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Abstract

Background: Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve
the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing,
researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix
of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level
true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers
provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using
benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts
analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant
calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware
variant calling can be significantly improved by incorporating advanced statistical models.

Results: We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular
barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic,
barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked
on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good
sensitivity and specificity within coding regions.

Conclusions: We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in
coding regions using our enrichment protocol and variant caller.
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Background
Detecting somatic mutations by next generation sequenc-
ing (NGS) is a critical part of cancer research and diag-
nostics. In tumor samples and circulating nucleic acids,
mutations may be present in a very low fraction of DNA
molecules for reasons such as normal tissue contamina-
tion or mutations occurring in a small subset of tumor
cells. These very low level somatic mutations have been
the target of intense investigations in recent years, because
they hold great promise for early detection of cancers,
monitoring the effectiveness of targeted therapies and
early intervention against drug resistant clones.
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In order to detect these very low allele fraction muta-
tions, deep sequencing coverage is normally required
since mutations need to be observed on a sufficient
number of reads to pass predetermined variant calling
threshold. For example, to observe a 2.5% variant on min-
imum two reads with 90% probability, a minimum of 200x
coverage is required based on the binomial distribution.
In practice, 1000x or higher coverage is recommended
to call 2.5% variants [1]. Targeted sequencing enables
researchers to focus sequence capacity on a small genomic
region of interest, making it an appealing approach to
achieve very deep coverage in a cost effective way. Both
hybridization capture and PCR amplicon based approach
have been used in enriching specific genome regions. The
PCR amplicon approach is preferred by many researchers
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due to its low DNA input requirement, simple protocol
and fast turnaround time. However, the inability to iden-
tify read duplication of the same sample fragment is an
inherent limitation in typical PCR amplicon sequencing.
Having deep sequencing coverage alone is not suffi-

cient for detecting mutations at very low allele fractions.
More importantly, researchers need enough original DNA
molecules sampled in the sequencing workflow. For exam-
ple, detecting 1% mutations reliably from the starting
materials of 100 genomes is extremely difficult, no matter
how many read duplications are produced. This becomes
a significant issue for damaged FFPE samples, as the opti-
cal measurement of the DNA input does not reflect the
real number of usable molecules. A target enrichment
workflow needs to efficiently capture a large number of
original DNA molecules. Furthermore, read duplication
usually confounds the estimation of the number of DNA
molecules captured.
Besides read depth and DNA input, detecting muta-

tions at very low allele fractions is challenged by errors
introduced in many steps of the NGS process. In PCR-
based targeted sequencing, target templates are bound
with gene-specific primers and amplified viamultiple PCR
cycles. Given enough input, a large amount of DNA frag-
ments will be captured so that even very low allele fraction
mutations can be observed on plenty of reads. However,
the reads often contain errors that are difficult to dis-
tinguish from true variants. The errors are accumulated
during the critical steps of an NGS protocol, including
library preparation, sequencing, and read alignment. For
example, in PCR amplification, DNA polymerases have an
error rate of 10−6 per base [2]. Sequencing errors typically
occur at a higher rate. Studies have shown that Illumina
MiSeq platform has an average error rate of 0.006 to 0.01
per base, depending on how far away the base is from
the read start and other factors [3]. Other literature indi-
cates that the error rate is between 0.01 to 0.1 per base
on general Illumina platforms [4]. Errors can also happen
to the read alignment algorithms, especially when a read
fails to span a repetitive region or covers a region contain-
ing complex variants near each other. Low allele fraction
and relatively high error rate together lead to poor signal-
to-noise ratio, making it difficult to identify true variants
without generating false positive variant calls. Moreover,
because DNA fragments are not evenly amplified due to
resampling bias [5, 6], the observed variant allele fractions
are often skewed, which may ultimately lead to inaccurate
variant calls.
Molecular barcoding technology aims to reduce the

impact of enrichment and sequencing artifacts and has
the potential to improve mutation detection accuracy
[6–11]. In brief, each original DNA molecule is tagged
with a unique molecular barcode. After amplification and
sequencing, the barcode sequence can be retrieved from

the reads, allowing each read to be traced back to its
original DNAmolecule. Molecular barcoding has recently
been implemented in several NGS target enrichment pro-
tocols and researchers have demonstrated its utility in
somatic variant detection and RNA quantification [8, 11].
Quantification of template molecules can be done by
counting the number of unique barcodes rather than the
number of total reads, which reduces PCR resampling
bias and improves quantification accuracy. Variant detec-
tion can also benefit from molecular barcodes because
sequencing errors can often be identified by comparing
across the reads containing the same barcode.
The progress in enrichment and sequencing technol-

