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Background: Accurate structural annotation of genomes is still a challenge, despite the progress made over the
past decade. The prediction of gene structure remains difficult, especially for eukaryotic species, and is often
erroneous and incomplete. We used a proteogenomics strategy, taking advantage of the combination of
proteomics datasets and bioinformatics tools, to identify novel protein coding-genes and splice isoforms, assign
correct start sites, and validate predicted exons and genes.

Results: Our proteogenomics workflow, Peptimapper, was applied to the genome annotation of Ectocarpus sp., a
key reference genome for both the brown algal lineage and stramenopiles. We generated proteomics data from
various life cycle stages of Ectocarpus sp. strains and sub-cellular fractions using a shotgun approach. First, we
directly generated peptide sequence tags (PSTs) from the proteomics data. Second, we mapped PSTs onto the
translated genomic sequence. Closely located hits (i.e, PSTs locations on the genome) were then clustered to
detect potential coding regions based on parameters optimized for the organism. Third, we evaluated each cluster
and compared it to gene predictions from existing conventional genome annotation approaches. Finally, we
integrated cluster locations into GFF files to use a genome viewer. We identified two potential novel genes, a
ribosomal protein L22 and an aryl sulfotransferase and corrected the gene structure of a dihydrolipoamide
acetyltransferase. We experimentally validated the results by RT-PCR and using transcriptomics data.

Conclusions: Peptimapper is a complementary tool for the expert annotation of genomes. It is suitable for any
organism and is distributed through a Docker image available on two public bioinformatics docker repositories:
Docker Hub and BioShaDock. This workflow is also accessible through the Galaxy framework and for use by non-

Data are available via ProteomeXchange under identifier PXD010618.
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Background

Proteomics and genomics data combined with bioinfor-
matics tools, known as proteogenomics [1-3], is a valu-
able strategy to improve genome annotation [4-6].
Proteomics methods and applications have been
reviewed by Nesvizhskii [7] and more recently by
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Menschaert & Fenyé and by Ruggles and collaborators
[8, 9]. Proteomics data provides direct access to
amino-acid sequences that can be mapped onto trans-
lated genomic sequences [10, 11]. The combined use of
experimental proteomics data and genomic sequences is
a powerful way to: i) confirm gene-model predictions, ii)
correct possible intron/exon boundary errors or wrong
start/stop codons, and iii) find new CDSs that have not
been computationally predicted by machine learning-
based approaches or homology searches. Many studies
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have demonstrated the use proteomics datasets to pro-
vide protein-level evidence of gene expression and refine
gene models [3, 12]. This approach has been successfully
applied to many organisms, such as Anopheles gambiae
[13], Rattus norvegicus [14, 15], and Homo sapiens [16],
as well as plants [17-19]. Many microbial genomes,
usually lacking high quality annotation, can also bene-
fit from proteogenomics strategies to improve gene
prediction [20-24]. Finally, proteogenomics can also
significantly influence the study of non-model organ-
isms [25].

Here we developed an easy to use, suitable, and effi-
cient proteogenomics workflow, Peptimapper (Fig. la),
to complete eukaryotic genome annotation. It automat-
ically generates de novo short amino-acid sequences
(i.e., peptide sequence tags, PSTs) from experimental
proteomics data, maps these to the six-frame translation
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of genomics DNA sequences, and highlights potentially
translated regions, which could be exons or genes. Our
workflow makes it possible to not only improve genome
annotation by confirming or correcting gene models or
finding new CDSs, but also to complete classical
database-driven proteomics identification, by generating
a list of gene-matched translated proteins using these
short de novo amino-acid sequences.

Design and implementation

Our proteogenomics workflow (Fig. 1a), Peptimapper, is
composed of a series of scripts we developed for a pro-
ject called Ectoline. The scripts are partially based on the
PepLine software [18], which were tested and some
modified. The workflow consists of modular compo-
nents and can therefore be used for any eukaryotic
genome, following modification to accommodate its
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Fig. 1 a Project workflow: Samples corresponding to various stages of the life cycle (sporophyte, gametophyte, and gametes) and sub-cellular
compartments of Ectocarpus sp. were prepared for MS analysis. PSTs were generated from the MS/MS data, mapped against the genome, and
clustered. We classified each cluster according to their genomic annotation (whether one hit overlapped with or included at least one CDS of an
identified protein) and the number of typical spectra and verified whether all hits were included in a CDS or not. The location of clusters of
interest were written into GFF files to be integrated into a Genome viewer. The results of cluster qualification and visualization along the contig
allowed us to select clusters for experimental characterization. b Illustration of PSTs obtained from an MS/MS spectrum. MS/MS spectra are
composed of ions resulting from the fragmentation of peptides at their peptide bonds during tandem mass spectrometry analysis. The generated
fragment ions differ in mass corresponding to their adjacent amino-acid masses within the peptide sequence. A PST is a partial element of
information deduced from an MS/MS spectrum, defined as a small sequence of several probable adjacent amino acids from the original peptide
and the masses of the flanking N- and C-terminal fragment ions of this small sequence
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properties. We developed Peptimapper using the gen-
ome of Ectocarpus sp., a key reference genome for both
the brown algal lineage and stramenopiles. For each bio-
logical sample, we generated the MS/MS spectra file in
Mascot Generic File (MGF) format using conventional
proteomics software (i.e, Mascot Distiller, Proteome Dis-
coverer™, etc.). We used the “sequence tagging” approach
[10], in which a PST is defined by a small sequence tag
(usually three or four amino acids) and the two flanking
(N- and C-terminal) masses (Fig. 1b).

The bioinformatics steps are shown in Fig. 2. PSTs
were generated de novo from the MS/MS spectra infor-
mation of the MGEF. After testing several PSTs gener-
ation tools (see Step 1: From MGF files to PSTs), we
decided to adapt an existing tool: PepNovo + 3.1 beta
[26] (LXRunPepNovo). PSTs were then mapped on the
six-frame translations of the genome sequence, resulting
in a list of hits. A hit is defined as the location of a PST
on the genome sequence. Finally, closely located hits
were clustered to identify regions potentially associated
with genes or, at least exons. This was achieved by test-
ing (see Step 2: PST mapping and clustering below) and

bundling three modules of the PepLine software
(PMTrans, PMMatch, PMClust) into one script:
LXPepMatch.

By cross-checking results using a classical

database-driven proteomics approach, we tested and op-
timized step 1 and step 2 modules by varying settings ac-
cording to known Ectocarpus sp. genome features
(downloaded from ORCAE, a public database: http://
bioinformatics.psb.ugent.be/orcae/overview/Ectsi)  and
using as input a subset of reference spectra (see MS/MS
reference datasets building). The workflow construction
is detailed below (see section Workflow construction:
step-by-step).

