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Abstract

Background: Long-term selection experiments provide a powerful approach to gain empirical insights into adaptation,
allowing researchers to uncover the targets of selection and infer their contributions to the mode and tempo of
adaptation. Here we implement a pooled genome re-sequencing approach to investigate the consequences of 39
generations of bidirectional selection in White Leghorn chickens on a humoral immune trait: antibody response to
sheep red blood cells.

Results: We observed wide genome involvement in response to this selection regime. Many genomic regions were
highly differentiated resulting from this experimental selection regime, an involvement of up to 20% of the chicken
genome (208.8 Mb). While genetic drift has certainly contributed to this, we implement gene ontology, association
analysis and population simulations to increase our confidence in candidate selective sweeps. Three strong candidate
genes, MHC, SEMA5A and TGFBR2, are also presented.

Conclusions: The extensive genomic changes highlight the polygenic genetic architecture of antibody response in
these chicken populations, which are derived from a common founder population, demonstrating the extent of
standing immunogenetic variation available at the onset of selection.

Keywords: Pooled genome sequencing, Selective sweeps, Virginia chicken lines, Sheep red blood cells, Antibody
response
Background
A key aim in the study of evolutionary genetics is to
identify loci that facilitate adaptation. The importance of
de novo mutations and standing genetic variation to the
mode and tempo of the adaptive process has been de-
bated, as well as the importance of fixation for adapta-
tion [1–3]. Through necessity, de novo mutations are
essential within bacterial systems, where beneficial muta-
tions arising within clonal populations will sweep to fix-
ation. Interaction and competition between de novo
mutations observed in experimental populations have
provided valuable insights into the process of adaptation
within microbial species [4–6]. Research in sexual
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organisms, however, reveals that selection on standing
genetic variation is the predominant basis of adaptation
in higher eukaryotes [7–10]. In this case, standing gen-
etic variants are present in the population at low fre-
quencies, maintained by neutral or slightly negative
selection. Within an altered environment, these standing
variants will gain a selective advantage and increase in
frequency in the population to reach fixation. Depending
on the genetic architecture of functional traits and popu-
lation structure, adaptation can also be facilitated by
moderate allele frequency differences at multiple genes,
without producing such dramatic sweep-to-fixation sig-
natures [1, 2, 11].
The number of genes underlying an adaptive process

often belies the complexity of the selective environment.
For traits with a complex genetic basis, such as aging and
courtship, experimental evolution studies in Drosophila
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have demonstrated genome-wide involvement in re-
sponse to selection [12, 13]. For immune traits, the ex-
tent of genome involvement in the adaptive response
can vary. For example, in Drosophila melanogaster,
nearly 5% of the genome, and 42 genes, were suggested
to be involved in an 150% increase in parasitoid resist-
ance [14], whereas only a few genes were identified and
functionally validated as the targets of selection for re-
sistance to Drosophila C virus [15].
Here we use a genomic approach to investigate the

consequences of long-term, bidirectional selection on a
single immune trait from a base population of ran-
dombred White Leghorn chickens [16]. In brief, selec-
tion was performed for high (HAS) or low (LAS) day 5
antibody production to an intravenous challenge of
sheep red blood cells (SRBC) (further details can be
found in [16–18]). At generation 39, the HAS and LAS
lines showed an average 6.5 fold difference in antibody
titers (Fig. 1). Pooled genome sequencing was carried
out for each selected line at generation 39 (HAS39 and
LAS39) allowing the identification of regions of high dif-
ferentiation (FST). Due to the bidirectional selection re-
gime, the identified selection signatures would result
primarily from selection on standing genetic variants
[10, 19]. Relaxed lines (random-mated sublines) founded
for both lines at generation 24 were also genome se-
quenced in pools at generation 16 (HAR16 and LAR16).
The genetic effects of the sweeps were estimated using
data from an F2 intercross between the HAS and LAS
lines at generation 32.
We observed over 200 regions across the genome af-

