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Abstract

Background: Assembly and function of neuronal synapses require the coordinated expression of a yet
undetermined set of genes. Previously, we had trained an ensemble machine learning model to assign a probability
of having synaptic function to every protein-coding gene in Drosophila melanogaster. This approach resulted in the
publication of a catalogue of 893 genes which we postulated to be very enriched in genes with a still
undocumented synaptic function. Since then, the scientific community has experimentally identified 79 new
synaptic genes. Here we use these new empirical data to evaluate our original prediction. We also implement a
series of changes to the training scheme of our model and using the new data we demonstrate that this improves
its predictive power. Finally, we added the new synaptic genes to the training set and trained a new model,
obtaining a new, enhanced catalogue of putative synaptic genes.

Results: The retrospective analysis demonstrate that our original catalogue was significantly enriched in new synaptic

genes. When the changes to the training scheme were implemented using the original training set we obtained even

higher enrichment. Finally, applying the new training scheme with a training set including the 79 new synaptic genes,
resulted in an enhanced catalogue of putative synaptic genes. Here we present this new catalogue and announce that
a regularly updated version will be available online at: http://synapticgenes.bnd.edu.uy

Conclusions: We show that training an ensemble of machine learning classifiers solely with the whole-body temporal
transcription profiles of known synaptic genes resulted in a catalogue with a significant enrichment in undiscovered
synaptic genes. Using new empirical data provided by the scientific community, we validated our original approach,
improved our model an obtained an arguably more precise prediction. This approach reduces the number of genes to
be tested through hypothesis-driven experimentation and will facilitate our understanding of neuronal function.
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Background

The synapse, a specialized contact between neurons, is
currently of fundamental importance for our under-
standing of learning, memory and other brain functions.
Assembly and function of neuronal synapses require the
coordinated expression of a yet undetermined set of
genes, which for simplicity will be called here “synaptic
genes”. There is a broad consensus that only a fraction
of the total number of synaptic genes have been identi-
fied so far [1, 2]. Due to the evolutionary conservation
among synaptic genes, the knowledge obtained from
studies in model organisms is very relevant for other
species, including humans [2, 3].

Since the biological roles of the vast majority of
known amino acid sequences remain partly or com-
pletely unknown [4], computational prediction of gene
function is an open research problem of much rele-
vance. In recent years diverse methodologies have
been assayed, with a strong prevalence of machine
learning approaches. The top-performing algorithms,
architectures and training schemes are function-
specific and context-dependent [5]. In a previous
study [6], we implemented an ensemble machine
learning model that assigned a probability of being a
“synaptic gene” to each protein-coding gene of Dros-
ophila melanogaster. The features to infer the synap-
tic function were the whole-body transcription levels
of all protein-coding genes at 24 developmental
stages, published by the modENCODE project [7]. As
far as we know, this is the only study that predicts
gene function relying exclusively on temporal tran-
scriptions profiles obtained through NGS technolo-
gies. After an exhaustive bibliographic review, a set of
genes for which a function in synapse formation and/
or maturation, and/or neurotransmission, and/or plas-
ticity and/or maintenance had been experimentally
demonstrated was selected as a positive example and
included in the training set. Genes fulfilling any of
two biological criteria defined ad hoc were selected as
negatives examples [6] (See Methods and Add-
itional file 1). Our model intersected the results of
three learning algorithms: k-nearest neighbours (kNN)
[8], Random Forest (RF) [9], Support Vector Ma-
chines (SVM) [10]. These algorithms had been chosen
after obtaining similar results with these and other al-
gorithms during an exploratory study and because
they are widely used and among those with the best
average performance when applied to biological data
[11, 12]. The classification threshold of the algorithms
was set to meet the expected number of unknown
synaptic genes (estimated a priori) at that time. We
obtained a catalogue that we postulated to be highly
enriched in genes for which a synaptic function was
yet to be discovered.
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Following the publication of that catalogue, scientists
around the world have experimentally identified 79 new
synaptic genes (NSG), giving us the opportunity to em-
pirically evaluate the predictive power of the catalogue.
Thereafter we tested a new training scheme and evalu-
ated it by measuring the enrichment in NSG of the
resulting catalogues. Briefly, the tested training scheme
includes randomly sub-sampling the available labelled
data to train a number of models and then ensemble
those models in only one classifier (see Methods). This
new training scheme is meant to alleviate a probable bias
of our model due to a relatively small training set [13].
We found that the new training scheme resulted in a
model producing a catalogue more enriched in NSG. Fi-
nally, we added the 79 NSG to the training set and
trained a new model with the new training scheme.
With this new model we obtained the new, enhanced
catalogue of putative synaptic genes that we are publish-
ing here. The whole procedure is schematized in Fig. 1.
A monthly updated version of this catalogue will be
available online at: http://synapticgenes.bnd.edu.uy.

