absence of a diet × line inter-
action. We found the same characteristics for the red vs.
turquoise modules (Fig. 3e bottom). This illustrates again
that this difference is independent of the line effect, and

the absence of interactions at the gene expression level, as
already seen in Fig. 1c.
The functional analysis of each co-expressed gene

module in the hypothalamus revealed KEGG terms
similar to the full list of over- and under-expressed
genes for the turquoise and blue modules, respectively,
and no KEGG term enrichment for the green, red and
yellow modules. In the pink module, three genes were
associated with “N-Glycan biosynthesis”, while the
brown module was enriched in genes related to vesicles
and organelles. Finally, the black module was enriched
in terms associated with immunological functions (see
Additional file 6). This last module, composed of 134
genes, is associated with 10 immunological-related
pathways, supported by 22 genes in total, such as
C1QA, C1QB and C1QC, C3AR1, CD14, IRF1 and
TLR4. In the blood, we found seven modules in the list
of over-expressed genes and five modules in the list of
under-expressed genes. Functional analysis revealed
KEGG terms similar to the full list of under-expressed
genes for the black module. No KEGG term enrichment
were found for the purple, magenta, green, blue, pink,
turquoise, brown, and red modules. The greenyellow
module was enriched with genes associated to “Ribo-
some” and “Protein processing in endoplasmic
reticulum”, while the salmon module was enriched with
3 genes associated with the “Estrogen signaling path-
way” (See Additional file 7).

Fig. 3 Analysis of WGCNA modules obtained for the hypothalamus and blood differentially expressed genes. Hierarchical clustering of the
eigengenes of the modules detected with hypothalamus (a) and blood (b) DEG. Module colors are drawn next to module names, with the
number of genes in the modules. Unclustered genes are in the grey module. The boxes on the right indicate whether the module contains over-
expressed (LE > CT) genes (red) or under-expressed (LE < CT) genes (blue). Black lines highlight the 2 subsets distinguished by WGCNA for the
LE > CT DEG list. c Heatmap of the correlation matrix between the modules eigengenes. Note the negative correlation (pink boxes) between the
purple and blue modules (top) and turquoise and red modules (bottom). d Plots of two pairs of module eigengenes from blood DEG. Top: purple
vs. blue module from the LE < CT DEG list, bottom: turquoise vs. red module from the LE > CT DEG list. Δdiet is the difference between the LE
mean vs. CT mean (symbolized with an empty circle) for each line
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Focus on genomic regions concentrating differentially
expressed genes
We searched for groups of three or more DEG in close
physical proximity (i.e., side by side) along the genome
that had a significant pairwise expression correlation
(|r| > 0.7 & pFDR < 10

− 4), hypothesizing that such genes
might be co-regulated by a local common mechanism.
We found two such proximal co-expressed gene groups in
the hypothalamus (Fig. 4a and b), composed of RPS6KA2,
MPC1 and SFT2D1 for the first one (Fig. 4a) and C1QA,
C1QB and C1QC for the second (Fig. 4b), genes that be-
long to the black WGCNA module, which was enriched
in immunity-related genes.

Discussion
Layers from both lines adapt to the low-energy diet by
increasing feed intake and changing body reserve
dynamics
The absence of significant differences in egg production
(number and weight) between the LE and CT groups sug-
gests that the animals were able to adapt to a suboptimal
diet. The adaptive mechanisms adopted by the animals to
compensate for the decrease in diet-energy content in-
volved an increase in feed intake and a decrease of the
abdominal adipose tissue. The increase in feed intake in
response to a 15%-energy-depleted diet over 14 weeks is
consistent with the results from Grobas et al. [1] and
Harms et al. [2]. However, this increased ingestion did not
allow the layers from the LE group to fully compensate for
the difference in energy, (Table 1) as indicated by the
significant difference in Energy Intake between the diet
groups. The decrease of the percentage of fat weight to
the total weight, probably resulting from this incomplete
compensation, is consistent with the results reported by

Murugesan and Persia [3], where layers were fed a 3%-en-
ergy-depleted diet compared to the control over 11 weeks,
although the authors did not observe a feed intake modifi-
cation, perhaps due to the small difference in energy be-
tween the two diets.
The absence of a significant line × diet interaction at

the expression level is consistent with the absence of
interaction at the trait level, meaning that both R+ and
R- birds reacted to the energy-depleted diet in a similar
way and with the same magnitude. At the expression
level, the Δdiet values in Fig. 3e illustrates this conclu-
sion: as an example, Δdiet for the genes belonging to the
purple module are similar in the two lines whereas these
genes are more expressed in R- than in R+.