fected by the selection regime, characterized by spans
of extreme differentiation between HAS39 and LAS39.
These would include true selective sweeps and those
regions displaying this pattern due to the random
Fig. 1 Changes in mean sheep red blood cell (SRBC) antibody (AB) titers a
females (a) and males (b). Selected lines shown in blue, with relaxed lines s
genetic drift experienced by the small selected popula-
tions. To identify strong candidate sweeps from this
large set of differentiated regions, we overlapped re-
gions with associations detected to antibody response
in an F2 intercross between the selected lines, used en-
richment analysis to detect regions with immune genes
and identified overlaps with immune associations
mapped in other studies/populations. In this way, a
high-confidence set of candidate selective sweep re-
gions may be inferred. Three particularly relevant can-
didate genes, MHC, SEMA5A and TGFBR2, are
presented in more detail.
Results
A large genome-wide footprint of selection in the
divergently selected lines
A total of 711,149 1000 bp windows were analyzed in
Popoolation2. A summary of the population-statistics for
the four analyzed populations is provided in Table 1. A
general reduction in heterozygosity in these regions was
observed relative to genome-wide heterozygosity in the
selected lines. Differentiation (FST) was also greater be-
tween the S39 than the R16 lines.
After clustering of windows located less than 0.5 Mb

apart, and removing sweep-regions with a single
1000 bp window or only 2 SNPs, 224 highly differenti-
ated regions were retained (Fig. 2; Table listing differen-
tiated regions in Additional file 1). These regions were
located on 50 genome contigs, with 203 across the 29
assembled chromosomes and 1 region on each of 21 un-
mapped genome scaffolds, spanning a total of 208.8 Mb
(20.1% of the assembled galgal4 chicken genome). The
regions ranged in length from 1.5 kb to 8.7 Mb (mean/
median length: 932/538 kb).
cross 39 generations of selection in Virginia AB chicken lines for
hown in yellow



Table 1 Summary statistics on pooled genomes of Antibody
line populations

HAS39 LAS39 HAR16 LAR16

Sweep heterozygosity 0.120 0.127 0.191 0.156

Genome-wide heterozygosity 0.199 0.190 0.204 0.166

Sweep Het/Genome-wide Het 0.603 0.666 0.939 0.940

FST 0.519 0.323

FST from population comparisons between HAS39 with LAS39, and between
HAR16 and LAR16

Table 2 Summary information from simulations

Micro-chromosomes Macro-chromosomes

Median length 71,750 75,000

Median FST 0.366 0.362

Max. length 709,000 662,500

Mean length 109,021 129,536

Fixed % 20.3 10.8
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Estimating the contribution of drift to the allelic
divergence between populations
Simulations in SFS_CODE [20] were used to estimate the
contribution of genetic drift to the genome-wide divergence
between the HAS and LAS lines, an effect that would con-
found true sweep signatures across these genomes. Simula-
tions were conducted for macro- and micro-chromosome
recombination rates (estimated at 2.8 and 6.4 cM/Mb re-
spectively; [21]) and regions of differentiation due to neutral
processes are summarized in Table 2. Median lengths were
75,000 and 71,750 bp, respectively, with maximum lengths
at 709,000 and 662,500 bp. From 10.8 to 20.3% of the simu-
lated DNA fragments showed stretches of differentiation,
emphasising the influence of genetic drift in the selected
chicken populations. Quantifying the regions that have dif-
ferentiated as a result of selection versus drift is impossible,
but by overlapping the genomic results with those of other
Fig. 2 Locations of highly differentiated genomic regions (black) across the
antibody titer in our backward-elimination based analysis of the F2 intercro
studies, association analysis and investigating deeper into
candidate genes, we build confidence that many regions
have contributed to the divergence in antibody response
observed in the Antibody lines.

Many candidate selective sweep regions contain genes
related with immune-function
The 224 highly differentiated regions contained a total
3511 annotated genes. To identify potential candidate
adaptive genes, as well as to indicate individual candi-
date sweeps that are more likely to have reached high
frequency by selection rather than drift, we subjected
these to a Gene Ontology (GO) analysis. Using the
DAVID GO analysis, 67 gene IDs were reported to be
associated with immune system processes (listed in
Additional file 2), and these mapped to 46 regions (also
refer to Additional file 1). The PANTHER GO analysis
identified 155 gene IDs associated with immune function
chicken chromosomes. The SNP markers associated with 5-day
ss between HAS32 and LAS32 are indicated with red diamonds
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(listed in Additional file 3) mapping to 70 regions (also
refer to Additional file 1). Combining the results from
both methods revealed a total of 82 regions overlapping
genes associated with immune function. Between 1 and
13 immune genes were found within these regions, with
the most observed on GGA 16, notably the Major Histo-
compatibility Complex (MHC) region.