ogy brings about more complicated NGS data that require
advanced bioinformatics tools to analyze. Bayesian and
other statistical models have been applied in variant
calling algorithms such as SNVSniffer [12], FaSD [13],
and MuTect [14]. SNVSniffer models the read counts
of the observed genotypes using a multinomial distribu-
tion, and infers the true genotype that has the largest
posterior probability calculated under a Bayesian frame-
work. MuTect evaluates the likelihood of variant using the
log odds score, which is the likelihood ratio of mutation
versus wild type. FaSD is a germline variant caller that
evaluates the SNP probability by calculating an alternative
score from a binomial distribution-based model. How-
ever, these variant callers were developed for sequencing
data without molecular barcode. Appropriate analytical
methods are needed to take full advantage of the molec-
ular barcode information. A two-step approach has been
proposed and has demonstrated utility in detecting vari-
ants as low as 1% [8, 15]. At first, a consensus sequence is
constructed for each barcode. Next, downstream analyses
(include variant calling) are performed on the set of con-
sensus sequences with existing bioinformatics tools such
as the aformentioned ones. There are several downsides
to this approach. First, useful information may be lost
when constructing the consensus sequences. For example,
in VarDict, the ratio between low quality and high qual-
ity reads is an important parameter in the variant calling
algorithm [16]. However, the ratio will likely be skewed in
the consensus sequence set. Second, building a base qual-
ity score system for the consensus sequences that mimics
the Phred scores used in the raw reads is difficult. The
downstream variant caller cannot achieve optimal perfor-
mance if skewed quality scores are passed to it, because
the Phred base quality score is a centerpiece in most vari-
ant calling algorithms. Third, from a practical standpoint,
maintaining and updating software from different sources
can be time consuming. For example, many trial-and-
error iterations might be required to tune the parameters
in both the consensus-generating algorithm and the third
party variant caller to make them compatible. We believe
that a full-fledged variant caller that integrates molecular
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barcode information into the statistical algorithm will be
valuable to researchers in the field.
We have developed smCounter, a barcode-aware variant

caller that detects single nucleotide variants (SNV) and
short insertion and deletions (indel) at very low allele frac-
tion. smCounter applies a Bayesian probabilistic model
to evaluate the read evidence for each nucleotide as well
as possible indels at a target position, and compares the
strength of evidence with a preselected threshold to make
variant calls. smCounter also implements several filters to
further reduce false positive calls. Using a simple proto-
col that integrates molecular barcodes into multiplex PCR
enrichment, we have generated two targeted sequencing
datasets from samples containing defined mutations at
1-5% allele fractions. smCounter has been run on both
datasets and has demonstrated very good sensitivity and
specificity in detecting coding region variants at 1% allele
fraction.

Results
Multiplex PCR enrichment with molecular barcodes
We have developed a protocol that incorporates molecu-
lar barcodes into the multiplex PCR primer enrichment
process (Fig. 1). Briefly, template DNA is enzymatically
fragmented and end repaired to approximately 300-500bp.
Then a modified Illumina adapter containing molecular
barcodes is ligated to the 5’ end of the DNA fragments.

After removing unused adapters, a few PCR cycles are
conducted using an Illumina adapter primer and a pool of
single primers, each carrying a gene specific sequence and
a 5’ universal sequence. During this process, each single
primer repeatedly samples the same target locus from dif-
ferent DNA templates. Afterwards, additional PCR cycles
are conducted using universal primers to attach complete
Illumina adapter sequences and to amplify the library to
the desired quantity.
Compared to existing target enrichment approaches,

our method relies on single end adapter ligation, which
inherently has a much higher efficiency than requiring
adapters to ligate to both ends of the dsDNA frag-
ment. More DNA molecules will be available for the
downstream PCR enrichment step. PCR enrichment effi-
ciency using one primer is also better than conven-
tional two primer approach, due to the absence of
an efficiency constraint from a second primer. During
the first PCR cycles, primers have repeated opportuni-
ties to convert (i.e. capture) maximal amount of orig-
inal DNA molecules into amplicons. All three features
help to increase the efficiency of capturing rare muta-
tions in the sample. In addition, incorporated molecular
barcodes in the amplicon are the key to estimat-
ing the number of DNA molecules captured and to
greatly reducing sequencing errors in downstream anal-
ysis. Single primer enrichment also has the potential

Fig. 1Multiplex PCR enrichment workflow with single primer
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to discover unknown structural variants, such as gene
fusions.

