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Abstract

Background: Small interfering RNA (siRNA) can be used to post-transcriptional gene regulation by knocking down
targeted genes. In functional genomics, biomedical research and cancer therapeutics, siRNA design is a critical
research topic. Various computational algorithms have been developed to select the most effective siRNA, whereas
the efficacy prediction accuracy is not so satisfactory. Many existing computational methods are based on feature
engineering, which may lead to biased and incomplete features. Deep learning utilizes non-linear mapping
operations to detect potential feature pattern and has been considered perform better than existing machine
learning method.

Results: In this paper, to further improve the prediction accuracy and facilitate gene functional studies, we
developed a new powerful siRNA efficacy predictor based on a deep architecture. First, we extracted hidden feature
patterns from two modalities, including sequence context features and thermodynamic property. Then, we
constructed a deep architecture to implement the prediction. On the available largest siRNA database, the
performance of our proposed method was measured with 0.725 PCC and 0.903 AUC value. The comparative
experiment showed that our proposed architecture outperformed several siRNA prediction methods.

Conclusions: The results demonstrate that our deep architecture is stable and efficient to predict siRNA silencing
efficacy. The method could help select candidate siRNA for targeted mRNA, and further promote the development
of RNA interference.
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Background
In 1988, Fire first introduced RNA interference (RNAi)
[1–3], and now it has been found that this mechanism
can be detected in many eukaryotic systems, such as
mammals, fungi, plants and invertebrates [4]. Small
interfering RNA (siRNA) is the production of RNAi,
which can induce instant target gene knockdown [3].
RNAi is a vital tool for researching gene function [5–7]
and can be used as an effective therapeutic method in
the treatment of virus and cancer [8–10].
The gene silencing efficacy of RNAi relies on siRNA de-

sign, and many efforts are being made in this area. In early

days, several sets of empirical rules to select effective
siRNA were proposed according to experimental data.
These rules are mainly based on GC content [11], base
preferences at specific positions [12, 13], thermodynamic
stability [14], internal structure [15] and target mRNA sec-
ondary structure [16]. However, these rules are summa-
rized from small scale dataset and can hardly reach our
acceptable level. With the accumulation of validated siR-
NAs, machine learning has been used in effective siRNA
recognition. ‘Biopredsi’ is a classical siRNA efficacy predic-
tion method, which are based upon artificial neural net-
work algorithm [17]. Besides, a major siRNA dataset was
supplied by Huesken et al. The dataset includes 2431 siR-
NAs, which were built by high-throughput analysis tech-
nology. It has been truly admitted that this dataset is very
helpful for the construction of other siRNA efficacy
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prediction methods [18]. As another artificial neural net-
work, ThermoComposition-21 [19] includes both com-
position and thermodynamic features. The simple linear
method was also used in this area. The method proposed
by Jean-Philippe Vert [20] used two kinds of siRNA se-
quence features as feature set. One is the nucleotides
present at each position in the siRNA sequence, the other
is the global content of the siRNA in short motifs. It is an
accurate and easily interpretable model, and according the
experimental results the prediction accuracy of Biopredsi
is as accurate as it. Another linear regression model was
constructed by nucleotide preference scores [21].
The siRNA efficacy prediction accuracy cannot make us

satisfied though the considerable efforts. The reason is the
prediction results of most machine algorithms are highly
dependent upon the siRNA features, including sequence
feature, thermodynamic feature, secondary structure fea-
ture, etc. Most of these features are biased and incomplete
feature vectors since they are produced by the traditional
feature engineering way which is reliant on expert know-
ledge, and the prediction ability will be limited. Recently, a
frontier machine learning algorithm, deep learning, has
aroused the attention of researchers. It has been proved
that deep learning performed better than the existing
machine learning method. Different from the traditional
machine learning methods, deep learning framework can
conduct the prediction in a data-driven way.
In this paper, we constructed a new siRNA efficacy

model based on deep learning algorithm. Firstly, we ex-
tracted hidden feature patterns from two modalities, in-
cluding sequence context features and thermodynamic
property. Then we merge them to implement the predic-
tion. For the sequence context features, we utilized convo-
lution layers to automatically learn motif encoding
features. In the convolution layers, convolution kernels can
be seen as motif detectors, and the potential feature pattern
of siRNA multimode motif can be automatically learned by
a data-driven method. This method is more abstract and
more conductive to prediction and more closely to the es-
sence. The experimental results showed that our deep
architecture performed better than the current siRNA effi-
cacy prediction methods in terms of prediction accuracy.