Several candidate selective-sweep regions overlap with
genomic regions associated with immunological traits in
chicken
In total, 23 highly differentiated regions overlapped with
regions previously reported to be associated with im-
munological traits in chickens. These included antibody
response to SRBC and Brucella abortus in Leghorn hens
[22], primary and secondary antibody response to SRBC
in ISA Warren layer hens [23], innate immunity in layer
hens [24], innate and adaptive immunity in layer hens
[25], multiple immune traits in the Chinese indigenous
breed Bejing-You chicken [26], and differential expression
between high and low SRBC antibody responses in White
Leghorn females [27] (also refer to Additional file 1).

Several candidate selective-sweep regions are associated
with day 5 antibody titers in an F2 intercross between
chickens from HAS32 and LAS32
We reanalyzed a previously generated dataset from an
F2 intercross from generation 32 of the divergent lines.
In total, 150 of the 1024 polymorphic markers were
highly differentiated, with an allele-frequency difference
between HAS32 and LAS32 > 0.7 (SNP markers and lo-
cations listed in Additional file 4). This SNP subset was
clustered into 63 regions on 24 chromosomes from
which a subset of 63 representative SNP markers (1 per
region) was selected using a per region backward elimin-
ation analysis. These markers were then fitted jointly in
a whole-genome multi-locus, backward elimination ana-
lysis to identify five SNP markers associated with the se-
lected trait at 20% FDR threshold. Four of these markers
were retained in the model at a 5% FDR threshold
Table 3 Genetic effects of SNP markers associated with log2(day 5 a
Virginia Antibody lines

Marker Chromosomea Positionb (bp)

rs14799859 GGA1 23,275,033

rs15307852 GGA1 69,259,824

rs14207559 GGA2 78,180,370

rs14242328 GGA2 119,824,660

rs14096690 GGA16 192,620
aGGA Gallus gallus autosome
bNovember 2011 (galGal4) assembly
cAdditive genetic effect in model including all tabulated loci
dSignificance for additive genetic effect in model including all tabulated loci
eSignificance thresholds 5/20% FDR based on which markers were selected
(Table 3). The identified markers were located on chro-
mosomes 1, 2, and 16 (Fig. 2).
As the linkage disequilibrium is extensive in the F2

population, the functional polymorphisms causing the
marker-trait associations could located several Mb away
from the tested markers. The marker with the most sig-
nificant association, rs14207559, is located close to a can-
didate sweep region at GGA2: 78,748,000–78,800,500,
which contains the candidate immune gene, semaphorin
5A SEMA5A (see below section). Among the markers
selected by the 5% FDR threshold, rs14799859 is located
on GGA1 between a sweep region ending at 15,887,000
and another beginning at 27,122,500, marker rs15307852
is located just outside the sweep region at GGA1:
67,820,500–69,251,000, and marker rs14242328 falls within
the sweep region on GGA2: 119,248,000–119,841,000, none
of which contains annotated immune genes. The marker
rs14096690 showed only 20% FDR significance in the
model, but is located within the sweep region GGA16:
2000–323,000 and notably within the candidate MHC
region (see below section).