Data generation
In order to develop and benchmark our barcode aware
variant caller, we created DNA samples with defined
variants at low allele fractions, to simulate low frac-
tion somatic mutations in tumors. DNA from NA12878
was mixed at 10% and 2% with DNA from NA24385.
The genotypes of both subjects have been extensively
studied by the Genome in a Bottle Consortium (GIAB)
[17, 18]. The high confidence set of NA12878’s variants
and an initial set of NA24385’s variants have been released
to the research community. For our variant calling pur-
pose, we defined a “ground truth” variant set by masking
the NA24385 variants from the high confidence NA12878
variants. This sample mixing approach has been adopted
in several other studies for benchmarking variant callers
[8, 19, 20].
A first panel (N0015) was designed for algorithm devel-

opment and optimization. This panel covers variant-rich
hot spots by design in order to provide maximum number
of variants to optimize sensitivity (Additional file 1). The
first enrichment library was prepared using 10%NA12878
admixture (resulting in 5% fraction for unique heterozy-
gous NA12878 variants). Later we also in silico diluted
NA12878 molecules to 2% to simulate 1% variants for
algorithm development. The in silico dilution procedure
is described in Additional file 2: Supplementary Methods.
Variant allele fractions before and after the dilution are
illustrated in Additional file 2: Figure S1. Although suit-
able for algorithm development, N0015 does not resemble
a typical cancer sequencing panel because the enriched
region contains many variants within short distance of
others, and contains very little (less than 10% of target
region) coding region. Therefore, a second gene panel
(N0030) covering the coding region of 194 cancer-related
genes was designed to reflect the intended application
of cancer sequencing (Additional file 3). Enrichment and
sequencing were done using 2% NA12878 admixture for
this panel, so unique heterozygousNA12878 variants were
at 1% allele fraction.
Both libraries yielded highly uniform and specific cov-

erage of the target regions, demonstrating the superior
performance of our enrichment protocol. Both sequenc-
ing runs achieved very deep coverage in terms of read
depth as well as barcode depth. Detailed information on
the sequencing performance can be found in Table 1.

Overview, development, and performance of smCounter
smCounter has two main components: a statistical model
to evaluate the likelihood of a variant and several post-
processing filters to further reduce false positives. At each
target locus, posterior probabilities of the alleles (include

Table 1 Descriptive statistics of the sequencing runs N0015 and
N0030

N0015 N0030

Target region in base pairs 395,303 681,980

% in coding region 8 100

Mean read pairs per base 42,562 34,169

Mean barcode per base 4,825 3,612

Mean read pairs per barcode 8.5 8.6

% Bases > 0.2× mean read depth 96.3 99.3

% NA12878 10 2

Unique heterozygous NA12878 SNP 6,175 223

Unique heterozygous NA12878 INDEL 701 49

possible indels) are first calculated on the barcode level,
noted as P(Allele|BCk) for the kth barcode. Assuming the
locus is covered by N mutually independent barcodes, a
prediction index I = − ∑N

k=1 log10(1 − P(Allele|BCk))
is given to each allele, representing the likelihood that
the allele exists in at least one DNA molecule. If a non-
reference allele’s prediction index exceeds the preselected
threshold, this allele is considered as a candidate variant.
Candidate variants will be confirmed only if they pass all
the post-processing filters. Details of the statistical model
and filters can be found in the Methods section.
The development of smCounter, including model estab-

lishment and refinement, filter design, parameter opti-
mization, and data cleaning steps, was mainly based on
over 6700 variants in panel N0015. Over 90% of N0015’s
target loci are in non-coding region where repetitive
sequences are much more abundant compared to typ-
ical coding regions. These challenging genomic regions
provided rich training data for us to develop specific
filters that significantly reduced the false positive rate
in homopolymer, low complexity, and micro-satellite
regions. In addition, we used the variants to refine the
statistical model to take full advantage of the barcode
information. In particular, we optimized the estimation
of barcode level allele probability P(Allele|BCk) to ensure
that the estimated probabilities gradually degrade to zero
as the read evidence weakens (Fig. 2). We also used the
barcode level allele probability to develop the “strong bar-
code” filter, which rejects candidate mutations lacking
enough barcodes with good read evidence. smCounter
achieved good overall performance in calling 5 and 1%
SNVs, showing higher sensitivity in coding region com-
pared to non-coding region (Additional file 2: Figure S2
and Additional file 2: Table S1).
Given the good results from N0015, we then ran

smCounter on the cancer-related gene panel N0030 and
benchmarked its performance against the GIAB ground
truth set using RTG tools [21]. We also ran MuTect
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Fig. 2 Illustration of how barcode level read evidence is evaluated for
a hypothetical barcode with 8 read pairs, assuming all reads have
either T (reference) or A (alternative) at the specific locus. The x-axis is
the number of read pairs with the alternative allele A, ranging from 0
to 8. The y-axis is − log10(1 − P(A|BC)), the amount of read evidence
for A assign to the barcode. Overall, the amount of read evidence for
A is close to 0 when less than half of the reads are A, and then
gradually increases