Methods
Dataset collection
For siRNA efficacy prediction, we collected 4067
siRNA samples from the dataset of Huesken(2431)
[17], Reynolds(248) [12], Vickers (80) [22],
Haborth(44) [23], Takayuki(702) [24], Ui-Tei (62)
[25] and siRNAdb(500) [26].
In this paper, we divided these siRNA sequences into

two datasets by random partition, a training dataset
(3660) and a testing dataset (407).

Encoding of siRNA sequences
There are two encoding method in our paper to trans-
form the siRNA sequences into quantized biological
descriptors.

Sequence context features
The research which has been reported showed that the
sequence context outside the target region effected the
efficacy of siRNA [27]. In this paper, the 21 + 2n se-
quence of n upstream and downstream flanking nucleo-
tides around binding region together with the targeted
sites were intercepted.
A siRNA sequence contains 21 bases, including A, U/

T, G and C.

S ¼ s1⋯si⋯s21; si∈ A;U=T ;G;Cf g ð1Þ
Then, to perform convolution operation, each se-

quence contained the flanking region is transformed into
a m×k 2-dimensional matrix. In the matrix, the bases are
expressed in four dimensional binary form as follows:

A ¼< 1; 0; 0; 0 >;U=T ¼< 0; 1; 0; 0 >;

G ¼< 0; 0; 1; 0 >;C ¼< 0; 0; 0; 1 > :

When the length of the flanking region is less than n, the
corresponding positions will be encoded to 0.05. The en-
coding method maps the sequence to a sparse coding and
quantifies nucleotides according their relative position.

Thermodynamic properties
Some researchers indicate that the efficacy of siRNA
relys highly on the thermodynamic stability profile of
the siRNA duplex [21]. The guide strand selection
mechanism might be reflected due to the differential
thermodynamic stability of siRNA duplex [25]. In this
section, we select 20 thermodynamic properties as an-
other encoding modality for each siRNA sequence. The
details are shown in Table 1. Thermodynamic parame-
ters for the calculations can be found in Ref. [28].

The deep model construction
Figure 1 shows the deep architecture of our siRNA effi-
cacy prediction model. The above mentioned two kinds

Table 1 The thermodynamic properties for siRNA efficacy
prediction

Thermodynamic property Number
of features

Stability of hybridization formed between siRNA
and mRNA

1

Differential thermodynamic stability of siRNA
duplex ends

1

thermodynamic parameter of every two base
pairs along the siRNA duplex antisense strand

18
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of features were separately processed and their outputs
were merged for efficacy prediction.
In our deep architecture, there are a convolutional layer

and a pooling layer in view of the sample size and compu-
tational complexity. In the convolutional layer, there are
multiple convolution kernels, which have different sizes.
These convolution kernels can be seen as motif detectors,
which can help us find the motifs playing important role
in siRNA efficacy prediction. And through the convolu-
tional operation we can get the corresponding motif en-
coding features. Most of the existing siRNA efficacy
prediction methods encode the sequence according to the
experience, but our deep architecture is different from
them. The features of our method are trained by siRNA
datasets. The feature extraction method has more infor-
mation, guidance quality and usability. Then the pooling
layer can select the most representative motif feature pat-
tern as the feature representation.
The thermodynamic properties and pooling layer are