SEMA5A is a candidate adaptive gene in a selective
sweep region associated with day 5 antibody titers
The SNP marker rs14207559 that is significantly associ-
ated with day 5 antibody titers is located only 568 kb
away from, and closely linked to in the F2 population,
the candidate sweep region GGA2: 78,748,000–
78,800,500 (Additional file 5). It is fixed for T in HAS39,
while it segregates for T/G in LAS at differentiated fre-
quencies (0.27/0.73: T/G, Table 4). We explored the
haplotype-structure of this candidate sweep region in
the four analyzed populations in greater detail where the
sweep region overlaps with the SEMA5A candidate gene
(GGA2: 78,760,000–78,800,000 bp; Fig. 3). In this region,
345 positions are fixed in HAS39, but continue to segre-
gate in LAS39 (Additional file 5). These positions in
LAS39 contribute towards two major haplotypes,
Haplo2 and Haplo3, which are not present in HAS39,
and segregate at the approximate haplotype frequencies
ntibody titers) at a 20% FDR threshold in the F2 intercross of

Estimatec ± std. err. P-valued Sign.e

1.7 ± 0.5 0.0017 5%

1.5 ± 0.5 0.0019 5%

2.1 ± 0.4 3.6 × 10−6 5%

1.6 ± 0.4 0.0006 5%

1.2 ± 0.4 0.0050 20%



Table 4 Estimates of mean phenotypes for the three genotypes
at the significantly associated SNP near SEMA5A (rs14207559;
GGA2: 78,180,370) in the F2 intercross between HAS32 and LAS32

Genotype (rs14207559) Mean antibody titer SE

G/G 2.2 0.7

G/T 4.8 0.5

T/T 6.5 0.5
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of 0.2 and 0.8, respectively (Table 5, Fig. 3). When com-
pared to the relaxed lines, both HAR16 and LAR16 have
Haplo1 and Haplo2 segregating at intermediate frequen-
cies, and lack the Haplo3 haplotype (Table 5, Fig. 3). (It
should be noted that with their smaller sample sizes,
haplotype frequencies in the relaxed pooled genomes
should be treated with caution and only serve as indica-
tions of the allele / haplotype frequencies of the sampled
populations. Nevertheless, they are useful to reveal gen-
eral trends across pooled genome comparisons.)
The associated SNP marker rs14207559 appears to tag

these major haplotypes at this candidate sweep region in
the F2 population, with the G-allele tagging Haplo3, the
dominant haplotype in LAS39, and the T-allele tagging
both Haplo1 and Haplo2 (Table 5, Fig. 3). From these in-
ferred haplotype frequencies, it appears that Haplo3 has
a selective benefit only in LAS and otherwise would be
deleterious, thus explaining why it was purged in the
LAR line after the relaxation of selection. Pairwise differ-
entiation of this region reinforces this hypothesis, as
LAS39 is highly differentiated from HAS39, HAR16, and
LAR16, while LAR16 appears less differentiated from
HAS39 and HAR16 than LAS39 (Table 6). The two dif-
ferentiated variants within SEMA5A exons are synonym-
ous, with the majority of polymorphisms in this region
located in intergenic and intronic regions.

Deletion in TGFBR2 located in the longest candidate
sweep region
Previously, we observed a correlation between the length
of selective sweeps and their contribution to adaptation in
a similar long-term, single-trait selection-experiment for
8-week body weight in chickens [10]. Therefore, here we
investigated the longest candidate sweep region (GGA2:
34,856,000–43,580,000; 8.7 Mb) in more detail. In this re-
gion, HAS39 and LAS39 appear fixed for alternative hap-
lotypes across this region, as are their respective relaxed
lines. This pattern of fixation indicates that this region
was fixed for alternative alleles within the selected lines
prior to generation 24, which was the founding generation
of the relaxed lines. Such rapid fixation suggests that this
sweep represents selection on a standing variant with
strong phenotypic effect. Several genes with roles in the
immune system are located within this region, including
several cytokines, and we also detected a large structural
variant within the transforming growth factor beta-
receptor 2 gene, TGFBR2 (ENSGALG00000011442,
GGA2: 40,385,525–40,447,574).
By referring to RNAseq data, we identified 9 exons

contributing to the transcription of TGFBR2 (see also
Additional file 6). Exons 2-3 and 4-5 of TGFBR2 appear
to be the result from a historical duplication event.
Exons 3 and 5 are identical at the sequence level, while
exons 2 and 4 share over 90% sequence identity (intron
2-3 shares > 94% sequence identity with intron 4-5). The
haplotype that appears fixed in LAS39 has a large
deletion overlapping exons 4-5 of this duplicated region.
By comparing de novo assemblies of LAS39 and HAS39
genomes, the deletion was localized to GGA2:
40,414,509–40,418,21 and results in a 3712 bp deletion
(see also Additional file 6).