[14] and VarDict [16] for this panel to assess the variant
calling performance under our enrichment protocol with-
out using molecular barcode information (Additional file
2: Supplementary Methods). The receiver operating char-
acteristic (ROC) curves for all three variant callers on
N0030 are presented in Fig. 3. The performance metrics
(sensitivity, specificity, positive predictive value) under

the optimal cutoff, heuristically defined as the point on
the upper-left corner of the ROC curve, are listed in
Table 2. The performance data from N0030 demonstrate
that smCounter is able to detect 1% SNVs at over 90% sen-
sitivity with less than 20 false positives per megabase of
the target coding region. The performance data also show,
with a lower confidence level due to small sample size, that
smCounter can detect 1% indels at over 90% sensitivity
with less than 10 false positives per megabase in the cod-
ing region. Overall, smCounter achieved comparably high
sensitivity asMuTect or VarDict but withmuch fewer false
positives, demonstrating the value of molecular barcoding
for low fraction variant calling.

Variant calling on reduced barcode and read depth
In practice, variant calling accuracy may be limited by
the amount of sample input and sequencing capacity. To
characterize smCounter’s performance under imperfect
sequencing conditions, we downsampled the N0030 read
set to 80, 60, 40, 20 and 10% of barcode depth (i.e., aver-
age number of barcodes per base) and the read depth
to 6.0, 4.0, 2.0, 1.5, 1.1 per barcode. The performance of
smCounter at all barcode depth and read pairs per bar-
code (rpb) combinations are demonstrated in Additional
file 2: Figure S3 and S4. SNV calling results in a subset of
this parameter space are highlighted in Fig. 4. We observe
that smCounter’s performance degrades gradually as the
barcode depth and rpb decrease. We also observe that 4
read pairs (or 8 reads) per barcode is sufficient in most
cases and additional read replications provide little addi-
tional value. The downsampling procedure is described in
the Additional file 2: Supplementary Methods.

Cutoff selection
Selecting the right cutoff is critical to achieving good per-
formance for most variant callers. However, it is often

Fig. 3 Variant calling performance on 1% variants in panel N0030. X-axis is the number of false positives per megabase and y-axis is sensitivity. Solid
lines, dashed lines, and dotted lines represent smCounter, MuTect, and VarDict respectively. Each point on the ROC curve represents a threshold value.
a ROC curves of smCounter, MuTect, and VarDict base on 223 SNVs. b ROC curves of smCounter and VarDict on 49 indels. Note that MuTect does
not call indels
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Table 2 Performance of smCounter, MuTect, and VarDict in
detecting 1% variants in the coding region of N0030. Cutoffs
were selected to represent optimal performance

Variant type Variant Caller TP FP FN TPR(%) FP/Mb PPV(%)

SNV smCounter 205 7 18 91.9 10 96.7

MuTect 214 58 9 96.0 85 78.7

VarDict 204 169 19 91.5 248 54.7

INDEL smCounter 45 5 4 91.8 7 90.0

VarDict 43 100 6 87.8 147 30.1

unclear to users on how to choose the cutoff value,
partly because the optimal cutoff usually correlates with
the unknown amount of DNA molecules captured. With
molecular barcodes, we are able to provide users with
a guideline on cutoff selection based on the barcode
depth and the desired false positive rate. To illustrate
the method, we define the optimal cutoff value as the
one that gives the maximum sensitivity while allowing
no more than 20 false positives per megabase. Using the
downsampled N0030 data, we obtained the optimal cut-
off values of smCounter at all barcode depth and rpb
combinations. Based on both visual inspection (Fig. 4)

and a one-way ANOVA analysis, the optimal cutoffs do
not differ significantly in different rpb groups (F-test p =
0.901). Pooling all rpbs together, the optimal cutoff value
has a strong positive linear relationship with the barcode
depth (r2 = 0.913, F-test p = 2.5 × 10−16). We propose a
simple linear equation y = 14+0.012x to predict a recom-
mended cutoff value, where y is the recommended cutoff
value and x is barcode depth.We also provide optimal cut-
off values for other desired false positive rates, as shown
in Table 3.