merged into a mixed representation. After batch
normalization, we introduce a Deep Neural Network
(DNN) to generate their deep representations. Then to
produce the efficacy prediction result, 1-state output
layer is fully connected to the DNN layer by the logistic
regression function. In this paper, we used sigmoid func-
tion to perform a linear weighting. Sigmoid function is
well adapted for removing the errors aroused by the sin-
gular points since the higher gain is in the central area
of sigmoid function and the lower gain is in both sides

of sigmoid function. Besides, the output values of sig-
moid function are in the range of [0,1], which is
matched with the range of siRNA efficacy. Therefore,
the output efficacy can be calculated as follows:

efficacy ¼ sigmoid
Xn
i¼1

wihi

 !
ð2Þ

hi is the output value of DNN layer, and wi is the con-
nection weight.

The design of motif detector
To explore the potential feature pattern included in the
siRNA sequence, we designed various convolution ker-
nels. The large-scale training samples are used to correct
the weights of convolution kernels by back-propagation
algorithm, which guarantee that we can obtain the ef-
fective feature pattern.
Firstly, the sequence contained in the flanking region

is transformed into (21 + 2n) × 4 2-dimensional matrix
and every base is expressed as a four dimensional bin-
ary code. Besides, the size of convolution kernel is spe-
cified as m × 4 (2 ≤ m ≤ 20). Based on this, we can
detect the function of multimode motifs to siRNA effi-
cacy prediction. In this part, the convolution operation
is shown as follows:

Fig. 1 The deep architecture of our siRNA eddicacy prediction model
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xk ¼
Xm
j¼1

X4
i¼1

δkSkþ j−1;iM j:i ð3Þ

In this formula, S represents the sequence of flanking
nucleotides around binding region together with the tar-
geted sites and M is the m × 4 convolution kernel. xk is
the neuron of convolutional layer (1 ≤ k ≤ 22-m), and δk
is the learning rate for correcting weights. The convolu-
tion result is a (22-m) × 1 matrix, which represents the
feature pattern of every multimode motif.
Secondly, we need an activation function to increase

the convolution layer’s nonlinear factors. The experi-
mental result demonstrates that ReLU has good per-
formance. We have given the output yk below.

yk ¼ max 0; xkð Þ ð4Þ
The purpose of pooling layer is to get the most represen-

tative convolution result and get rid of the irrelevant infor-
mation. In our pooling layer, we carried out average
pooling and max pooling to hold the most distinct whole
information and local feature representation of the convo-
lution result. Therefore, the pooling result is y = (ymax, yavg).

ymax ¼ max y1;⋯; yk
� � ð5Þ

yavg ¼ avg y1;⋯; yk
� � ð6Þ

Because there are various convolution kernels in the con-
volution layer, the output of pooling layer is 2d-dimensional
vector, where d is the number of convolution kernels.

Assessment of the prediction system
To assess the model efficacy, we adopted two indices, in-
cluding Pearson Correlation Coefficient (PCC) and the
area under the ROC curve (AUC).
PCC is designed to depict the relativity between

actural and predicted siRNA efficacies.

PCC ¼ 1
n−1

Xn
i¼1

Xi−X
σX

� �
Y i−Y
σY

� �
ð7Þ

where Xi and X are the actural value and mean value re-
spectively, and n is the number of siRNA sequence.
AUC is used extensively to measure the overall per-

formance of prediction model. A higher PCC and AUC
indicate the model performs well.
ROC (Receiver Operating Characteristic) curve is gen-

erated by plotting sensitivity versus 1-specificity, which
is also an indicator to compare the efficiencies of differ-
ent methods. Sensitivity and specificity are defined as
followed:

Sensitivity ¼ TP= TP þ FNð Þ ð8Þ
Specificity ¼ TN= TN þ FPð Þ ð9Þ

where TP is the number of true positives; FN is the
number of false negatives; TN is the number of true neg-
atives and FP is the number of false positives.

Results and discussion
In this section, we will interpret our experimental re-
sults of different parameters. In every experiment,
10-fold cross-validation is conducted to obtain the
best parameters.