Liver and adipose tissue transcriptomes were unaffected
by the low-energy diet
Neither the abdominal adipose tissue nor the liver tran-
scriptomes were affected by the diet change, as shown
by the small number of differentially expressed genes in
these two tissues (15 and 2, respectively). The absence of
differentially expressed genes in the abdominal adipose
tissue indicates that the mobilization of body reserves
observed with the adipose tissue weight decrease was
not mainly driven transcriptionally. This observation is
consistent with the fact that the two key genes of adipo-
cytes lipolysis, PNPLA2 (alias ATGL) coding the enzyme
catalyzing the initial step of this process and LIPE coding
the Hormone-Sensitive Lipase which primarily hydro-
lyzes stored triglycerides to free fatty acids are known to
be quickly regulated through post-translational modifi-
cations such as phosphorylation [6]. We further con-
firmed that these two genes were not differentially
expressed using RT-qPCR (for PNPLA2, ΔCtLE-CT = 0.02,

Fig. 4 Genomic localization and pairwise scatterplots of expression of four groups of co-expressed and co-localized genes. In each plot, top:
genomic localization of the three genes. Bottom: pairwise scatterplots of expression (FPKM) the genes. a cluster composed of RPS6KA2, MPC1 and
SFT2D1. b cluster composed of C1QA, C1QB and C1QC
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p = 0.97 and for LIPE, ΔCtLE-CT = 0.21, p = 0.50). The
mobilized lipids resulting of this probable adipose tissue
lipolysis could have been used by the hypothalamus as
an energy source, as we discuss later. Concerning the
liver, the absence of reaction at the transcriptomic level
shows that the difference in energy between the two di-
ets did not impact gene expression, which suggests an
absence of hepatic lipid metabolism variation. Indeed,
lipid metabolism is known to be highly regulated at the
transcriptional level, as previously shown in chickens [5,
7]. In these studies, which explored the impact of the diet
fiber and lipid composition variation or the fasting-feeding
transition (known to impact hepatic lipid metabolism),
numerous genes involved in the lipid metabolism were
impacted at the transcriptional level. The result observed
here in liver can be explained by the partial compensation
of the energy depletion by the increase in feed intake and
the mobilization of the body reserves. We confirmed by
RT-qPCR the absence of differential expression of PPARα,
a key genes of fatty acid β-oxidation (ΔCtLE-CT = − 0.16,
p = 0.30) and for FASN and SREBF1, two key genes of fatty
acid synthesis (for FASN, ΔCtLE-CT = − 0.24, p = 0.37 and
for SREBF1, ΔCtLE-CT = − 0.14, p = 0.57).

Blood cells participate in the adaptation to the CT versus
LE diet changes
While the liver and adipose tissue were almost unaffected
by the low energy diet, at least from the transcriptomic
point of view, blood cell genes reacted strongly to the low-
energy diet with more than 1000 genes modulated by the
diet change but for which the interpretation remains diffi-
cult. Indeed, the red blood cell components differ between
mammals and vertebrates more distant in the evolutionary
scale, such as birds or fish. In these animals, erythrocytes
and thrombocytes are nucleated and their transcriptional
activity is not yet well defined. Secondly, the blood tran-
scriptome is mainly studied to evaluate the response to an
inflammatory and immune challenge and rarely to study
the effects of diets. To our knowledge, no study has ex-
plored so far the blood transcriptome profile in chicken
under such conditions. We found an activation of genes
involved in RNA degradation and ribosome activity and a
repression of genes involved in cholesterol and amino acid
biosynthesis, as well as galactose and fructose metabo-
lisms. Cholesterol synthesis decrease in response to energy
restriction was also reported by Bouvier-Muller et al. [8]
in energy-restricted ewe’s blood transcriptome. Under-
expression of some of the genes described in our study
like CYP51A1, DHCR24, FDFT1 and SQLE was also ob-
served in ewes fed a low energy diet versus control (restric-
tion to 60% of the calculated net energy requirements
during 15 days). Furthermore, three genes involved in
macrophage cholesterol efflux and transport [9] show a
significant, or a trend toward, over-expression in our study:

ABCA1 (FC = 1.68 pFDR = 0.07) and APOA1 (FC = 2.10
pFDR = 0.08), the latter being the chicken equivalent of hu-
man APOE [10], and CETP (FC = 1.61, pFDR = 0.02). The
precise relationship between these genes and their differen-
tial expression remains to be linked with the feed intake.
Taken together, these reports and our results suggest that
the chicken blood transcriptome may play a role in the
adaptation of birds to feed stress. However, the differentially
expressed genes are quite hard to interpret, and further
studies will be required to unveil the mechanisms at play.