The last step consisted of classifying clusters generated
in step 2, according to their annotation and confidence
level using the script we developed for this purpose:
LXQualify. Clusters on the genome were visualized by
implementing another specific script, LXClust2Gff. It
wrote cluster locations generated by LXPepMatch into
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GFF files for further integration into a genome viewer
(i.e., Artemis (Sanger Institute, England) [27]). Results
were validated by manually comparing various clusters
of interest with EST and RNA-Seq data (see workflow
building step by step, step 3 section, below).

From biological samples to MS/MS spectra files (MGF
files)

We extracted various subcellular samples (cell walls,
cytoplasm, nuclei, membranes) from various life cycle
stages of Ectocarpus sp. strains (gametophyte, gamete)
using specific protocols (see Additional file 1) to provide
deep coverage of the proteome. Enriched extracts were
then separated by SDS-PAGE onto 12% precast GeBa-
Gels (Gene Bio-Application Ltd., Kfar Hanagide, Israel)
and stained with EZBlue gel staining reagent (Sigma-Al-
drich, Saint-Quentin Fallavier, France), according to the
manufacturer’s instructions. Gel lanes were cut into 20
bands which were subjected to trypsin digestion, as pre-
viously described [28]. Tryptic peptides were analyzed
using a nanoflow high-performance liquid chromatog-
raphy (HPLC) system (LC Packings Ultimate 3000,
Thermo Fisher Scientific, Courtaboeuf, France) con-
nected to a hybrid LTQ-Orbitrap XL™ spectrometer
(Thermo Fisher Scientific) equipped with a nanoelec-
trospray ion source (New Objective, Woburn, Massa-
chusetts, USA), as previously described [29]. The mass
spectrometer was operated in the data-dependent mode
by automatic switching between full-survey scan MS and
consecutive MS/MS acquisition. Survey full scan MS
spectra (mass range 400-2000) were acquired in the
Orbitrap section of the instrument with a resolution of r
= 60,000 at 400 m/z; ion injection times were calculated
for each spectrum to allow the accumulation of 10° ions
in the Orbitrap. The seven most intense peptide ions in
each survey scan with an intensity above 2000 were se-
quentially isolated and fragmented in the linear ion trap
by collision-induced dissociation. For Orbitrap measure-
ments, an external calibration was used before each in-
jection series to ensure an overall error mass accuracy
below 5ppm for the detected peptides. MS data were

Ectocarpus nuclear genome Ectocarpus gff3 repository
(fasta)
l . l Ectocarpus gff3 files +
MGF file PSTs file hllts file fil — Clusters locations
RAW file D algteie - — Artemis genome viewer
— ] — —s e -
LTQ Orbitrap XL™ : LXClust2Gff
Mass Spectrometer ~ Proteome LXRunPepNovo LXPepMatch Annotated clusters
spectra Discoverer™ (Pepnovo+ 3.1 (PMTrans 4 file
(Proteomics  beta modified) + PMMatch modified LXQualify
software) + PMClust)
Step 1 Step 2 Step3
Fig. 2 Steps of the bioinformatics workflow
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saved in RAW file format (Thermo Fisher Scientific)
using XCalibur 2.0.7 with tune 2.4. For each sample,
MS/MS spectra, grouped into an MGF file, were gener-
ated by Proteome Discoverer™ 1.2 software. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE [30] partner
repository with the dataset identifier PXD010618.

Building the MS/MS reference dataset

For each step of Peptimapper, we developed specific
tools or used or adapted existing tools. We built three
reference datasets for their assessment. These were
obtained by a classical database-driven proteomics
approach. Peptides were identified using Proteome Dis-
coverer™ 1.2 software supported by the Mascot search
engine (Mascot server v2.2.07; http://www.matrixscien-
ce.com), using its decoy strategy. This software matches
each MS/MS experimental spectrum (RAW file) against
a database comprising all theoretical MS/MS spectra cal-
culated for every possible peptide from an in silico diges-
tion of Ectocarpus sp. gene model proteins (downloaded
from ORCAE, https://bioinformatics.psb.ugent.be/gdb/
ectocarpus/, Ectsi_prot, 2010, 16,533 sequences). Mass
tolerance was set to 10 ppm and 0.5 Da for MS and MS/
MS, respectively. Enzyme selectivity was set to full tryp-
sin, with one missed cleavage allowed. The allowed pro-
tein modifications were set to carbamidomethylation of
cysteines and variable oxidation of methionine. Proteome
Discoverer™ identification results allowed us to manually
create reference MGF files composed of MS/MS spectra,
selected according to the False Discovery Rate (FDR)
calculated in Proteome Discoverer™ and the reliability of
the protein identification. MGF files were separated into
three reference datasets according to the confidence
level of the identifications: the “green” reference dataset
(high quality spectra) containing all MS/MS spectra cor-
responding to identified proteins with at least three pep-
tides and a FDR (computed as described above by the
Mascot search engine) < 1%; the “orange” reference data-
set (medium quality spectra) containing all MS/MS
spectra with proteins identified by one peptide or more,
and a FDR > 1% and < 5% and; the “red” reference data-
set (low quality spectra) containing all MS/MS spectra
without any protein identification and a FDR > 5%.

Workflow construction: step-by-step

Step 1: From MGF files to PSTs

The first step (Fig. 2) consisted of PST generation. We
considered three bioinformatics tools for this step: 1)
PepNovo + 3.1 [26], 2) Peaks [31], and 3) Taggor, which
is a module of PepLine [18]. Taggor, initially developed
for QTOF mass spectrometer data treatment, was
adapted to account for mass tolerance parameters when
using an ion trap spectrometer. We tested tool
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performance using a subset of the green dataset: 10 high
quality MS/MS spectra provided by proteome Discov-
erer”, exporting the spectra of the two best peptides
from each of the five top scoring proteins (see Add-
itional file 2) into a MGF file. This file was used as input
for each of the three bioinformatics tools. We then se-
lected the one that generated the most PSTs identical to
peptide sequences identified by Proteome Discoverer™ for
the same spectra.