The influence of the length of flanking nucleotides on
prediction result
The first parameter is the n, which is the length of flank-
ing nucleotides around binding region. The best appro-
priate n to our model should be determined, because it
has greater immediate relevance on the prediction re-
sults. In this paper, we designed a series of tests using
the length of flanking nucleotides n from 10 to 30. With
regard to each window length, we coded all training
siRNA sequences and trained our model. Then, the
trained model was designated to predict the input mo-
dality of validation sequences. Figure 2 showed the the
performance of different n.
Figure 2 showed when n equals to 20, the prediction

result achieves the best performance. The results indi-
cated that our model needs more sequence information
to detect more useful deep features.

The infuence of hyper parameters on prediction result
This part mainly discussed the influence of different
hyper parameters on prediction result. In our deep
architecture, there are three hyper parameters directly
affecting the model’s robustness and deciding the struc-
ture of network, including the size of convolution kernel,
activation function and learning rate. There comparative
experiments were conducted to search the optimal hyper
parameters for our deep architecture.

Fig. 2 The influence of the length of flanking nucleotides on
prediction result

Han et al. BMC Genomics 2018, 19(Suppl 7):669 Page 62 of 102



The size of convolution kernel
To learn the feature representation of different multimode
motifs, we would like to select the convolution kernels
with different sizes. Because there are 21 nucleotides in
siRNA sequence, we considered the length of the detected
multimode motifs can be defined as the value less than 20
and larger than 2. Consequently, we employed 19 m × 4
convolution kernels to learn the feature of multimode
motif. To get the most appropriate hyper parameter, we
constructed 19 deep neural networks. In every network,
the value of m is different and the corresponding number
of convolution kernel is 22-m. The performance of differ-
ent m can be observed in Fig. 3.
As shown in Fig. 3, different convolution kernels influ-

ence the prediction results. When m equals to 15, the pre-
diction result achieves the best performance. The result
indicates that the convolution kernels we designed could
learn the effective feature pattern from the input modality.
Next, we analyze the effect of m on prediction result.
Figure 3 shows that when m is increasing, the prediction
result of corresponding deep neural network becomes lar-
ger, but when m is larger than 15, the prediction result
lower. We speculate that the reason could be the convolu-
tion kernels with smaller size only discover the information
associated with low-mode motif and neglect the contribu-
tion of high-mode motif and the whole sequence feature.
And when the size of convolution kernel is becoming in-
creasing, the feature representation of high-mode motif will
be detected and the contribution of low-mode motif will be
neglected. The result in either case can give rise to the de-
crease of prediction result. Therefore, we should choose the
reasonable size of convolution kernel to achieve effective
motif feature learning. In this paper, we designed a convolu-
tion kernel set, and PCC of the convolution kernels con-
tained in the set are higher than 0.6, which guarantee the
learning feature pattern has adequate discriminating ability.

Activation function
As different activation functions influence the distinguish
ability and rationality of incoming signal mapping to fea-
ture space, we next construct four deep models by utiliz-
ing different activation functions and compare the
prediction results. Our deep architecture needs two acti-
vation functions, one is in convolution layer and the other
is in the DNN layer. Sigmoid, tanh and RELU are three
common activation functions. But tanh is not suitable for
detecting the local tiny features of motif since it is often
used in the condition that features have big difference.
The performances of RELU and sigmoid function in the
convolution layer and DNN layer are shown in Fig. 4.
From Fig. 4 we can see that the prediction results with

different combinations of activation function are diverse
and the first combination performs best (ReLU + Sig-
moid). The result shows that in the convolution layer
the better choice is ReLU function. The reason may be
that sparsity is added into the output feature of convolu-
tion layer by ReLU, and this way can enhance the non-
zero neurons’ information. In the DNN layer, sigmoid
can be used as activation function because it can
summarize the contribution of all feature representation.
Besides, output of sigmoid is from 0 to 1, which is con-
sistent with the range of siRNA efficacy.