In the hypothalamus, the low-energy diet seems to alter
the general synaptic organization, partly through a
modulation of cholesterol and a global protein synthesis
associated to fatty acid β-oxidation
The hypothalamus is a brain area that integrates meta-
bolic and hormonal cues and controls appetite and per-
ipheral metabolism. It is composed of different cell
types, including neurons and “non-neuronal” cells (such
as astrocytes, microglial cells, oligodendrocytes and
endothelial cells) [11], and the transcriptomic changes
observed in this study reflect most likely changes
occurring in different cells, but we are unable to distin-
guish which ones. Notwithstanding, the differential
expression analysis suggests an effect of the low-energy
diet in neuronal circuits. We detected an under-
expression of genes involved in the synaptic vesicle
cycle, as well as in the glutamatergic, dopaminergic and
GABAergic synapses. In addition, key genes involved in
the cholesterol synthesis (CYP51A1, DHCR7, DHCR24,
FDFT1 and SQLE) and in the cholesterol efflux from
neuronal cells, namely ABCA7 (FC = 0.67, pFDR = 0.03)
and ABCG4 (FC = 0.64, pFDR = 0.007) [12] were also
under-expressed. Interestingly, the adult brain is the
most cholesterol-rich organ, containing 20% of the
whole body’s cholesterol [13]. The majority of it is
present in myelin sheaths and the rest in the plasma
membranes of astrocytes and neurons to maintain their
morphology and synaptic transmission [14]. Taken to-
gether, these findings reveal a link between nutrition
and brain plasticity in chicken, as it has already been de-
scribed in mice [15, 16]. Furthermore, our results sug-
gest an overall activation of protein synthesis in the
hypothalamic cells, one of the most energy-consuming
processes in a cell [17], probably reflecting the protein
machinery necessary to promote feed intake increase. In-
deed, we detected in the hypothalamus of the low-
energy group 83 over-expressed DEG related to the ribo-
some machinery indicating activation of numerous genes
related to the oxidative phosphorylation (that produces
ATP) and the fatty acid oxidation (used as fuel for the
respiratory chain) (Fig. 5). Concerning the oxidative
phosphorylation, we observed 32 over-expressed genes
coding the 5 protein complexes located in the inner
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mitochondrial membrane (Fig. 5) including the ADP/
ATP translocase 1 (SLC25A4, FC = 1.79, pFDR = 3.31 ×
10− 06) required for the entry of ADP (the substrate of
the ATPase) in the mitochondria, and considered as a
limiting factor of this process. The NADH and FADH2

required by the respiratory chain is produced by the
mitochondria β-oxidation of fatty acid, which increase is
supported by 10 over-expressed DEG (Fig. 5) and by the
integration of amino acids in the Krebs cycle as indi-
cated by the 12 over-expressed DEG identified (Fig. 5).
While short and medium chain fatty acids appear to
enter the brain-blood barrier by simple diffusion through
the plasma membrane, long chain fatty acids (> 12 car-
bons) need transporters to cross the brain-blood barrier.
Some of these transporters such as FABP4, FABP7 [18]
and SLC27A1 [19] were also overexpressed. Cedernaes
et al. [20], obtained similar results, although in a
different context. The authors observed an over-
representation of genes related to oxidative phosphoryl-
ation as well as to ribosome sub-units in mice hypothal-
amus following a fasting period, and others studies [21]
made a link between mitochondrial oxidation of fatty
acids in the hypothalamus and increase in feed intake.