Variant detection limit
Molecular barcodes allow us to estimate the locus specific
detection limit, defined as the lowest variant allele fraction
that will be called. The detection limit is mainly deter-
mined by the barcode depth at the locus, the average bar-
code depth of the sequencing run, and the false positive
rate allowed. Within a target region, loci with higher bar-
code depth will have lower detection limits (more detec-
tion power), simply because the likelihood of observing
real low fraction variants is higher. On the other hand,
when comparing two different sequencing runs, a locus
with the same barcode depth in both runs will have
higher detection limit (less detection power) in the read

Fig. 4 smCounter performance on calling 1% SNVs in N0030, based on reduced barcode depth and rpb. For better visualization, only a subset of
barcode depth and rpb combinations are plotted. Cutoff selection and detection limit estimation are also based on the same downsampled data.
a ROC curves at barcode depth of 3,612 (full data), 2,167, and 722 with rpb fixed at 8.6. b ROC curves at rpb of 8.6 (full data), 4.0, and 1.5 with
barcode depth fixed at 3,612. c Optimal cutoffs that give the maximum sensitivity while allowing no more than 20 FP/Mb at varying barcode depth
(x axis) and rpb (represented by different symbols). The dashed line is the linear regression equation of cutoff versus barcode depth across all rpb
values. d Estimated detection limit as a function of locus-specific barcode depth, overall average barcode depth, and false positive rate (FPR)
allowed. The y-axis is the lowest variant allele fraction that can be detected with at least 95% probability based on a binomial distribution
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Table 3 Estimated optimal cutoffs based on various false
positive rates (FPR) at 20, 50, and 100 per megabase and barcode
depths from 500 to 3,500. The prediction equations at each FPR is
also given

FPR (Mb−1) Prediction equation 500 1000 1500 2000 2500 3000 3500

20 y = 14 + 0.012x 20 26 32 38 44 50 56

50 y = 15 + 0.0092x 20 25 29 34 38 43 48

100 y = 13 + 0.0088x 18 22 27 31 35 40 44

set with higher average barcode depth, because a more
stringent cutoff value will be used to control the false
positive rate, as proposed earlier. Finally, the more false
positives one allows, the lower detection limit one can
achieve. The estimation of locus specific detection limit
is illustrated in Fig. 4 and explained in details in the
Methods section. Similar to a coverage map, a detec-
tion limit map can be built for a region to provide a
visual inspection tool (Fig. 5). Knowing this information
is particularly important in guiding the proper interpreta-
tion of negative variant calls in FFPE samples. A desired
detection limit may be achieved by simply increasing
the DNA input based on observed molecular barcode
counts.

Discussion
In this paper we presented a simple PCR based target
enrichment protocol that integrates molecular barcodes
in the sequencing reads. We demonstrated that our proto-
col can enrich a large genome region with high efficiency,
specificity, and uniformity. The presence ofmolecular bar-
codes in the reads provides us with an effective means to
estimate the number of uniqueDNAmolecules sequenced

and to effectively distinguish true variants at very low
fractions from sequencing errors in the reads. Using our
enrichment protocol and reference materials from the
Genome in a Bottle consortium, we generated datasets
containing defined DNA variants at very low allele frac-
tions. Using this data, we developed our barcode aware
variant caller and evaluated its performance.
smCounter is the first full-fledged variant caller that

integrates molecular barcode information into a statis-
tical model and has demonstrated very good sensitiv-
ity and specificity in detecting 1% SNVs and indels
within targeted coding regions. Still, we acknowledge sev-
eral limitations of smCounter as well as the enrichment
technology.
During the development of smCounter using N0015

dataset, we observed decreased variant calling perfor-
mance in non-coding regions compared to coding regions.
In particular, the current version of smCounter has
reduced power in detecting low allele fraction indels in
non-coding regions (Additional file 2: Figure S2). The
decreased performance is mainly due to more repeti-
tive sequences and additional nearby variants (e.g. indel
followed by nearby SNP) within non-coding regions of
N0015 that caused read alignment errors. Our design
strategy for N0015 panel to maximize the number of vari-
ants covered within a small target region likely resulted in
over-representation of challenging genomic regions such
as homopolymers, simple repeats, and low complexity
regions (Methods). Many of the true variants within or
flanked by these regions are falsely rejected by our strin-
gent filters. Tuning the filter parameters towards more
leniency will lead to higher sensitivity but also more false
positives. A more practical approach is to train highly
specific filters based on large amount of variants in the

Fig. 5 An example of barcode and detection limit map on BRCA1 exon chr17:41222944-41223255 based on N0030. The maps were generated using
UCSC Genome Browser