Results

Evaluation of the original catalogue

Since the publication of our original catalogue up to the
preparation of this manuscript, we identified 79 Drosoph-
ila genes that had gathered enough experimental evidence
to be considered a synaptic gene according to our previ-
ous criteria [6]. Additional file 2 lists these genes along
with the references supporting their synaptic functions.
Roughly a third of these NSG (28 genes) were present in
our original catalogue. A standard approach to evaluate
the overrepresentation of certain feature (in this case, be-
ing a NSG) in a list of genes is to perform enrichment
analysis (see Methods). Using in-house scripts and the
hypergeometric distribution we calculated the enrichment
in NSG of our original catalogue and its associated p-
value. We found our original catalogue has an enrichment
in NSG of 4.38 with a p-value < 10~ '° (Table 1).

Improved training scheme

The changes to the training scheme of our model tested
here are detailed in the Methods section and schema-
tized in Fig. 2.

To test if these changes improved the predictive
performance of our approach, we trained a model
implementing these changes with the original training
set and then compared the results with those of the
original model. As shown in Table 1 and Fig. 3, the
changes resulted in a better predictive power mea-
sured as enrichment in NSG. This improvement is
also observed when we considered each classification
algorithm separately (Fig. 3a-c). The performance of
the intersection of the classifiers trained with the sub-
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Fig. 1 Scheme of the work-flow used to obtain the new catalogue of putative synaptic genes. First, we trained two models with the original training set,
one with the original training scheme and one with the new training scheme (Fig. 2). Then we compared the enrichment in new synaptic genes (NSG, see
Methods for definition of enrichment) of the catalogues resulting from each method. After testing that the new training scheme improved the prediction
(Fig. 3), we incorporated the 79 NSG to the training set, trained a new model with the new training scheme and obtained a new catalogue of putative

samples of the training set was always better than
that of the performance of the classifier trained with
the full training set. By intersection of the classifiers
for a given threshold we mean the set of genes that
were assigned with a probability above the threshold
by the 3 classifiers simultaneously.

Evaluation of the new classifiers
After demonstrating that the proposed changes to the
training scheme and ensemble rules would have resulted

in a series of catalogues more enriched in NSG, we in-
corporated the 79 NSG to the training set and repeated
the whole procedure described above, obtaining 15
new classifiers. Each of these classifiers was evaluated
with an independent test set, which was used to cal-
culate the accuracy, the F1 score and the area under
the ROC curve (Fig.2 and Table 2). The obtained
values were compared with those reported by other
colleagues when training models to predict other bio-
logical functions [14-16].

Table 1 Evaluation of our original prediction. Comparison between the results of the original model, a model trained with the
original training set but with the new training scheme and a model trained with the new training scheme and the updated training
set. The enrichment in NSG found in the catalogue obtained with the new training scheme is 38% higher than that found in the
catalogue obtained with the original training scheme even though both models were trained with the same set of genes. The
training set for the new model includes the 79 NSG, thus the enrichment in NSG of the resulting catalogues cannot be defined

Original Improved  New
model model model
Training set original ofginal  updated
Training scheme original new new
Classification threshold 0.9 0.9 095
Genes gbove threshold 288 192 601
Enrichment in NSG 4.38 6.07 -
p-value 4E-11 IE-04 -
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Fig. 2 Comparison between the original and the improved models. Original model (above): with the whole training set we trained three
algorithms: kNN, SVM and Random Forest. The hyper parameters of each classifier were set by exhaustive grid search combined with 10-fold
cross validation over the training set. Finally, we increased the classification threshold of the classifiers and considered the intersection between
the resulting catalogues. Improved model (below): first, we sub-sampled five times the original training set, leaving out each time a different fifth
of the positive and negative examples. By this procedure we obtained five smaller, slightly different training sets. Using the positive and negative
examples left out in each iteration, we created five test sets, used to independently evaluate each classifier. With each training set we trained
three algorithms: kNN, SYM and Random Forest, thus obtaining 15 different classifiers. The hyper parameters of each classifier were set by
exhaustive grid search combined with 10-fold cross validation over the training set. After training, we evaluated each classifier (accuracy, ROC and
F1) using a different test set. Finally, we increased the classification threshold of the classifiers and considered the intersection between the
resulting catalogues

J

A new catalogue of putative synaptic genes

We trained a new model incorporating the 79 NSG to
the training set and the changes to the training scheme.
In our original work only those genes assigned with a
probability of being synaptic of at least 0.9 by the three
classifiers were included in the final catalogue. This high
classification threshold was set to obtain a catalogue of a
given size. Now the threshold was set at 0.95 because we

aimed to obtain a smaller catalogue since there are fewer
unknown synaptic genes. The resulting catalogue had
601 genes.