Hypothalamic arachidonic acid may be involved in the
difference of feed intake between LE and CT groups
through mechanisms involving the hypothalamic
endocannabinoid and complement systems
The involvement of the endocannabinoids in the regulation
of feed intake is well documented [22, 23], in particular for
the two best known representative of this family of mole-
cules, the 2-AG (2-arachidonoylglycerol) and the Arachido-
noyl ethanolamine (AEA also called Anandamine). Both
these molecules are the ligands of the endocannabinoid
receptor, CN1R. Interestingly, we observed an under-
expression of DAGLB (FC = 0.74, pFDR = 0.003), involved in
the synthesis of 2-AG [24] and an over-expression of
MGLL (FC = 1.75, pFDR = 5.73 × 10− 06), coding an enzyme
responsible for 2-AG degradation. We also observed an
over-expression of NAPE-PLD (FC = 1.95, pFDR = 6.86 ×
10− 11), which codes for the enzyme that catalyzes the
second step of the classical “two-step” pathway of the syn-
thesis of AEA and other NAEs. The first step of this path-
way consists in the formation of N-acylphosphatidyl
ethanolamines (NAPEs) by the transfer of the acyl chain of
phospholipids on phosphatidylethanolamine by a calcium-
dependant transacylase [25]. NAPE-PLD then catalyses the

Fig. 5 Proposed mechanism of energy pathways increased in the hypothalamic cells in LE diet. In blue: reactions related to fatty acid β-oxidation
(ETFDH, ACADL, ACADS, ECHS1/ECI1, HADH, HADHB, ACAA2), to fatty acids transport through the plasma (FABP4, FABP7, SLC27A1), and the
mitochondrial (CPT2, CACT) membrane. In purple: reactions related to TCA cycle (IDH2), to transport of amino-acids (BCKDHA, BCKDHB) and
pyruvate (MPC1, MPC2) in the mitochondria, to the integration of amino-acids in the TCA cycle as α-ketoglutarate (GDH1, GPT2) or succinyl-CoA
(ALDH6A1, ECHS1, HIBDCH) and of the pyruvate as oxaloacetate (PC). In green: reactions related to oxidative phosphorylation and mitochondrial
respiratory chain complex I (MT-ND1, MT-ND2, MT-ND3, MT-ND4, ACAD9, MT-ND4L, MT-ND5, MT-ND6, NDUFA2, NDUFA8, NDUFA10, NDUFB9,
NDUFS4, NDUFV3, FOXRED1), complex II (MT-CO1, MT-CO2, MT-CO3, APOPT1, COX14, COX7B, COA5, COA6), complex III (MT-CYB, UQCRB, UQCRQ),
complex IV (MT-ATP6, MT-ATP8) and complex V (SDHD, SDHAF2), as well as the entry of ADP in the mitochondria (SLC25A1)
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cleavage of NAPEs to yield NAEs. Different NAEs are gen-
erated depending on the nature of the acyl chain in the first
step. For example, Arachidonoyl ethanolamine (AEA)
derives from the ω6 poly-unsaturated fatty acid (PUFA)
arachidonate and Palmitoyl ethanolamide (PEA) derives
from the saturated fatty acid palmitate [26]. We observed
an over-expression of FADS1 (FC = 1.99, pFDR = 3.25 × 10−
14), FADS2 (FC = 2.07, pFDR = 3.15 × 10− 10), ELOVL2 (FC =
1.87, pFDR = 0.003) and ELOVL5 (FC = 1.48, pFDR = 0.0004),
key genes of the PUFA ω6 synthesis [27]. FADS2 catalyzes
the Δ6-desaturation of the essential fatty acid linoleic acid
(C18:2 ω6) into γ-linolenic acid (C18:3ω6), which is elon-
gated into C20:3 ω6 by ELOVL5; the C20:3 ω6 is then Δ5-
desaturated into arachidonic acid (C20:4 ω6) by FADS1
[28] which may lead to the formation of AEA [29]. As 2-
AG, AEA could also activates the CB1R endocannabinoid
receptor, leading to an increase of feed intake [30]. Consist-
ently with this hypothesis, we observed an under-
expression of CB1R which might be due to a negative feed-
back following CB1R activation. Figure 6 summarizes this
proposed mechanism. Interestingly, we found that FADS2
and NAPE-PLD were highly correlated to NR1H3 (alias
LXRα) that codes for a receptor involved in the control of
various physiological functions with a major role in fatty
acid homeostasis and cholesterol metabolism [31]. The
mechanism of the regulation of the FADS2 and NAPE-PLD

transcription that can be direct or indirect, remains to be
elucidated. Interestingly, the arachidonic acid is also a pre-
cursor of the prostaglandins [32], which has been shown to
be involved in feed intake regulation along with comple-
ment system molecules [33].
Among the eight modules detected by WGCNA using