Xu et al. BMC Genomics  (2017) 18:5 Page 8 of 11

challenging regions using statistical or machine learning
methods. Fundamentally, higher variant calling accuracy
in the challenging regions should be achieved by improv-
ing the read alignment quality. One promising advance
in this field is to use graph-based genome representa-
tion for read alignment instead of commonly used linear
representation of the reference genome [22].
Like other variant callers, smCounter’s performance is

largely determined by the preselected threshold and the
optimal threshold is an unknown function of numerous
factors, including sample input, DNA quality, sequenc-
ing depth, sequencing platform, etc. We have observed
a linear relationship between the optimal threshold and
the barcode depth and provided an empirical formula
to predict the optimal threshold for a range of barcode
depths and rpb levels. The robustness of the formula
under the conditions outside the tested range is unclear.
Moreover, the predictive formula may need to be empiri-
cally modified under significantly different PCR chemistry
or sequencing error rate due to platform change.
In the enrichment protocol we used, a complete bar-

coded amplicon is only formed after the first target spe-
cific primer extension event. In principle, any polymerase
error introduced in this very first step cannot be distin-
guished from real variants based on individual barcode
consensus. So variant detection is theoretically limited by
the polymerase fidelity during the first PCR enrichment
cycle. In fact, we have observed several false positive calls
that cannot be easily explained by obvious reasons and
were possibly due to early polymerase errors. In practice,
we have leveraged additional information (strand bias fil-
ter) to reduce this type of false positives. For example,
two primers can be designed to target the locus in both
sense and anti-sense orientations. The chance is extremely
low that polymerase error happens at the same locus dur-
ing primer extension events on both strands. Thus, many
false positives can be eliminated based on biased distribu-
tions between sense and anti-sense strand. Amore elegant
approach is to employ duplex sequencing [7] by directly
pairing the sense and antisense strand information at the
single molecule level rather than at the population level.
We are currently working on a scheme to integrate duplex
sequencing into primer enrichment step, and we plan to
report our results in a future publication.
Our current enrichment protocol also has limited abil-

ity to distinguish DNA damage induced artifacts from real
variants. Artifacts induced by base damage could be com-
mon in FFPE samples depending on how the samples are
prepared [23]. To identify such artifacts, one must exam-
ine both strands of DNA, because the damage to both
stands is usually not identical. Similar to dealing with early
PCR errors, we can use biased distributions between sense
and anti-sense strand to eliminate some artifacts. A better
direction is to employ duplex sequencing.

Accurate detection of very low fraction variants in DNA
holds big potential in our understanding of tumor hetero-
geneity and in early disease diagnostics. We believe our
improved enrichment protocol, benchmarking dataset
and barcode-aware variant caller will provide valu-
able resources for continued progress by the research
community.

Conclusions
We developed a targeted DNA enrichment protocol
that integrates molecular barcodes into original DNA
molecules. We also developed smCounter, a somatic vari-
ant caller that integrates the molecular barcode infor-
mation into a Bayesian probabilistic model. We have
demonstrated that, with our protocol and variant calling
algorithm, we can detect 1% allele fraction variants in cod-
ing region with over 90% sensitivity and less than 20 false
positives per megabase. We believe our method will be an
important contribution to cancer sequencing and somatic
mutation detection.

Methods
Preparation of in vitro sample mixtures
Human genomic DNA samples of NA12878 andNA24385
were purchased from Coriell Institute for Medical
Research (Camden, NJ, USA). Samples were mixed based
on ODmeasurements, resulting in 10 and 2% of NA12878
DNA in the background of NA24385 DNA.

Custom panel design
The first panel (N0015) was designed to maximize the
number of unique NA12878 variants enriched by a limited
number of primers. The regions were randomly selected
from the genome so that two or more variants would
appear within 150bp from the targeting primer. In total,
3587 primers were selected using custom scripts to bal-
ance coverage, primer Tm, dimer potential and predicted
specificity within the human genome. The second panel
(N0030) was designed to cover the full coding region of
194 cancer and inherited diseases related genes. 10,857
primers were selected so that 150bp or longer amplicons
from those primers can overlap the entire coding region.
Additional universal sequence was added to the 5’ end of
all primer sequences and all oligos were synthesized by
IDT (Coralville, IA).