Enrichment of the new catalogue in synapse-related GO
terms

To evaluate the quality of the new catalogue, we deter-
mined its enrichment in synapse-related GO terms. This
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Fig. 3 Comparison between the original and the improved model. Enrichment in NSG for an increasing classification threshold. a: kNN, b: SVM, ¢
Random Forest, d: Intersection of the three algorithms. For a definition of enrichment see Methods. In each panel, the red line represents the
results of the original model, the gray lines represent the results of the models obtained after training the corresponding algorithm with each
sub-sample of the original training set and the black line shows the results of the intersection of these last models

could be done because we constructed our training set  significant enrichment, all the genes in our training set
without taking into account Gene Ontology. We found that have some synapse-related GO annotation must be
that 83 of the 601 genes to which our 15 classifiers removed from the background set. This analysis was
assigned a probability above 0.95 had some synapse- performed with Gorilla [17] and the results are shown in
related GO annotation. To determine whether this is a  Table 3. After excluding from the catalogue these 83

Table 2 Evaluation of the 15 classifiers. Fifteen classifiers were obtained by training three algorithms with five different training sets.
The performance of each classifier was evaluated using a test set conformed by genes that were not used during training. The table
shows the mean and standard deviation of the accuracy, the F1 score and the area under the ROC curve of the five classifiers
trained with each algorithm. The last three rows show the area under the ROC obtained by other colleagues when predicting other
biological functions through machine learning

Accuracy F1 AU ROC

Mean 0,93 0,88 0,97

kNN 5D 0,03 0,03 0,02
e Mean 0,93 0,89 0,97
bl 5D 0,02 0.04 0,01
RF Mzan 0,95 0,91 0,97
5D 0,03 0,03 0,01

Kerepesietal. 2018 - - 0,93
Kacsohetal 2017 - - 0,81
Moore et al. 2019 - - 0,87
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Table 3 Enrichment of the new catalogue in synapse-related GO terms. First and second columns show the GO term identifier and
its name. Third and fourth columns show the p-value and its correction for false discovery rate associated with the enrichment

found, which is shown in the last column

GO term Description pvalue FDRgvalue  Enrichment
GO:0050807 regulation of synapse organization 1.66E-12 2.03E-10 467
GO:0051963 regulation of synapse assembly 1.38E-10 127E-8 487
GO:0008382 regulation of synaptic growth at neuromuscular junction 2.21E-9 1.59E-7 465
GO:0016080 synaptic vesicle targeting TO1E4 123E-2 3.67

genes a final catalogue of 518 putative synaptic genes
was obtained (Additional file 3).

Regularly updated on-line catalogue

The model we are presenting here will be re-trained as
new synaptic genes are identified. This will result in an
updated catalogue that will be available here: http://
synapticgenes.bnd.edu.uy. The updated list of synaptic
genes used to train the model will be available at the
same site.

Discussion

An underlying rationale for our approach was that the
transcription of genes of importance for neuronal synap-
ses will probably increment very much during times of
massive synapse assembly and will go down when synap-
ses are massively degraded. A temporal correlation be-
tween changes in gene transcription and biological
function has been reported for a variety of neuronal
functions in Drosophila [18]. A catalogue obtained by
training an ensemble machine-learning model that
assigned each Drosophila protein-coding gene a prob-
ability of having synaptic function was published four
years ago [6]. Of note, the model was based exclusively
on a whole-body temporal transcriptome. It was hypoth-
esized that the catalogue was enriched in genes of rele-
vance for neuronal synapses which were still not
recognized as such. Since the publication of the cata-
logue, 79 NSG were experimentally identified by others
with a variety of experimental methods. This offered a
great opportunity to test both the predictive power of
our machine learning approach and to test changes to
the training scheme that could improve the predictive
power of our model. Here we found that our previous
catalogue [6] was enriched in genes for which a synaptic
function was experimentally identified by other col-
leagues between 2015 and 2019. We believe that this
represents a good experimental validation of the predict-
ive power of our machine learning approach and we
conclude that it is thus possible to predict gene function

using machine learning based exclusively on temporal
transcription data.

Our original model assigned very low probabilities to
some genes that were later proven to have synaptic func-
tions. A possible explanation could be that our model
cannot capture the entire diversity in expression profiles
among the hundreds of genes required for assembly and
function of neuronal synapses. It is suitable that any
model exclusively trained with transcription profiles will
fail to recognize some of the interesting genes, for sev-
eral reasons and two of them will be considered in the
following. Many genes have more than one biological
function and are expressed at different levels in different
organs or tissues. Hence, a machine learning approach
applied to expression values obtained from total RNA
samples from whole-organisms will probably fail to iden-
tify some of the genes of interest because of the compos-
ite nature of the sample. Moreover, the coordinated
expression of hundreds of genes, during the two massive
waves of synapse formation taking place during Drosoph-
ila development [6, 18] probably includes genes that en-
code activators or repressors, which will result in very
different transcription profiles.