the lists of hypothalamic DEG, the black module was com-
posed of over-expressed genes related to immunity. Three
of them, C1QA, C1QB and C1QC were detected as co-
localized and co-expressed genes. The co-localization and
strong co-expression of C1QA, C1QB and C1QC strongly
suggest a mechanism of common regulation. These three
genes code for the A, B and C polypeptide chains compos-
ing the C1q molecule, a subcomponent of the C1 complex
involved in the complement activation [34]. The comple-
ment system is a part of the innate immune system, in-
volved in the host defense against bacteria and in the
removal of wastes [35]. C3AR1, the receptor of C3a, which
is produced upon the activation of the complement
system [36], also belongs to the black co-expression mod-
ule. Interestingly, Ohinata et al. showed that an agonist of
C3AR could suppress feed intake in mice [37] through
prostaglandin (PG) E2 production [33]. Furthermore, the
same authors showed that C5a, another member of the
complement system, stimulated feed intake via a mechan-
ism involving this time PGD2 [38]. Interestingly, as we

Fig. 6 Proposed mechanism leading to an increased feed intake in the LE diet. Diet fatty acids are processed by FADS1, FADS2, ELOVL5 and
FADS1, leading to the production of arachidonic acid (AA). The arachidonic acid eventually lead to the production of Arachidonoyl ethanolamine
(AEA), thanks to the action of NAPE-PLD. The AEA acts on CB1R, leading to an increase in feed intake. FADS1 and 2: Fatty Acid Desaturase 1 and
2, ELOVL5: Elongation Of Very Long Chain Fatty Acids Protein 5, NAPE-PLD: N-Acyl Phosphatidylethanolamine Phospholipase D, CB1R:
Cannabinoid Receptor 1, AA: Arachidonic Acid, PE: Phosphatidylethanolamine, NAPE: N-arachidonoyl phosphatidylethanolamine, AEA:
Arachidonoyl ethanolamine (alias Anandamide)
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discussed earlier, we found that key genes of the poly-
unsaturated fatty acid (PUFA) ω6 synthesis, that lead to
the formation of arachidonic acid, the precursor of prosta-
glandins, were overexpressed in LE group. Finally,
C1QTNF4 (C1q/TNF-related Protein 4), that possesses
two tandem globular C1q domains and is under-expressed
in LE versus CT (FC = 0.65, pFDR = 0.01), has also been
shown to suppress feed intake in mice [39]. Surprisingly,
we found only one other group of 3 co-localized and co-
expressed genes in the hypothalamus DEG lists. Such re-
sults show that regulatory mechanisms affecting different
genes located in a same genomic region are not so fre-
quent in response to a diet change despite the high num-
ber of DEG identified and analyzed in the hypothalamus
and the blood. We found similar results in a previous
study that evaluated on the impact of diet-composition
change on the breast muscle, adipose tissue and liver of
broiler, in which one region was identified [5].

Conclusions
This work is the first to provide a multi-tissue analysis
of layers submitted to a hypo-energetic diet on a long
period. Neither the adipose tissue nor the liver seemed
to be affected by the diet change at the transcriptional
level, suggesting regulations occurring at a different
level. In contrast, we observed a strong effect of the diet
on the hypothalamic transcriptome of the layers. The
regulation of feed intake in the hypothalamus is a com-
plex mechanism. Our results in chicken suggest, as in
mice, a link between feed intake and brain plasticity, as
well as fatty acid metabolism [40–43]. We show here a
mechanism in chickens that seems to modify feeding be-
havior through an increase in feed intake in response to
a low-energy diet, allowing egg mass production to be
maintained, probably through the action of the endocan-
nabinoid and the complement systems that involve the
hypothalamic poly-unsaturated fatty acid synthesis, and
in particular the arachidonic acid. Overall, this work
contributes to a better understanding of the adaptive
strategies employed by chickens to cope with a subopti-
mal diet and the impact that this suboptimal feeding
may have on egg quality and production. Such under-
standing is of importance in the frame of the globalized
poultry market, in which commercial animals are ex-
posed to a wide diversity of production conditions.

Methods
Animals and diet
Laying hens were hatched at the INRA Pôle d’Expérimen-
tation Avicole de Tours (PEAT) in Nouzilly, France. They
belonged to two Rhode Island Red layer lines that under-
went a 40-year diverging selection on residual feed intake
(RFI) [4]. The RFI represents the difference between the