Single primer enrichment protocol
DNA libraries were prepared using components from
QIAseq Targeted DNA Panel Kit (QIAGEN, Germany).
Briefly, 80 ng DNAwas enzymatically fragmented and end
repaired in a 25ul reaction containing a 2.5ul 10X frag-
mentation buffer and a 5ul fragmentation enzyme mix.
The reaction was carried out at 4 °C for 1 min, 32 °C
for 24 min and 65 °C for 30 min. Immediately after the
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reaction, 10ul 5X ligation buffer, 5ul DNA ligase, 2.8ul
25uM barcoded adapters and water were added to 50ul.
The reaction continued at 20 °C for 15 min. To ensure
complete removal of free barcoded adapters, each reaction
was purified for two rounds using 1.8X and 0.9X Ampure
beads (Beckman, US). The purified DNA was then mixed
in 20ul with 10nM each target primer, 400nM IL-Forward
primer, 1X TEPCR buffer and 0.8ul HotStarTaq DNA
polymerase. The PCR enrichment condition was: 95 °C
for 13 min, 98 °C for 2 min; six cycles of 98 °C for 15
s and 65 °C for 15 min; 72 °C for 5 min. Each reaction
was cleaned once using 0.9X Ampure beads (Beckman,
US) to remove unused primers. Enriched DNA was com-
bined with 400nM IL-Universal primer, 400nM IL-Index
primer, 1X UPCR buffer and 1ul HotStarTaq DNA poly-
merase in a volume of 20 ul. The universal PCR condition
was: 95 °C for 13 min, 98 °C for 2 min; 20 cycles of
98 °C for 15 s and 60 °C for 2 min; 72 °C for 5 min.
The DNA library was purified once using 0.9X Ampure
beads and quantified using QIAseq Library Quant System
(QIAGEN, Germany). Both libraries were sequenced on
Illumina NextSeq (pair-end, 2x150 bp) following manu-
facturer’s user manual (Illumina, CA).

Read processing
Original reads in the FASTQ file are processed in the order
of adapter trimming, read aligning, barcode clustering,
and primer region trimming (detailed pipeline described
in Additional file 2: Supplementary Methods). As a first
step, non-genomic sequences such as sequencing adapters
and molecular barcode region (Additional file 2: Figure
S5) are trimmed off by Cutadapt [24] and custom scripts.
The trimmed reads are then aligned to the reference
genome using BWA-MEM [25], creating the alignment
file in BAM format. A custom barcode clustering algo-
rithm is applied to account for possible sequencing or PCR
errors in the barcode sequence. In brief, the algorithm
identifies barcodes that are within short edit distance
(typically ≤ 1), and then combines them if one barcode
has significantly more supporting reads than others. The
procedure is described in more detail in [8].
Standard GATK workflow steps such as indel realign-

ment and base quality score recalibration [26] are not
implemented in this work because they are very time
consuming for ultra-deep read sets. However these proce-
dures are recommended, and can be implemented within
a reasonable time for shallower reads.

smCounter workflow
smCounter processes individual target locus sequentially
and independently. At a target locus, reads covering
the locus are collected by samtools mpileup and
screened by several pre-processing filters. High qual-
ity reads that pass the pre-processing filters are put

into the statistical model to determine if a potential
(candidate) variant exists. Finally, a variant call will be
made if the candidate variant passes a number of post-
processing filters. We described the statistical model
below and the filters in Additional file 2: Table S2,
S3. In particular, we gave a detailed discussion on the
strand bias filter in Additional file 2: Supplementary
Methods.
smCounter follows two steps to evaluate the likelihood

of mutation at a target locus. The first step aims to esti-
mate the posterior probability of each allele using all
reads originating from an individual barcode. For exam-
ple, the posterior probability of an ‘A’ nucleotide for the
kth barcode can be calculated by Bayes rule as

P(A | BCk) = P(BCk | A)P(A)
∑

X∈� P(BCk | X)P(X)
, (1)

where P(X) is the prior probability of allele X, P(BCk |
X) is the likelihood of all alleles in barcode k given the
true allele X in the corresponding DNA molecule, and �

includes the set of A,T ,G,C and any indels observed on
the reads covering the position. For simplicity, each allele
is given an equal prior probability, i.e., P(X) = 1/|�|,
where |�| being the cardinality of �.
P(BCk|X) is a key component of the model. However,

its analytical form cannot be easily obtained, so instead
we give a heuristic approximation. The main assump-
tion is that the non-X alleles are caused by a mixture
of base-calling errors during sequencing and PCR enzy-
matic errors during DNA enrichment. Without knowing
the relative fraction of the two errors, we approximate
P(BCk|X) by the weighted sum of P(base-calling error)
and P(PCR error). The idea is illustrated as follows.
Suppose we want to calculate P(BCk|A). Assume the

barcode has n supporting reads and nA, nT , nG, nC of
the reads has A,T ,G,C at the position. For simplic-
ity, we assume there is no indel or ambiguous base, so
nA + nT + nG + nC = n. Furthermore, we assume the
Phred quality scores of ‘A’ bases are q(A)1, . . . , q(A)nA . The
base-calling error probabilities are e(A)1, . . . , e(A)nA , where
e(A)j = 10−q(A)j/10. The same notations apply to G,T ,C
reads. Given true allele A, the probability thatG,T ,C alle-
les are base-calling errors is Cp