Major histocompatibility complex
Previous studies have traced the changes in MHC allele
segregation between the HAS and LAS lines [28, 29]. As
such, we simply aimed to add information from the
pooled genome sequencing to these results. We con-
firmed fixation for MHC B locus B21 haplotype in
HAS39 and B13 in LAS39 (Table 7). Also observed was
fixation for B13 in LAR16, while HAR16 continued to
contain both B21 and B13 haplotypes segregating at the
approximate haplotype frequencies 0.73 and 0.27, re-
spectively (Table 7).

Discussion
Long-term, bidirectional experimental selection provides
a powerful approach to gain empirical insights to the
genetics of complex traits. Within the quantitative gen-
etic framework, research has provided knowledge about
relationships between the predicted and realized re-
sponses to selection, the boundaries of selection in
closed populations due to reduction in selectable genetic
variation, and physiological limits for further response
[30, 31]. With the advent of large-scale molecular genet-
ics and genomics methods, these highly selected popula-
tions also become valuable models for studying how the
genomes of populations under intense selection for vari-
ous traits evolve during adaptation [5, 19, 32, 33].
The Virginia Antibody lines are a unique experimental

model-population for studying the genetics of long-term
selection for an adaptive immune trait in a higher verte-
brate. Using whole-genome re-sequencing of pooled
DNA from these divergent lines, we observed wide gen-
ome involvement in the long-term response to selection.
Over 200 regions, covering nearly 20% of the genome,
were clearly differentiated between the lines. Despite the
action of genetic drift, many regions were the result of
bidirectional selection and have contributed to selection



Fig. 3 Inferred major SEMA5A haplotypes in HAS39 (upper), HAS16 (middle upper), LAS39 (middle lower), LAR16 (lower). Positions are colored based
on their contribution to different haplotypes: allele frequencies for SNPs in green contribute to Haplo2 and orange contribute to Haplo3. SNPs in
blue contribute to both Haplo2 and Haplo3, so where both of these haplotypes are present, blue positions will have an allele frequency approximately
equal to 1 as in LAS39 where only one haplotype is present. In the case of LAR16 and HAR16, the blue positions will have an allele frequency
approximate to Haplo2
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response, as suggested by overlaps with immune genes
and marker to immune-trait associations in an intercross
between the selected lines as well as other independent
populations. These candidate selective sweeps are pri-
marily the result of two key factors: first, the selected
variants were present at the onset of selection (i.e. that
selection has acted on standing genetic variation in the
founding population), and second, that selection acts on
these standing variants in opposite directions.
These extensive genome changes in this long-term

selection experiment suggest that SRBC antibody
response is a highly polygenic trait. The 6.5 fold
difference in antibody titers between the divergently
selected lines has been facilitated by large differenti-
ation at many loci with standing genetic variants.
This finding is consistent with those in the Virginia
body weight lines, which has been bidirectionally se-
lected for juvenile body-weight for over 55 genera-
tions. There, it has been shown that selection on
standing variation in a highly polygenic genetic archi-
tecture was the main contributor to the long-term
selection response in body weight [10].



Table 5 Allele and haplotype frequencies of the SNP marker
rs14207559 and the SEMA5A gene-region

Allele frequency
(G; rs14207559)

SEMA5A
Haplotype frequencies

Haplo1 Haplo2 Haplo3

HAS39 0 1 0 0

HAR16 0 0.78 0.22 0

LAS39 0.732 0 0.2 0.8

LAR16 NA 0.68 0.32 0

Table 7 MHC B locus B21 and B13 haplotype frequencies for
different generations in the Virginia Antibody lines. Note that allele
frequencies in HAS10 do not equal 1, as a third MHC haplotype B31

was present at a frequency of 0.05 in this generation [29]

HA LA Citation

Generation freq(B21) freq(B13) freq(B21) freq(B13)

S10 0.80 0.15 0.01 0.99 Martin et al. 1990 [29]