Step 2: PSTs mapping and clustering

The second step consisted of successive genome transla-
tion, PST mapping, and hits clustering. We separately
tested PMMatch and PMClust scripts, which were then
grouped together into LXPepMatch (Fig. 2). We first
generated PSTs from the three previously defined refer-
ence datasets (see Additional file 2). For PST mapping,
we adapted PMMatch, which is a module of PepLine
[18] designed to locate PSTs on complete genome se-
quences, by adding an option to specify an absolute
mass tolerance. It was set to 0.5 Da for our test case. We
defined the PST length (ie., optimal number of amino
acids) and compared the results with those for which
one or no amino acid modifications were allowed, by
mapping PSTs of each reference spectra dataset against
the Ectocarpus sp. gene model proteins (downloaded
from ORCAE, Ectsi_prot, 2010) (Fig. 3a). Proteins
matched by PSTs were compared to the expected pro-
teins identified by conventional database spectral identi-
fication, using the same spectra and same protein
sequence database (Ectsi_prot, 2010) with Proteome Dis-
coverer™ 1.2 software. A hit (the location of a PST on the
genome sequence) was considered to be valid if it
matched the expected protein. We considered proteins
matched by at least two valid hits and corresponding to
expected proteins to be true-positives (“true_pos”). We
defined “nref’ as the number of expected proteins and
“nfound” as the number of proteins matched by
PMMatch. Sensitivity was defined as the percent of ex-
pected proteins matched (true_pos/nref) and selectivity
the percent of expected proteins among all proteins
matched using our workflow (true_pos/nfound). We
computed these metrics for each reference dataset by
varying tag lengths from 3 to 5.

For hit clustering, we only used the green reference
dataset to test the program PMClust, another module of
PepLine. We optimized this step by selecting the max-
imal distance between two consecutive hits to be
grouped in a cluster, taking into account the mean
length of CDSs, exons, introns, genes, and intergenic re-
gions of the Ectocarpus sp. genome. We defined the
minimum number of hits (MINHIT) and minimum
number of peptides (MINPEP) a cluster could contain to
improve the results. Clusters were mapped to the 1591
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annotated contigs (GFF3 files downloaded from ORCAE,
Ectsi_gff3, 2011) and classified into three categories, ac-
cording to their mRNA locations: IN when clusters were
located inside an mRNA feature, OUT when clusters
were located outside of an mRNA feature, and CROSS
when clusters were located across an mRNA feature
(Fig. 3b).

We performed the first test by analyzing their distribu-
tion into each category for various values of MINHIT
and MINPEPD, with the aim of obtaining the maximum
number of IN clusters. In the second test, we compared
proteins that matched IN and CROSS clusters to the ex-
pected proteins identified by conventional database
spectral identification, using the same spectra and pro-
tein sequence database (Ectsi_prot, 2010) with Proteome
Discoverer™ 1.2 software (Fig. 3c). We considered pro-
teins matched by an IN or CROSS cluster and corre-
sponding to an expected protein to be true-positives
(“true_pos”). All IN and CROSS clusters corresponded to
found proteins (“nfound”), whereas all expected proteins
corresponded to proteins identified by the database-
driven approach (“nref’). We calculated the sensitivity
(“true_pos”/“nref’), which is the percent of expected pro-
teins matched by an IN or CROSS cluster among all ex-
pected proteins, and the selectivity, which is the percent

of expected proteins among all proteins found by IN or
CROSS clusters (Fig. 3c). We computed these metrics
using the green reference dataset for various values of
MINHIT and MINPEP.

Step 3: Annotation and visualization of cluster results
In the third step (Fig. 2), we developed a specific script,
LXQualify, allowing the annotation of clusters with three
labels. The first was “UNANNOTATED” or “ANNO-
TATED?, if no hits or at least one hit was included in a
CDS of a protein-coding gene, respectively. The second
was “DUBIOUS”, “POSSIBLE”, or “SURE”, to assign a
confidence degree to each cluster according to the num-
ber of typical spectra (i.e., specific to the cluster) and the
number of hits. A cluster was “DUBIOUS” if it contained
zero or one typical spectrum; “POSSIBLE” if it contained
two or more typical spectra, but less than three different
peptides, and “SURE” if it contained two or more typical
spectra and three or more different peptides. The third
was “OK” or “CHECK?”, if all the hits were included in an
annotated CDS or at least one hit did not match with
the annotated CDS, respectively. Labeled clusters were
listed in a tabular output file.

We developed a specific script, LXClust2Gff, to con-
vert PMClust output to GFF files for visualization.
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Artemis (Sanger Institute, England) [27] was used as
the genome sequence viewer to conveniently assess
our results.

Some clusters of interest were validated by comparison
with transcriptomics data and RT-PCR experiments.
Transcriptomic data (ESTs and RNA-Seq coverage) were
downloaded from the ORCAE public database of the
Ectocarpus sp. genome. These data were previously pub-
lished with research articles [32, 33]. For RT-PCR exper-
iments, approximately 100 mg wet weight of frozen
samples of Ectocarpus sp.. Ec 32 were quickly ground in
liquid nitrogen for RNA extraction. Total RNA was pre-
pared as described previously [34]. RNA quantity and
quality were verified using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop products, Thermo Fisher Sci-
entific) and by electrophoresis on agarose gels. cDNAs
were produced from 1pg total RNA wusing the
ImProm-II" Reverse Transcription System (Promega,
Charbonniéres-les-Bains, France). PCR experiments
were carried out with a thermocycler machine using a
standard GoTaq” DNA Polymerase Protocol (Promega).
The annealing temperature of the specific primers for
cluster validation were between 58 and 60 °C. PCR prod-
ucts were separated and purified on agarose gels. The
DNA was subsequently sequenced using the BigDye®
Terminator v3.1Cycle Sequencing Kit and a 3130
Genetic Analyzer (Applied Biosystems, Foster City, Cali-
fornia, USA).

Results

We designed and built our proteogenomics tool using
the brown alga E. sp. as our test case. The Ectocarpus sp.
(formerly included in E. sp., [35]) has become a model
organism for brown algal biology because of its amen-
able features for morpho-genetic, life-cycle, and genetic
studies. Publication of the Ectocarpus sp. genome in
2010 propelled brown algal research into the genomic
era and several post-genomic tools have been subse-
quently developed using this species to explore diverse
aspects of brown algal biology, including its life cycle,
development, metabolic processes, and interactions with
the environment [32, 36]. Resources for Ectocarpus sp.
now include two genetic maps [37, 38], gene mapping
techniques, microarrays [39, 40], transcriptomic data
[41, 42], proteomic techniques [43, 44], and bioinformat-
ics tools for the prediction of peptide addressing [45]
and metabolic reconstruction [46].

Workflow: settings and test results

We optimized our proteogenomics approach (Fig. la)
using the three reference datasets. It required
fine-tuning for the type and quality of the MS data and
adaptation to the characteristics of the Ectocarpus sp.
genome. The initial genome V1 annotation retrieved
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16,256 protein-coding sequences, among which 6655
had no EST support and 5819 concerned specific brown
algal genes encoding proteins with no known function
[32]. Moreover, the high number of introns per gene (an
average of seven), the extended 3'UTR regions, with an
average length of 845bp, and short intergenic regions
often hampered accurate gene prediction.