∏
Y∈�

∏nY
i=1 e

1−I(Y=A)
(Y )i (1 −

e(Y )i)I(Y=A). In this expression, Cp = 3 × 10−5 is approxi-
mately the probability of no PCR error, estimated assum-
ing 30 PCR cycles and a 10−6 PCR error rate in each
cycle. � is the set of {A,T ,G,C}, and I(Y = A) equals
1 if Y = A and 0 otherwise. The probability that G,T ,C
alleles are PCR errors is approximated by the product
of

∏
Y∈�

∏nY
i=1(1 − e(Y )i) (probability of no base-calling

error) andminY∈{G,T ,C} 10−6(0.5+nY )/
∑

Z∈�(0.5+nZ) (heuris-
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tic approximation of PCR error). In summary, P(BCk|A) is
approximated by

P(BCk | A) ≈ αCp
∏

Y∈�

nY∏

i=1
e1−I(Y=A)
(Y )i (1 − e(Y )i)

I(Y=A)

+ (1 − α)
∏

Y∈�

nY∏

i=1
(1 − e(Y )i) min

Y∈{G,T ,C}
(2)

10−6(0.5+nY )/
∑

Z∈�(0.5+nZ),

where α ∈ [0, 1] represents the relative weight between
base-calling errors and PCR errors. The choice of α

has no significant impact on smCounter’s performance
(Additional file 2: Figure S6). Throughout this study, we
have set α = 0.5, which is mathematically equivalent
to a direct sum of base-calling errors and PCR errors.
P(BCk | X) is calculated using the same formula for
any other allele X. Combining all components and apply-
ing equation (1), we have the estimation of barcode level
posterior probability of each allele.
The second step is to evaluate the total evidence of each

allele at the locus. Assuming the locus is covered by N
barcodes that are independent from each other, the prob-
ability that A is a true allele, i.e., at least one of the DNA
copies hasA at the locus, is given by P(A) = 1−∏N

k=1
(
1−

P(BCk | A)
)
. For computational purposes, we take the log-

arithm of 1−P(A) and define the prediction index of A as

I(A) = −
N∑

k=1
log10

(
1 − P(A|BCk)

)
. (3)

I(A) can be interpreted as a measurement of the evidence
for A at the locus. If A is a non-reference base and I(A)

exceeds the preselected threshold, A is considered as a
candidate point mutation.

Benchmarking variant calling performance
The initial ground truth set consists of the high con-
fidence heterozygous NA12878 variants (v2.19, ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_
HG001/NISTv2.19/) in the target region with NA24385’s
variants (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/NIST_CallsIn2Technologies_
05182015/) being masked out. In addition, we identified
one NA12878 SNP and ten NA24385 SNPs in the N0015
target region, as well as one NA24385 SNP in the N0030
target region, that were not present in the released variant
sets. All twelve putative variants were visually verified
in IGV and some were again verified in an independent
read set with 80% NA12878 admixture as well as in other
publicly available data for NA12878 and NA24385. The
ground truth set was modified assuming these putative
variants are real.

Variant calling performance was benchmarked against
the modified ground truth set. Comparing variants
identified from different variant callers is not a triv-
ial task, because complex variants can often be rep-
resented in different forms. For this task we used the
vcfeval function in RTG Tools [21], which performs
complicated VCF comparison and determines whether
different representations indicate the same complex
variant.

Estimation of locus specific detection limit based on
molecular barcode counts
The detection limit at a specific locus can be estimated
based on the barcode depth at the locus, the average bar-
code depth of the sequencing run, and the desired false
positive rate. Let the locus specific barcode depth be d
and the average barcode depth be D. Assume the desired
false positive rate is 20 per megabase. To call a variant
at the locus, the prediction index given by equation (3)
needs to exceed the cutoff value approximated by 14 +
0.012d (Table 3). Let I be the average prediction index of
a barcode with good read evidence. In N0030, I is typ-
ically around 3.5, which was the value used in Fig. 4.
The minimum number of barcodes with the alternative
allele (alternative barcode) is estimated by the ceiling of
(14 + 0.012d)/I.
We seek the minimum allele fraction f such that the

minimum number of alternative barcode is reached with
at least 95% probability, assuming the actual number
of alternative barcodes follows a binomial distribution
Bin(D, f ). The probability of observing sufficient alterna-
tive barcodes can then be calculated by PD,f (X ≥ (14 +
0.012d)/I), where PD,f is the probability distribution func-
tion of the binomial distribution Bin(D, f ). Finally, we find
the detection limit f ∗ that ensures this probability is at
least 95%:

f ∗ = min
f∈[0,1]

PD,f
(

X ≥ 14 + 0.012d
I

)

≥ 0.95.

In this estimation, a different equation for the
cutoff value or a different barcode level pre-
diction index I may be used, depending on the
desired false positive rate and the average number
of rpb.
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