observed and the predicted feed consumption based on a
multiple regression equation taking into account the aver-
age body weight, the weight variation and, for females, the
mass of eggs produced over a given period [44, 45]. The
R+ chickens were selected to have a positive RFI, reflect-
ing a low feed efficiency, while the R- chickens were
selected to have a negative RFI and therefore to be feed
efficient. They were reared under standard farming condi-
tions in floor pens until 17 weeks of age. At this age, 45
R+ and 51 R- hens were transferred in individual cages
and reared under thermo-neutral conditions (22 °C), with
a lighting regimen set at 14 h of light per day and an ad
libitum feeding. Of these, 34 R+ and 36 R- hens were fed a
commercial diet (control group, CT) and 11 R+ and 15 R-
were fed a low-energy diet (low-energy group, LE). The
two diets had a similar protein content, while the energy
content was reduced by 15% in the LE diet as compared
to the standard diet (2450 kcal/kg versus 2880 kcal/kg),
due to the replacement of soybean and maize by rapeseed
and raw wheat, and by increasing the raw cellulose per-
centage (7.4 g/kg against 2.6 g/kg). The composition of
both diets is detailed in Additional file 8.

Tissue sampling
At 31 weeks, eight animals from each line (R- and R+) and
from each diet (CT and LE) were selected as representa-
tive of the group for slaughtering, that is 8 × 2 × 2 = 32 ani-
mals. Layers were slaughtered at the fed status by neck cut
and bleeding, immediately after head electrical stunning.
Right after slaughter, abdominal adipose tissue, the ex-
tremity of the left liver lobe and hypothalamus were sam-
pled, snap frozen in liquid nitrogen and stored at − 80 °C
until analysis. Blood samples from the same animals were
collected from the occipital sinus in EDTA tubes and
100 μL of blood were removed and diluted in 1mL of
TRIzol® reagent (Invitrogen, California, USA). After a
vigorous agitation, the tube was maintained at room
temperature for five minutes, then quickly frozen in liquid
nitrogen and stored at − 80 °C until RNA extraction.

Traits collection and analysis
Seven traits related to performance and body composition
were recorded for the 45 R+ (34 CT and 11 LE) and 51 R-
(36 CT and 15 LE) birds. Egg number was recorded from
the date of the first egg (around 21weeks of age) to 31
weeks of age and laying rate (i.e. number of egg laid dur-
ing the recording period divided by the length of the
period in day, expressed in %) was calculated; egg weight
(g), static stiffness (N.mm− 1) were calculated from 3 eggs
per hen collected at 30 weeks of age, and abdominal adi-
pose was weighted at slaughter. Weekly feed intake was
measured over 4 weeks, from 27 to 31 weeks of age and
body weight (g) at 31 weeks of age. Residual feed intake
was computed as described in Bordas et al. [4]. Traits were
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analyzed with R version 3.4.2 [46]. A two-way analysis of
variance was performed with line, diet and the interaction
between line and diet as main effects using the R function
lm, and the R package “car” [47].

RNA isolation
Approximately 100mg of adipose tissue and 30mg of liver
were homogenized in TRIzol® reagent (Invitrogen, Califor-
nia, USA), and the whole blood mixed with 1mL of TRI-
zol® was adjusted between 4 and 4.5 with 10 μL of 5 N
glacial acetic acid [48]. The total RNA was then extracted
according to the manufacturer’s instructions, resuspended
in 50 μL of RNA-free water and stored at − 80 °C. For the
hypothalamus, we used the kit Allprep DNA/RNA (Qia-
gen). The RNA was extracted from the hypothalamus ac-
cording to the manufacturer’s instructions. The total RNA
was quantified with a NanoDrop® ND-1000 spectropho-
tometer (Thermo Scientific, Illkirch, France). The RNA
quality was controlled using an Agilent 2100 bioanalyzer
(Agilent Technologies France, Massy, France). The aver-
age RNA integrity numbers were 7.3 ± 0.6 (mean ± SD) for
the adipose tissue, 8.8 ± 0.48 for the hypothalamus, 8.2 ±
0.5 for the whole blood and 9.2 ± 0.3 for the liver.

RNA-seq data acquisition
Paired-end sequencing was conducted on all samples
using an Illumina HiSeq3000 (Illumina, California, USA)
system, with 2 × 150 bp. Libraries with an on average 465-
bp insert were prepared following Illumina’s instructions
by purifying poly-A RNAs (TruSeq RNA Sample Prep
Kit). Illumina adapters containing indexing tags were
added for subsequent identification of samples. Samples
were PCR-amplified, and quantitative PCR was then per-
formed for library quantification (QPCR NGS Library
Quantification kit). Eight samples were filled on one lane
within a flow cell with 2 samples for each of the four line
× diet groups to minimize the inter-lane bias. After se-
quencing, the indexed adapter sequences were trimmed
using CASAVA v.1.8.2 software (Illumina). We obtained
an average of 90 million reads per sample (84 million for
the adipose tissue, 98 million for the blood, 86 million for
the hypothalamus and 90 million for the liver), for a grand
total of 11 billion reads. For each sample, reads were
mapped to the Gallus gallus-5 reference genome using
STAR v.2.3.0e [49]. PCR duplicates were removed using
rmdup tool from SAMtools suite [50]. For each sample,
quantification was performed using RSEM [51] with the
Ensembl v93 annotation.