Step 1: From MS/MS spectra to PSTs

We selected the best from among three programs (i.e.
Taggor, Peaks, PepNovo+) to generate PSTs from MS/MS
spectra. Taggor had difficulties distinguishing doubly
charged ions from singly charged ions, leading to se-
quence errors. This tool also required a preliminary de-
convolution step. We thus discarded it and focused on
Peaks and PepNovo+. Ten high quality experimental
spectra identified by Proteome Discoverer™ 1.2 software
(see Additional file 2) were manually selected for use as
reference sequences (Table 1) to cross-reference PST se-
quences generated by each program we tested.

Peaks generated PSTs of variable, generally long
sequence-tag length (at least six amino acids) that could
potentially lead to errors. Indeed, Peaks generated only
four correct sequences (Table 1). The errors generated
by Peaks are also explained by the mass tolerance accur-
acy parameter. For example, the amino-acid mass of
“DD” is 230.05Da and that of “ET” is 230.09 Da. The
reference sequence tag to generate was “GVSEET”,
whereas Peaks wrongly proposed “GVSEDD”. PepNovo+,
raised two concerns. First, it did not take into account
the H,O molecule plus the single charge acquisitions
during the fragmentation process, resulting in errors in
the mass of Mn NTer. Second, it did not take the pep-
tide charge into consideration. Nevertheless, after cor-
recting for these problems, PepNovo + appeared to be
the best choice. Indeed, it returned 8 of the 10 reference
sequences (Table 1). PepNovo + was set to two allowed
amino-acid modifications, cysteine carbamidomethyla-
tion and methionine oxidation (C +57 and M + 16, re-
spectively). The maximal tag number generated per
spectra was set to 10.

Step 2. From PSTs to hit clusters

PST mapping was performed using the PMMatch pro-
gram. The results of three PST files generated by Pep-
Novo + from the green, orange, and red reference spectra
datasets (see Additional file 2) were used as input. We
then compared protein encoding genes matched by PSTs
to the expected proteins identified by Proteome Discov-
erer™ from the same spectra dataset, using the same
Ectocarpus sp. protein database (ORCAE, Ectsi_prot,
2010) as that used by PMMatch (Fig. 3a). Sensitivity and
selectivity were calculated for each dataset. Sensitivity
measures the proportion of positive IDs that were
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correctly identified among all expected proteins and se-
lectivity the proportion of positive IDs that were cor-
rectly identified among all matched proteins. The results
of each reference dataset are reported in Fig. 4 for three
different sequence tag lengths (i.e., 3, 4, or 5 amino
acids) for a minimum of one or two hits per protein
(MINHIT) with one or no amino acid modifications
allowed.

We observed poorer selectivity and slightly better sen-
sitivity for the high and medium quality spectra with
MINHIT =1 (Fig. 4a) than with MINHIT =2 (Fig. 4b).
MINHIT =2 resulted in poorer sensitivity for noisy spec-
tra. Thus, optimal parameters depend on spectra quality.
Selectivity increased with PST length, regardless of the
quality of the spectra, with a slight unfavorable influence
on sensitivity, particularly for spectra of medium and
poor quality. Thresholds of MINHIT>1 and a tag se-
quence length =5 amino acids allowed us to focus on
spectra of relatively good quality. We thus reduced the
number of results to be validated from our preliminary
study. Sensitivity and selectivity were higher when MIN-
HIT =2 and one amino acid modification was allowed,
regardless of the quality of the spectra (Fig. 4c). We thus
set allowed amino-acid modifications to one for PST
mapping.

We performed further tests on the cluster results to
set the optimal minimum hits per protein parameter
(MINHIT). We compared proteins matched by clusters
to the expected proteins identified by conventional data-
base spectral identification using Proteome Discoverer™
1.2 software and the same spectra and protein database
as above (ORCAE, Ectsi_prot, 2010) (Fig. 3c). We gener-
ated PSTs from only the green reference dataset, running
PMMatch on the Ectocarpus sp. genome sequence
(ORCAE, Ectsi_genome_V2_cleaned.tfa) translated by
PMTrans. We clustered hits with the aim of uncovering
regions potentially associated with genes or, at least,
exons. The maximal distance between two consecutive
hits in a cluster was correlated with E. sp. genome fea-
tures to improve cluster results. The statistical distribu-
tion was established for each, starting from the E. sp.
GFF3 files (ORCAE, Ectsi_gff3, 2011; Ectsi_gen-
ome_V2_cleaned.tfa): CDS (median of 137 nt), exons
(median of 143 nt), introns (median of 531 nt), gene
(median of 4772 nt), and intergenic regions (median of
2529 nt). We observed relatively short CDS and introns
and short intergenic regions, with a median that was
only four times larger than that of introns. Thus, there
was a risk of confusing introns and intergenic regions.
We thus fixed the maximal distance between hits to
5000 nt, thus minimizing the risk to merge two proteins
while covering 99.6% of introns. Each cluster was anno-
tated to fall into one of three categories, “IN”, “OUT", or
“CROSS”, according to Ectocarpus sp. mRNA locations
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(Fig. 3b), to further set the minimal number of hits
(MINHIT), and validated peptides (MINPEP) required to
form a cluster. First, we assessed the proportion of clus-
ters falling into each category and the best result, i.e.,
90% of the clusters obtained were “IN” with a minimum
of three hits and two peptides (Fig. 5a). Second, we com-
pared the number of proteins predicted by the “IN” and
“CROSS” clusters to the expected number of proteins
(i.e., identified with Proteome Discoverer™ using the same
reference spectra) for different values of MINHIT and
MINPEP (Fig. 5b). We obtained satisfactory sensitivity
and selectivity scores of 83 and 82%, respectively, with a
minimum of three hits and two peptides. Last, we ran
PMClust with the following parameters: MINHIT at
three hits, MINPEP at two peptides, and the maximal
distance between two hits to form a cluster of 5000
nucleotides.

Final workflow: validation on all samples of Ectocarpus sp.
We produced a PST file from each biological sample
using LX_RunPepNovo. PSTs were mapped on the
six-frame translations of the Ectocarpus sp. genome
(ORCAE, Ectsi_genome_V2_cleaned.tfa) using the
LXPepMatch program with the optimized parameters
described above, thus generating 20-hit lists that were
pooled to obtain only one file per sample. We used vari-
ous strains to isolate biological samples of Ectocarpus
sp.. We thus needed to avoid mistakes linked to small
genetic differences due to polymorphisms. Before clus-
tering, we merged hits files of each strain: Ec32 (soluble,
membrane, and cell wall fractions), Ec594 (gametophyte
and nuclei fractions), and Ec410 (gamete fraction). We
generated clusters from each hits file, i.e., Ec32, Ec594,
and Ec410, with the optimized parameters described
above, using GFFS3 files (ORCAE, Ectsi_gff3_Jun2013).