It is also worth noting that none of the 79 NSG be-
longs to the list of “non-synaptic genes” which had been
used to train the algorithms. This provides unequivocal
validation for the biological criteria used to select the
negative examples of the training set and is consistent
with our assumption that the genes of importance for
neuronal communication are the same in both sexes.

It is important to note that even when the original
model and its improved version were based on the same
algorithms and were trained with the same set of genes,
the enrichment in NSG found in the catalogue obtained
with the improved model was 38% higher. This is inter-
preted as a clear demonstration that the new training
scheme really improved the predictive performance of
our approach. A possible explanation is that the tested
training scheme alleviated a probable bias of our model
due to a relatively small training set and increased its
generalization capacity [19]. Since there are hundreds of
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synaptic genes to be discovered this is an important
feature.

Conclusions

We show here that a catalogue of Drosophila putative
synaptic genes obtained by an ensemble machine learn-
ing model four years ago has a significant enrichment in
genes whose synaptic function was discovered by others
after its publication. This confirms that it is possible to
predict gene function based on a temporal data-set of
transcription values and a machine learning approach of
the type presented here.

After testing the predictive power of our methods, we
constructed a new catalogue of putative synaptic genes
and make it available to the scientific community, firmly
believing that this will facilitate the identification of
genes important for the assembly and function of synap-
ses, by means of gene silencing, mutant analysis, electro-
physiology, neuroanatomy, behavioral assays and other
traditional protocols, all of which will most likely lead to
a better understanding of the function of the brain. The
catalogue is available at: http://synapticgenes.bnd.edu.uy

Methods

Data

We used the developmental transcriptome of Drosophila
melanogaster published by the MODENCODE Project
[7]. In these data, each sample consisted of total
polyAAA-RNA isolated from 30 whole bodies obtained
at different time points along the organism life cycle.
Originally the data set consisted of the transcript levels
of 15,398 genes expressed as fragments per kilo base of
exon per million fragments mapped (FPKM). We ex-
cluded 1756 genes that showed transcript levels above
zero only during adult life and normalized each gene’s
temporal series dividing it by its maximum value, thus
obtaining for each gene a series of 24 values oscillating
between 0 and 1. More details in [6].

Evaluation of the predictive power of our original model
Using the same ad hoc definition for “synaptic gene” that
was adopted in our previous work, we performed a bib-
liographic revision and identified 79 new synaptic genes
defined as such by other scientists since the publication
of our first catalogue [6]. Then we analyzed the enrich-
ment of our original catalogue in these NSG using in-
house scripts assuming a hyper-geometric distribution. If
N is the number of genes in the background set, i.e. the
set from which the analyzed list is extracted, B is the
number of genes in the background set associated with
the feature of interest, n is the number of genes in the
analyzed list and b is the number of genes associated
with the feature of interest in the analyzed list, the En-
richment is defined as ((b/n) / (B/N)).
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A new training scheme

To obtain our original catalogue we had trained three
learning algorithms (k-NN, RF and SVM) with an unbal-
anced training set, in which there were many more nega-
tive than positive examples. A careful bibliographic
revision was done to select genes for which the import-
ance for neuronal synapses had been demonstrated with
a variety of experimental approaches. In this way, 92
genes were selected as positive examples (Additional file
1). As negative examples, 397 genes were selected based
on two biological criteria: genes that are not expressed
at developmental stages when massive synapse formation
takes place and genes with no expression during adult
life in females or males, because available data indicate
that the fundamental principles of structure and func-
tion of neuronal synapses are the same in both sexes.

With the aim of improving the predictive power of our
model, here we propose a new training scheme, based
on repetitive sub-sampling of the original training set to
construct five smaller, slightly different training sets (see
Fig. 1). To construct each of these training sets, four
fifths of the original positive examples and four fifths of
the original negative examples were randomly picked
out. This procedure was repeated five times, leaving out
a different fifth each time. Using the positive and nega-
tive examples left out when constructing each training
set we defined a test set, used to independently calculate
the accuracy, the AUC of the ROC and the F1 score of
each classifier.

The hyper parameters of each classifier were set by
grid search combined with 10-fold cross validation and
its performance was evaluated by an independent test
set. Each classifier assigned a different probability of be-
ing synaptic to each gene. To obtain our catalogues we
considered, for each classification threshold, the inter-
section of the 15 results and then we took the mean
probability assigned to each gene in the intersection.

All calculations were performed using Jupyter Note-
books and Sklearn [20].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6380-z.

Additional file 1: List of genes in the original training set (XLS 41 kb)
Additional file 2: New synaptic genes & references (XLS 21 kb)
Additional file 3: New catalogue of putative synaptic genes (XLS 39 kb)
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