Learning rate
Learning rate can control the speed of weight correcting,
and a suitable learning rate can obtain the best weights
of neural network. However, learning rate cannot be de-
cided by experience but experiment. Too large learning
rate will make neural network lose the optimal weights
and sink into relative extremum, and too small learning
rate will bring about slow convergence speed and in-
sensitivity to error correction. In this paper, we chose di-
verse learning rates, 0.5, 0.1, 0.01 and 0.001, to carry out

Fig. 3 The influence of the size of convolution kernel on
prediction result Fig. 4 The influence of activation function on prediction result
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comparative the experiments. The termination condition
is that the iteration time is more than 1000 or error is
smaller than 0.001. Figure 5 shows the impact of learn-
ing rate on prediction results.
Figure 5 shows that when the learning rate equals to

0.1, we can get the best result. Besides, it can be found
that when the learning rate equals to 0.5, the result is
lowest. It shows that the neural network has lost the op-
timal weights and sank into relative extremum. Then
when the learning rate equals to the other two values,
PCC and AUC are relatively low. The reason may be
that when the iterative is 1000 the network has slower
convergence speed and cannot get the best weight.
According to the prediction accuracy and training time,
our deep architecture set the learning rate to 0.1.

Compared with other algorithms
From what has discussed above, our deep architec-
ture has 15 convolution kernels with the size from
6 × 4 to 20 × 4. Through the convolution operation,
we got 15 feature maps with size (22-m) × 1, each of
which then was processed by max pooling and aver-
age pooling with (22-m) pooling size respectively in
the following pooling stage. Thus, after such pooling
operation, each input was transformed into 2 × 15 × 1
vector. The 15 kernels with different size are trans-
formed into a 30-dimensional vector in the pooling
layer. The activate function of convolutional layer is
ReLU, the activation function of DNN layer is sig-
moid, and the learning rate is 0.1. There are 25 ner-
ouns in DNN layer.
Furthermore, we compared our deep neural network

with some siRNA efficacy prediction methods, including
siRNApred [29], Biopredsi [17], DSIR [20] and CNN
[30]. The prediction results of the five methods are
shown in Fig. 6.

From Fig. 6, it can be found out that our deep archi-
tecture performed best, reaching at 0.725 PCC and 0.903
AUC.
The most probable reason is that Biopredsi, DSIR and

siRNApred are the traditional machine learning methods,
which belong to the feature engineering way and rely on
expert knowledge. And our deep learning methods can
supply non-linear mapping operations and multiple layer
networks to detect potential complex patterns and gener-
ate homogenous deep representations for prediction tasks.
Therefore the performance of Biopredsi, DSIR and siR-
NApred are less than our deep architecture.
And we can find that the performance of our method is

better than CNN. The method CNN used the feature of
siRNA sequence and developed a convolutional neural
network including a convolution layer and a pooling layer.
Because the sequence cannot fully reflect the siRNA prop-
erties and the efficacy of siRNA strongly depends on the
thermodynamic stability profile of the siRNA duplex, we
used siRNA context feature and thermodynamic proper-
ties and added a DNN layer to combine the two types of
feature. Because their components depict the feature of
siRNA from different points of view, the fully connected
DNN structure could interconnect all factors for their
joint effect in its hidden states.

Conclusions
As a common molecular tool, siRNA can research gene
function and be used as an effective therapeutic method
in the treatment disease. Numerous methods have been
developed to design active siRNA. However, the siRNA
efficacy prediction accuracy cannot make us satisfied. In
this study, we proposed a new siRNA efficacy prediction
method based on a deep architecture. Comparing with
the existing method Biopredsi, DSIR, siRNApred and
CNN, our method performs best. The results show that
our deep architecture could tap the contribution of

Fig. 5 The influence of learning rate on prediction result

Fig. 6 The comparison among five algorithms
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siRNA context sequence and thermodynamic properties
on efficacy prediction. Besides, our method can extract
the valuable information contained in the feature pat-
tern. Finally, the data-driven feature learning pattern
outweighs the learning pattern which mainly depends on
the expert knowledge.
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