The resulting list contained 2107 unique clusters (see
Additional file 3), combining all strains, that included
272 unannotated and 1832 annotated clusters. We fur-
ther analyzed a subset of these clusters. We annotated
clusters to fall into one of three grades to assign a degree
of confidence to each, based on the number of typical
spectra (i.e, specific to the cluster) and the number of
hits, as described above. Thirteen percent of clusters
were unannotated and 87% annotated (Fig. 6a). We fo-
cused on SURE or POSSIBLE and OK or CHECK clus-
ters (see implementation step 3).

We validated our workflow by focusing on distinct
case-results. i) We studied clusters annotated as SURE
and CHECK to correct mispredicted genes or correct
the ATG start codon. We found 472 clusters annotated
as SURE and CHECK (Fig. 6b). Among these, two were
retained for further experimental validation. ii) We only
focused on the 45 unannotated clusters labeled SURE
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(Fig. 6¢) to find new CDSs. Among these, two were fur-
ther analyzed.

Correction of mispredicted genes or ATG start codons

The first cluster, named “cluster A”, was present on
sctg_326 between 105,788 and 106,978 (Fig. 7a). It was
“ANNOTATED_SURE_CHECK” and only identified in
Ec32 samples. This cluster was positioned downstream of
the predicted gene model Esi0326_0032, annotated as a
dihydrolipoamide acetyltransferase. A blastX search (on the
ORCAE website, http://bioinformatics.psb.ugent.be/blast/
moderated/?project=orcae_Ectsi, Ectsi_genomellx) against
all portions of the Esi0326_0032 gene followed by the DNA
sequence of cluster “A” identified a full-length protein for
the dihydrolipoamide acetyltransferase component of the
pyruvate/2-oxoglutarate dehydrogenase complex. This was

also corroborated by two ESTs: AAA12YO13, AAB11YAO05
(ORCAE, Ectsi_ESTs_cleaned) matching this region
(Fig. 7b). Our results showed that the prediction of the last
exon of the Esi0326_0032 gene model appeared to be false.
Consequently, we selected this cluster as a candidate for
correction of a mispredicted gene. We designed primer
pairs to amplify portions based on the sequences of the
PSTs for validation (Fig. 7c), as public databases suggested
that the “A” cluster was expressed in vivo by E. sp.. PCR
products of the expected size of 244-bp were obtained
(Fig. 7d) and sequencing confirmed the presence of the ex-
pected nucleotide sequences (data not shown).

The second cluster, named “cluster B” was present on
sctg 39 between 759,682 and 762,422 (Fig. 8a). It was
“ANNOTATED_SURE_CHECK” and only identified in
Ec32 samples. Most (191 “hit in”) of the total hits (257

A ECTOCARPUS (EC584, EC32, EC410) CLUSTERS

ANNOTATED; 1835; 87%.

ECTOCARPUS (EC584, EC32, EC410) ANNOTATED CLUSTERS
ANNOTATED_DEBIOUS_OK; 108; 6%

ANNOTATED_DUBIOUS_CHECK; 84; 4%
ANNOTATED_SURE_CHECK; 472; 26%

ANNOTATED_POSSIBLE_OK; 433; 24%

ANNOTATED_SURE_OK; 587; 32%

ANNOTATED_POSSIBLE_CHECK; 151; 8%

Fig. 6 a Distribution of all ANNOTATED/UNANNOTATED Ectocarpus sp. clusters. b Distribution of ANNOTATED clusters according to category. ¢

Distribution of UNANNOTATED clusters according to the category

UNANNOTATED; 272; 13%

C

ECTOCARPUS (EC584, EC32, EC410) UNANNOTATED CLUSTERS

UNANNOTATED_SURE_CHECK; 45; 17%
UNANNOTATED_DUBIOUS_CHECK; 102; 37%

UNANNOTATED_POSSIBLE_CHECK; 125; 46%
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“tot hit”) were present in the predicted sequence of an
Ectocarpus sp. gene corresponding to Esi0039_0135
(Fig. 8b). These 191 hits corresponded to five peptides
located in the region of the predicted Esi0039_0135
protein-coding gene (“cds in”). Another peptide, “TYI-
MIKPDGVQR?”, partially covered the Esi0039_0135 se-
quence (“cds cross”). The predicted start codon of the
Esi0039_0135 protein-coded gene is included in this
peptide sequence and further analysis of the ESTs
showed that the true start codon of this gene may likely
be upstream of the predicted one (Fig. 8c). Indeed, these
two potential start codons are very close (separated by
five amino acids) emphasizing the benefit of a proteomic
approach for true start codon assignment. The identifi-
cation of the PST sequence TYIMIKPDGVQR in the
MS/MS data led us to propose a new position for the
ATG start codon of the Esi0039_0135 gene. Neverthe-
less, we cannot exclude that the two ATG codons may
be alternatively used in vivo to produce different transla-
tion products of this nucleoside diphosphate kinase.

New CDS discovery

“Cluster C”, was mapped against sctg_8 from position
419,782 to position 422,806 (Fig. 9a) with four peptides
(Fig. 9b). It was “UNANNOTATED_SURE_CHECK” and
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observed in the three datasets. An MS-Blast search [47]
(http://genetics.bwh.harvard.edu/msblast/), using PST
sequences included in this cluster, revealed similarity
with ribosomal protein L22 (RPL22) from other species.
In addition, cross-analysis with Ectocarpus sp. transcrip-
tomic data available from the ORCAE website (http://
bioinformatics.psb.ugent.be/blast/moderated/?projec-
t=orcae_Ectsi) showed that a complete cDNA sequence
(ACA17YE21) was present in cluster “C”. This sequence
appears to be a good candidate for a new protein coding
gene as no coding gene has yet been predicted in this re-
gion (Fig. 9a). We designed primer pairs to amplify por-
tions based on the PST sequences (Fig. 9c) for
validation, as transcriptomic data in public databases
suggested that the “C” cluster is likely to be expressed in
vivo in E. sp.. PCR products of the expected size of 248
bp were obtained (Fig. 9d) and sequencing confirmed
the presence of the expected nucleotide sequences (data
not shown).

The last cluster, named “cluster D”, was present on
sctg_203 between 20,569 and 25,604 (Fig. 10a). It was
observed in two datasets (Ec32 and Ec594) and is
present on LGO02 of the genetic map [38] (Fig. 10b). We
also selected it for validation by RT-PCR analysis
(Fig. 10d). We designed PCR primers based on the
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yellow. Another representation of the same exons is shown in light blue along the six reading frames (+ 1, + 2, + 3 above and - 1, =2, — 3

conditions. d RT-PCR and EST validation: agarose gel electrophoresis of RT-PCR products (lane 1), RNA-PCR negative controls (lane 2), and DNA

ectangles of the PSTs. b Cluster “D" data. ¢ Experimental validation

coding sequences of the most distant PSTs identified for
this cluster (VVLPTWELR and IADFVGIETTPEIIEK).
In addition, four ESTs were found to cover the entire
length of the cluster. Amplification of Ectocarpus sp.
c¢DNAs led to an expected product of 692bp absent
from the RNA amplification negative control, confirming
the translation of this new gene product (Fig. 10d).