S13 0.99 0.01 0.02 0.98 Martin et al. 1990 [29]

S32 1 0 0 1 Dorshorst et al. 2011 [48]

R16 0.73 0.27 0 1 This study
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Genetic drift in these relatively small breeding popula-
tions would have contributed not only to random diver-
gence between the selected lines, but also to the fixation
of selective sweeps. Previous studies where Drosophila
melanogaster and Saccharomyces cerevisiae were used to
model adaptation in vertebrate populations have rarely
detected complete selective sweeps [6, 9]. Further, in hu-
man studies, the polygenic architecture of most traits
disperses the influence of selection and hence adaptation
is facilitated by moderate allele frequency changes of
multiple loci without dramatic fixation events [2, 34]. In
contrast, within our small population, there was loss of
heterozygosity within selective sweep regions attribut-
able to fixation of genetic variants. The combination of
selection and genetic drift within the Antibody lines
have lead to a higher level of fixation of selective sweeps
than observed in other model systems.
Antibody production is a major defense mechanism of

the humoral immune response. It involves a variety of
different cell types with specific functions, including im-
munological cascades involving the recognition of the
foreign cells by T and B immune cells, activation and
differentiation of B cells into plasma cells and secretion
of specific antibodies [35]. Moreover, this cascade relies
on the careful coordination of gene expression through
signaling molecules and appropriate receptors, within
which there is potential for many genes and genetic vari-
ants to have an effect. Our results suggest that not just
that many loci play a role in SRBC antibody production,
but also that the founder population harbored substan-
tial genetic variation upon which selection could act.
This supports the expectation that adaptive immune
traits are genetically complex and further emphasizes
the need to consider more than just a few key immune
Table 6 Pairwise differentiation (mean FST) between the analyzed
lineages across the region overlapping the SEMA5A gene and the
candidate selective sweep (GGA2: 78,760,824–78,800,500)

HAS39 LAS39 HAR16

LAS39 0.595

HAR16 0.137 0.456

LAR16 0.202 0.438 0.029
genes when studying immunogenetic selection and adap-
tation even in populations originating from a narrow
genetic basis.
Earlier works with the Virginia Antibody lines have,

however, shown that the level of antibody-response does
not have a direct connection to a general greater immuno-
logical efficacy. For example, when the lines selected for
high (HAS) and low (LAS) antibody production were
faced with different immunological challenges, the HAS
were less susceptible to the northern fowl mite (Ornitho-
nyssus sylviarum) and Newcastle Disease, but more sus-
ceptible to the bacterial pathogens Escherichia coli and
Staphylococcus aureus when compared to LAS [36]. These
immunological trade-offs further emphasize the complex-
ity of the immune system, and show fixation of mutations
within this selected population that would be otherwise
deleterious. Selection for different arms of the immune
system resulting in difference in disease resistances have
been well characterized in other chicken studies, such as
the IAH Compton lines, where different inbred lines show
variation in disease susceptibility/ resistance [37], as well
as the notable differences in disease resistances observed
between broiler and layer chicken breeds [38, 39]. They
also serve as a reminder that this study does not provide
insights to how and whether breeding can be used to im-
prove the general performance of the immune system, but
rather that the immune system of a particular population
is likely to be very adaptable when challenged with various
disease challenges and that such responses are likely due
to selection on available variants in many genes. It is no
doubt advantageous for a population to have such vari-
ation in host-pathogen interactions to respond to im-
munological challenges.
We observed many genes with immunological func-

tion underlying our candidate sweep regions, while many
still did not. Particularly from our association analysis,
we found two SNP markers with associations to day 5
antibody titers and closely located candidate immune
genes, while the remaining three SNP markers were not
located near immune genes involved in selective sweeps.
This may be a consequence of our strict GO search for
genes with immune function, which would not identify
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functional genes contributing to the divergent antibody
response but without GO immune function terms. Alter-
natively, genes within the chicken genome lacking anno-
tation in galgal4 would not be identified by our
methodology. It should be noted that while our analysis
of this previously published dataset focused on the most
informative SNP markers (those with allele frequency
differences between the lines), this restricted our gen-
ome coverage and would have limited the opportunities
of identifying associations to day 5 antibody titers.
In the remaining sections, we discuss a number of par-