RNA-seq data analysis
All the analyses were performed with R version 3.4.2. The
trimmed mean of M-values (TMM) scaling factor method
was used for library size normalization [52] using the R/
Bioconductor package edgeR [53] version 3.12.1. In each

tissue, the expressed genes were selected if their FPKM
expressions were over 0.1 in at least 80% of the samples of
a group line × diet (FPKM expression being obtained after
TMM normalization using “rpkm” function from edgeR
package). Differential expression analysis was performed
using the R/Bioconductor package edgeR [53] based on a
generalized negative binomial model for model fitting. We
used the “edgeR-Robust” method to account for potential
outliers when estimating per gene dispersion parameters
[54]. P-values were corrected for multiple testing using
the Benjamini-Hochberg approach [55] to control the false
discovery rate (FDR), and genes were identified as signifi-
cantly differentially expressed if pFDR < 0.05.

Functional enrichment analysis
The enrichment analysis of Kyoto Encyclopedia of Genes
and Genomes (KEGG) terms in each list of interest of
differentially expressed genes was performed using the
STRING tool [56] (https://string-db.org). Only the 1-to-1
human orthologous genes with a standardized HGNC name
were submitted for the analysis, i.e. 67.4% of the 18,346
protein-coding genes of chicken Ensembl v93 annotation.

Co-expression module detection with WGCNA
We used the R package WGCNA [57] to detect co-
expression modules based on gene expression data and a
weighted correlation network. Briefly, WGNCA screens for
clusters (called modules) of highly correlated genes in the
expression dataset. Indeed, while within a list of over- or
under-expression in one condition versus another one, one
can expect all the genes to be positively correlated to one
another, such list can be split into modules of genes with a
higher expression correlation among them than with the
rest of the list. These genes are more likely to share a com-
mon regulation and a common biological function and
therefore may highlight more specifically one pathway. In
addition, it may happen that a gene subset is not correlated
with the other subsets of the same DEG list because of fac-
tors other than the one used for the differential expression
analysis. These modules are summarized by an eigengene,
which corresponds to the first principal component of the
module. These eigengenes enable comparisons between
modules, clustering of modules, and calculations of correla-
tions between modules and phenotypes. Modules hierarch-
ical clustering was realized using as “1 – the pearson
correlation” between modules as distance criterion and
“ward’s”method as aggregation criterion.

Detection of co-localized differentially expressed genes
We used R home-made script to screen for groups of
three or more differentially expressed genes, located
side-by-side, without consideration for distance, and
with a significant pairwise Spearman expression correl-
ation (|r| > 0.7 and pFDR < 10