Peptimapper workflow distribution

Our proteogenomics workflow, Peptimapper, is com-
posed of four scripts from the Ectoline github project:
LXRunPepNovo, LXPepMatch, LXQualify, and LXClust
2Gff (Fig. 2; see command line arguments and output file
descriptions into Additional file 4). PMMatch, used by
LXPepMatch, was adapted from the Pepline suite (ver-
sion 2.0.1) to fit our workflow. LXRunPepNovo is a new
version of PepNovo + (version 3.1 beta), adapted for our
data. This version contains sources and pre-compiled
binaries for Linux and MacOS platforms. Ectoline pro-
ject is distributed under the GPL or CECILL license.

The text of both licenses is attached (and should remain
attached) to this distribution and is available at https://
github.com/laeticlo/Ectoline.

We built a Docker image, called peptimapper (see
dockerfile into Additional file 5), to allow easier distri-
bution and interoperability of Ectoline scripts. Anyone
can retrieve this image from a public repository and
run it as a package without any specific configuration
or installation requirements. This package contains all
workflow components (Fig. 2), along with dependencies
and running environment. We use two different
cloud-based public registry services for storing and dis-
tributing our Docker image: the Docker Hub (https://
hub.docker.com/r/dockerprotim/peptimapper/) and Bio
ShaDock [48], a public curated and bioinformatics-
focused repository (https://docker-ui.genouest.org/app/
#/container/dockerprotim/peptimapper). In the context
of this project, every computational tool for each step
of the overall workflow was integrated and deployed on
our own Galaxy server https://galaxy.protim.eu, using
this Docker image (see Additional file 5). Our workflow
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Table 2 Eukaryotic proteogenomics pipelines and Galaxy workflows
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Name Pipeline Database- de novo  User- Results  Results  Description Revelance
Interface driven for peptide  friendly  curation visuali-
peptide inter- for zation
identifi- pretation  biologists
cation
Peptimapper Command - v v N v Peptide Sequence Tags (PSTs) obtained from Improves genome
(released in 2018) line, Docker partial interpretation of ion trap mass spectra are  annotation
image, mapped onto the six-frame translation of gen-
Galaxy tools omic sequences giving hits. Hits are then clus-
tered to detect potential coding regions. Clusters
are evaluated and further compared to existing
gene predictions. Clusters are available as GFF file
to be uploaded into a genome viewer. https://
galaxy.protim.eu https://hub.docker.com/r/dock-
erprotim/peptimapper/ or https://docker-uigen-
ouest.org/app/#/container/dockerprotim/pepti-
mapper https://github.com/laeticlo/Ectoline
IPAW (2018) [61] Command N - - N - This is an Integrated Proteomics Analysis Identification of
line Workflow: i) Peptide spectra are searched in two  Pseudogenes,
different databases in parallel: VarDB filtered by ~ IncRNAs, nsSNPs
class-specific FDR for SAAV peptides and 6FT of ~ and somatic
the human genome filtered by peptides pl. ii) mutations
SAAV candidates are curated by SpectrumAl and
potential novel proteins are blasted onto public
databases. ii) Curated results are validated by dif-
ferent controls. https://github.com/yafeng/
proteogenomics_python
JUMPg (2016) [62] Command - - N v This pipeline includes multiple customized Improves genome
line databases construction, tag-based database annotation
search, peptide-spectrum match filtering, ans
data visualization. https://github.com/gatechatl/
JUMPg/
PGMiner (2016) [63] Command J - - V vV This workflow allows acquisition of mass Improves genome
line spectrometric data, peptide identification against annotation
preprocessed sequence databases, assignment of
statistical confidence to identified peptides, and
mapping confident peptides to gene models.
https://github.com/olalonde/pgtools
PROTEO-FORMER Command J - V V vV RIBO-seq NGS data are processed to delineates Identification of
(2015) [64] line, Virtual proteoforms. RIBO-seg-derived sequences are novel translation
machine, then translated and mapped to a public data- products
Galaxy tools base, creating a custom search database for pep-
tides to MS/MS matching.
PGTools (2015) [65] Command N - - N V The software is divided into 2 phases: Phase 1 Improves genome
line contains 8 modules to analyse MS/MS data using annotation
known proteins databases. Phase 2 contains 5
modules and 7 customized databases that allow
MS/MS data to be analysed against the genome.
That software includes applications, libraries,
customized databases and visualization tools.
NextSearch (2015) [66] ~ Command - - - N v Nucleotide EXon-graph Transcriptome Search Improves genome
line identifies peptides by directly searching the nu-  annotation
cleotide exon graph against tandem mass spec-
tra. NextSearch outputs which are the proteome-
genome/transcriptome mapping that can be vi-
sualized using public tools.
ProteoAnnotator (2014)  Command N - v N V MS spectrum are queried by one or several Improves genome
[52] line, Stand proteomics databases search engines (MASCOT,  annotation
alone OMSSA, X!ITandem or MSGF+) and results are
application converted into GFF adding genome coordinates
and statistical confidence values. It exports
mzldentML files.
http://www.proteoannotator.org
Peppy (2013) [67] Command V - N/A V - This workflow generates a peptide database Improves genome
line, Stand from a genome, tracks peptide loci, matches annotation
alone peptides to MS/MS spectra and assigns FDR
application confidence values to those matches.
http://geneffects.com/peppy
Protk (released in 2012) Command J - v - v It is a suite of tools for proteomics providing the  Improves genome
line, Galaxy following analysis tasks: (i) MS/MS data search annotation
tools with XITandem, Mascot, OMSSA and MS-GF+; (ii)

peptide and protein inference with Peptide
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Table 2 Eukaryotic proteogenomics pipelines and Galaxy workflows (Continued)

de novo  User-
peptide  friendly
inter- for
pretation  biologists

Database-
driven for
peptide
identifi-
cation

Name Pipeline

Interface

Results
curation  visuali-

Results  Description Revelance

zation

IggyPep (2010) [54] Web J V N/A -
interface

Command - v N/A N
line

PepLine (2008) [18]

Workflows for Galaxy tools - V V
Proteomics Informed
by Transcriptomics

(2015) [57]

Workflows for Galaxy tools  +/ - V J
proteogenomics

studies using Galaxy-P

(2014-2018) [55, 56, 58,

59]

Prophet, iProphet and Protein Prophet; (jii) con-
version of pepXML or protXML to tabular format,
and (iv) mapping of peptides to genomic coordi-
nates https://github.com/iracooke/protk

- The pipeline is based on a database system with
advanced indexing and querying strategy, which
holds the translated genome in all six reading
frames. It can be queried with de novo
sequences or partial peptide sequence tags
(PSTs). It determines the ORF amino acid
comprising these tags and compiles a fasta-
formated sequence file for a database-driven
search. www.iggypep.org (No more accessible)

Improves genome
annotation

- Peptide Sequence Tags (PSTs) obtained from
partial interpretation of QTOF mass spectra are
mapped onto the six-frame translation of gen-
omic sequences giving hits. Hits are then clus-
tered to detect potential coding regions.
www.grenoble.prabifr/protehome/software/
pepline (no more accessible)

Improves genome
annotation

v Galaxy Integrated Omics (GIO) provides
workflows for 4 common use cases: i) a standard
search against a reference proteome; ii) PIT
protein identification without a reference
genome; i) PIT protein identification using a
genome guide; iiii) and PIT genome annotation.
http://gio.sbcs.gmul.ac.uk

Improves genome
annotation

V These modular workflows incorporating both
established and customized software tools that
improve depth and quality of proteogenomic
results. http://galaxyp.org

Improves genome
annotation

Available Eukaryotic Proteogenomics pipelines are listed in https://omictools.com/proteogenomics-category. We only selected software types “pipeline/workflow”
or “Toolkit/Suite” for comparison to our pipeline. Proteogenomics Galaxy workflows [49, 50] are added at the end of the table

is therefore functionally reproducible with Galaxy [49,
50]. It ran on a virtual machine with 8 CPU and 70
Go RAM.

Discussion

Most sequence-centric proteogenomics available pipe-
lines are based on the generation of customized protein
databases from genome, exome, or RNA sequencing to,
e.g. reannotate genes, predict splice isoforms or discover
novel proteins, using classical database-driven methods
[7-9]. These methods are based on a direct comparison
between experimental MS/MS spectra and theoretical
MS/MS spectra generated from in silico digestion of
these customized protein databases. A major advantage
of such approaches is the specificity of the databases, in-
cluding variations such as single amino acid variants
(SAAVs) and alternative splice junctions. However, one
of their weaknesses is the size of these databases, larger
than those used in conventional proteomic searches and
containing only known proteins. Consequently, it re-
quires iterative search strategies and a specific FDR cal-
culation to be sensitive enough to avoid false positive
identifications [7]. Peptimapper overcomes this statistical

drawback by first partially interpreting MS experimental
spectra before mapping them onto the translated gen-
ome. Other similar pipelines currently exist that map
MS-based proteomics data onto genomic coordinates as
the Proteogenomic Mapping Tool [51], proteoAnnotator
[52], PGMiner [53], Protk (https://github.com/iracooke/
protk), IggyPep [54], or PepLine [18] (Table 2). However,
for most of these pipelines, peptides are derived from
database-driven methods, except for IggyPep and
PepLine that also use de novo Peptide Sequence Tags
(PSTs) obtained from partial interpretation of mass spec-
trometry data. Unfortunately, PepLine and IggyPep are
neither maintained nor available anymore.

Another crucial step mentioned into the review by A.
Nesvizhskii [7] is the confidence degree for results. Val-
idation and cura\tion steps are not always integrated
into existing proteogenomics pipelines. Peptimapper
provides results annotated with quality criteria (e.g. min-
imal number of typical spectra by cluster) and
visualizable through a genome browser for manual in-
spection purposes.

The high number of data processing steps that com-
pose a proteogenomics analysis do not make the strategy
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Table 3 Additional clusters currently under investigation
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Cluster Contig ~ Strand From  To Strain  Tot RNA data  Genetic Action Identification
D pep map
113 sctg_117 D 265421 281797 EC494 10 ESTs LGUn probable new gene Esi0117_0046 similar sequence
+RNAseq
179 sctg_136 D 16590 18641 EC494 3 ESTs LG16 Esi0136_0001 model Ferredoxin
+RNAseq correction
750 sctg_346 D 52096 53724 EC494 3 RNAseq LG15 Esi0346_0010 model Esi0003_0041 similar sequence
correction
1034 sctg_6 D 824608 831877 EC494 3 RNAseq LG04 Esi0006_0137 model Conserved unknown protein
correction
1056 sctg_62 D 30800 38368 EC494 9 RNAseq LG16 Esi0062_0006 model Hypothetical protein
correction
1072 sctg_634 D 21444 27984 EC494 3 ESTs LGUn probable new gene none
+RNAseq
1154 sctg_77 D 414499 420533 EC494 3 No data LGUn probable new gene none
120 sctg_123 R 77652 82101 Ec32 4 RNAseq LGO8 probable new gene none
220 sctg_150 D 399071 404913 Ec32 3 No data LGN probable new gene none
777 sctg_43 R 146476 147692 Ec32 3 RNAseq LGO03 Esi0043_0035 model Catalase
correction
822 sctg_48 R 267223 267911 Ec32 5 RNAseq LG23 Esi0048_0051 model Hypothetical protein
correction
492 sctg_253 D 215846 216917 Ec32 3 RNAseq LGUn probable new gene none
567 sctg_291 R 60813 65620 Ec32 3 RNAseq LGO3 Esi0291_0011 model MTERF domain-containing
correction protein
618 sctg_310 D 63974 71773 Ec32 3 RNAseq LGUn probable new gene none
697 sctg_365 R 137829 143627 Ec32 3 RNAseq LGUn probable new gene none
218 sctg_87 R 471174 478804 Ec410 3 No data LG26 probable new gene Retrotransposon integrase-like

protein

Identification of the clusters was obtained by Blast analysis. The contig and genetic map data correspond to the Ectocarpus sp. vl genome annotation, showing
supercontigs (sctg) and linkage groups (LG), respectively. Strain refers to the Ectocarpus sp. strain that was the origin of the protein samples. Action refers to the
proposed correction of the current gene annotation according to the newly incorporated RNA data in the browser (RNA sequencing and ESTs)

see Additional file 6

easily workable for biologists. Especially since the most
of available pipelines are only accessible through a com-
mand line interface or sometimes as a stand-alone soft-
ware. Flexible and accessible Galaxy-based workflows
presented Table 2, are implemented for proteogenomics
analysis and well used for many projects [55-59]. Inter-
estingly, through a Galaxy framework, Peptimapper is
the only pipeline today that uses a complementary de
novo approach that has been also proved to be efficient
in finding new genes and in the discovery of refinement
of intron/exon boundaries.