− 4).
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RT-qPCR analysis
Reverse transcription (RT) was carried out using the high-
capacity cDNA archive kit (Applied Biosystems, Foster
City, CA) according to the manufacturer’s protocol.
Briefly, reaction mixture containing 2 μL of 10× RT buffer,
0,8 μL of 25X dNTPs, 2 μL of 10X random primers, 1 μL
of MultiScribe Reverse Transcriptase (50 U/ μL), and total
RNA (2 μg) was incubated for 10min at 25 °C followed by
2 h at 37 °C and 5min at 85 °C. Dilution RT reaction was
further used for real time quantitative PCR (qPCR). 5 μl of
cDNA samples were mixed with 7,5 μl of Sso Advanced
Universal SYBR Green Supermix (Bio-Rad), 1,5 μl H20
and 330 nM of specific reverse and forward primers. Reac-
tion mixtures were incubated in an CFX connect Real-
Time PCR Detection System (Bio-Rad, Marne la Coquette,
France) programmed to conduct one cycle (95 °C for 30 s)
and 43 cycles (95 °C for 15 s and 60 °C for 30 s). A melting
curve program was then performed for each gene to check
the presence of a unique product with specific melting
temperature. For each sample and each gene, PCR runs
were performed in duplicates. The sequences of the
primers used were, from 5′ to 3′: LIPE, forward
“GTCTCGGGTTCCAGTTCGTG”, reverse “CGTAGGA-
CACCAACCCGATG”. PNPLA2, forward “TGGGCAGT-
CATCTTTCAGCCA”, reverse “AAGCTGACGCTGG
TACTCCT”. FASN, forward “TGAAGGACCTTATCG-
CATTGC”, reverse “GCATGGGAAGCATTTTGTTGT”.
PPARα, forward “GTCGCTGCCATCATTTGCTGT”, re-
verse “TTGCCGGAGGTCAGCCATTT”. SREBF1, for-
ward “GTCGGCGATCCTGAGGAA”, reverse “CTCTT
CTGCACGGCCATCTT”.
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Subunit C Locus 1; ATP5H: ATP Synthase Peripheral Stalk Subunit D;
ATP5J: ATP Synthase Peripheral Stalk Subunit F6; C1QA, C1QB and
C1QC: Complement C1q chains; C3AR1: Complement C3a Receptor 1;
CB1R: Cannabinoid Receptor 1; CD14: CD14 Molecule; CPS1: Carbamoyl-
Phosphate Synthase 1; CPT2: Carnitine Palmitoyltransferase 2; CT: Control;
CTH: Cystathionine Gamma-Lyase; CYP51A1: Cytochrome P450 Family 51
Subfamily A Member 1; DBI (alias ACBP): Diazepam Binding Inhibitor (alias
Acyl-CoA Binding Protein); DEG: Differentially Expressed Genes; DHCR24: 24-
Dehydrocholesterol Reductase; EDC3: Enhancer Of MRNA Decapping 3;
ELOVL2 and ELOVL5: Elongation Of Very Long Chain Fatty Acids Protein;
ENO2: Enolase 2; EXOSC5: Exosome Component 5; FABP7: Fatty Acid Binding
Protein 7; FADS1 and FADS2: Fatty Acid Desaturases; FDFT1: Farnesyl-
Diphosphate Farnesyltransferase 1; FDR: False Discovery Rate;
FPKM: Fragment Per Kilobase Million; GABA: gamma-Aminobutyric acid;
GOT1: Glutamic-Oxaloacetic Transaminase 1; HIF1: hypoxia-inducible factor-1;
IRF1: Interferon Regulatory Factor 1; KEGG: Kyoto Encyclopedia of Genes and
Genomes; LE: Low-Energy; ME1: Malic Enzyme 1; MRPL: Mitochondrial
Ribosomal Protein L; MRPS: Mitochondrial Ribosomal Protein S; MT-CO1 to
MT-CO3: Mitochondrially Encoded Cytochrome C Oxidases; MT-
CYB: Mitochondrially Encoded Cytochrome B; MT-ND1 to MT-
ND6: Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core
Subunits; NAE: N-acyl ethanolamine; NAPE: N-arachidonoyl
phosphatidylethanolamine; NAPE-PLD: N-Acyl Phosphatidylethanolamine
Phospholipase D; NR1H3 (alias LXRα): Nuclear Receptor Subfamily 1 Group H
Member 3 (alias Liver X Nuclear Receptor alpha); NSDHL: NAD(P) Dependent
Steroid Dehydrogenase-Like; PABPC1: Poly(A) Binding Protein Cytoplasmic 1;
PAN2 and PAN3: Poly(A) Specific Ribonuclease Subunit PANs;
PE: Phosphatidylethanolamine; PEA: Palmitoylethanolamide;
PFKP: Phosphofructokinase, Platelet; PLPP5: Phospholipid Phosphatase 5;
RFI: Residual Feed Intake; RPL: Ribosomal Protein L; RPS: Ribosomal Protein S;
RQCD1: CCR4-NOT Transcription Complex Subunit 9; SCP2: Sterol Carrier
Protein 2; SDHD: Succinate Dehydrogenase Complex Subunit D; SKIV2L: Ski2
Like RNA Helicase; SLC27A1: Solute Carrier Family 27 Member 1;
SQLE: Squalene Epoxidase; TALDO1: Transaldolase 1; TKT: Transketolase;
TLR4: Toll Like Receptor 4; TMM: Trimmed Mean of M-values;
TOB2: Transducer Of ERBB2, 2; TPI1: Triosephosphate Isomerase 1;
WGCNA: Weighted Gene Co-expression Network Analysis; WHSC1L1 (alias
NSD3) : Nuclear Receptor Binding SET Domain Protein 3
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