According to the important criteria we mentioned above
a comparison of available pipelines is presented Table 2
based on these functionalities, i.e., database-driven for pep-
tide identification or de novo peptide interpretation, then
mapping onto the translated genomic sequence; pipeline
interface; user-friendly for biologists; results curation; re-
sults visualization. By re-using and improving PepLine
former modules, our pipeline extends the process by pro-
viding the users with new functionalities, thus meeting the
important criteria and being as complete as possible: i) It is

compatible with ion trap mass spectrometry data; ii) it al-
lows quality annotation of results and their visualization
through a genome browser; and iii) it makes the workflow
easily accessible through the Galaxy framework [49, 50].
Annotation of the Ectocarpus sp. genome has become
remarkably more accurate through the application of ex-
tensive RNA sequencing approaches and new informat-
ics tools [60]. Similarly, the EctoGEM metabolic
network has been considered to complement annota-
tions within the Ectocarpus sp. genome database to sup-
port the understanding of metabolic networks in this
organism [46]. The problems caused by many features of
the Ectocarpus sp. genome (high number of introns per
gene, extended 3'UTR, short intergenic regions) can be
alleviated by accurate annotation through the use of the
proteogenomics approach developed in this study.
RT-PCR experiments combined with transcriptomic
data (available on ORCAE website) allowed us to con-
firm the predictions, validate two new genes (RPL22,
AST), and correct one gene model (Dihydrolipoamide
acetyltransferase), all corresponding to clusters obtained
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by our combined approach of proteomics and bioinfor-
matics. Crossing the data generated by our bioinformat-
ics workflow for another cluster (cluster B) with
transcriptomic data allowed us to identify an alternative
ATG start codon of a gene encoding a nucleoside di-
phosphate kinase. This finding suggests that there may
be two alternative ATGs for this gene. Such a result
shows that direct mapping of MS/MS data to genomic
information provides a valuable approach to comple-
ment automatic annotation.

The methodological development focused on: i) work-
flow development and the optimization of parameters to
apply it to all our ‘sub-proteome’ MS/MS datasets and
ii) the search for the best qualifying criteria to sort clus-
ters according to specific aims (e.g., re-annotation, iden-
tification of small ORFs in the 3’'UTR, etc.).

Parameter adjustment is based both on MS/MS spec-
tra and genomic features. Fine-tuning appears to be an
important step and configuration workflow settings are
now available for organisms with gene characteristics
similar to those of our test case. Here, we only focused
on a few results. Indeed, many other identified clusters
should be of potential biological interest. Sixteen add-
itional clusters are currently under investigation in our
laboratory by combining proteomics with new develop-
ments in transcriptomics [60]: nine potential new
protein-coding genes are yet to be confirmed, and seven
exonic models and one ATG model may need correcting
(Table 3; Additional file 6).

Future studies

Recently, extensive RNA-seq data were used to improve
11,108 existing gene models and identify 2030 new Ecto-
carpus sp. protein-coding genes [60]. New data available
in public databases has advanced functional annotation
associated with protein-coding genes. To date, 61% of
genes now have a functional assignment, compared to
34% in the V1 annotation [60] we used in our workflow.
We are now applying our workflow, tailored for this
organism, using the most recent Ectocarpus sp. genome
annotation (http://bioinformatics.psb.ugent.be/orcae/over-
view/EctsiV2). In the future, we will analyze short ORFs,
focusing on small clusters corresponding to gene models
<150 nucleotides. In such a study, the proteogenomics
approach is a clear asset to confirm whether some small
transcripts are translated.

We also successfully tested Peptimapper using MS
data produced by a mass spectrometer of the latest gen-
eration (i.e, Q Exactive™ HF, ThermoFisher Scientific),
currently used to analyze another organism (i.e., Homo
sapiens) and other MS data analysis software (ie.,
Mascot Distiller V2.6; software supported by a more
recent version of the Mascot server v2.5.1; http://
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www.matrixscience.com) to create MGF. This shows
that Peptimapper is fully adaptable to the most recent
MS instruments and MS analysis software and is rele-
vant to study other eukaryotic organisms.

Conclusions

In addition to improving annotation of the Ectocarpus
sp. genome and gaining new knowledge about its prote-
ome, our objective was to provide an accessible, efficient,
and flexible tool to the annotation community that is
easily configurable according to the species of interest.
Thus, genome sequence and GFF3 files must be available
for the organism of interest to display genome features.
The workflow is available as a Docker image or inter-
faced with our Galaxy platform (see Additional file 5),
enabling web access to users with non-programming ex-
perience to easily run it in a transparent and reprodu-
cible way.

Availability and requirements
Project name: Ectoline
Project home page: https://github.com/laeticlo/Ectoline
Operating system(s): this distribution contains sources
and pre-compiled binaries for Linux, and MacOSX
platform
Licence: GPL license or under the CECILL licence
Ectoline Docker image name: peptimapper
Docker hub repository: http://hub.docker.com/r/dock-
erprotim/peptimapper/
Docker bioshadock repository: https://docker-ui.gen-
ouest.org/app/#/container/dockerprotim/peptimapper
Galaxy platform: https://galaxy.protim.eu/

Additional files

Additional file 1: Sample preparation protocols. (PDF 93 kb)
Additional file 2: All reference datasets Excel file. (XLS 21262 kb)
Additional file 3: All cluster results Excel file. (XLSX 282 kb)
Additional file 4: Scripts detailed descriptions: command line
arguments, output file descriptions and availability. (PDF 161 kb)

Additional file 5: Bioinformatic tools distribution. A. Peptimapper
dockerfile. B. Workflow labeled “Peptimapper” available on Protim Galaxy
platform. (PDF 773 kb)

Additional file 6: Study of additional clusters under investigation listed
Table 3. RNA-sequencing and EST data have been incorporated in the
browser. (PDF 2631 kb)
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CDS: Coding DNA sequence; CF: Cytoplasmic-proteome fractions; CHAPS: 3-
[(3-cholamidopropyl)dimethylammoniol-1-propanesulfonate; CPU: Central
processing unit; CW: Cell wall; CWF: Cell-wall-enriched proteome fractions;
DTT: Dithiothreitol; EDTA: Ethylene-diamine-tetraacetic acid; EST: Expression
sequence tag; FACS: Fluorescence-activated cell sorting; FDR: False Discovery
Rate; GF: Gametes proteome fractions; GFF/GFF3: General feature format;
HEPES: 4-(2-hydoxyethyl)-1-piperazine ethane sulfonic acid; HPLC: High-
performance liquid chromatography; LC-MS/MS: Liquid chromatography
tamdem mass spectrometry; MF: Membrane-enriched proteome fractions;
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MGF: Mascot Generic File; MS: Mass spectrometry; NES: Nuclear export signal;
NF: Nuclear proteome fraction; NLS: Nuclear localization signal;

PCR: Polymerase chain reaction; PST: Peptide sequence tag; RAM: Random
access memory; SAAV: Single amino acid variant; SP: Secretory pathway
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