ticularly promising candidate functional genes detected
in the identified sweep regions.
Semaphorin-5A
A sweep region located near the SNP marker (rs14207559)
with the strongest association to day 5 antibody titers in the
F2 intercross between the HAS and LAS lines in generation
32 overlaps the first 7 of 18 exons (39,676 of 136,181 bp) of
Semaphorin-5A (SEMA5A, ENSGALG00000013051).
Semaphorins are a large family of secreted and membrane
bound proteins, originally discovered in the nervous system
with a role in axon guidance (summarized in [40]).
SEMA5A is a secreted semaphorin involved in immune
regulation and the pathogenesis of autoimmune diseases
[40]. It has been implicated in the pathogenesis of im-
munological diseases such as mastitis in dairy cattle
[41], chronic immune thrombocotypenia in humans
[40], and neurodevelopmental disorders such as autism
in humans [42]. As an immunoregulator, SEMA5A in-
fluences the expression of cytokines such as IFN-
gamma, TNF-gamma, and interleukins [40].
In the Virginia Antibody lines, the sweep region over-

lapping the SEMA5A gene is present in at least three dif-
ferent haplotypes: the major haplotypes referred to here
as Haplo1, Haplo2, and Haplo3. Haplo3 is present only
in LAS39, suggesting that this variant involved in low
antibody production was purged in relaxed line LAR16.
This is reflected in the population differentiation be-
tween the lines as well, as LAS39 is most differentiated
of the lines. The extent of differentiation at many
markers suggests that these haplotypes were present as
standing variants in the base population, as opposed to
novel variants emerging in the LAS lineage after gener-
ation 24 and the founding of the relaxed line. Although
we have no information for earlier generations, we can
speculate on the driving forces acting on Haplo3. Given
the complete purging of this haplotype from the relaxed
lines, it seems reasonable to assume that this haplotype
has a fitness cost; a fitness cost that may not have been
evident in the base population or present as a cryptic
variant. In the context of the LAS line, selection for
Haplo3 progressed slowly (no fixation after 39
generations), for which this inferred fitness cost is a pos-
sible explanation. As Haplo3 is expected to segregate at
an intermediate frequency at generation 24, this fitness
cost would purge Haplo3 quickly from the LAR line
once selection is relaxed.
We observed only three synonymous SNP sites in the

coding region of SEMA5A, with the majority of se-
quence polymorphism between haplotypes contained in
intergenic and intronic regions. Taken together, this im-
plies that the involvement of SEMA5A to the differential
antibody response in the Virginia Antibody lines would
be due to regulatory polymorphisms where the two
haplotypes produce different expression levels of the
SEMA5A protein, from different promoter or enhancer
sequences. This could impact the expression of cyto-
kines within this regulatory network and thus influence
an effective and specific immune response.

Transforming growth factor beta receptor 2
Earlier work with the Virginia body-weight selected
lines, which have undergone a similar long-term experi-
mental selection regime, has shown that the length of a
selective-sweep is correlated with its contribution to the
adaptive phenotype [10]. Hence, the individual sweep in
our study that is most likely to make a significant contri-
bution to antibody response is the long 8.7 Mb sweep
region identified on GGA2. In this region, only one gene
had GO immune terms, the transforming growth factor
beta receptor 2 (TGFBR2), making it a logical candidate
gene for further study. TGFBR2 is a member of the
serine/threonine protein kinase family, encoding a
transmembrane protein that binds the secreted protein
TGF-beta. The TGF signaling pathway regulates diverse
biological processes during all stages of life and plays a
key role in growth and the immune response [43, 44].
We observed fixation for different TGFBR2 haplotypes

in the selected lines. In-depth analyses comparing the
sequence data for HAS39 and LAS39 suggest that these
haplotypes differ by a 3712 bp deletion (between GGA2:
40,414,509 - 40,418,21) fixed in LAS39, which encom-
passes exons 4 and 5 of the TGFBR2 gene prediction.
Fixation of these haplotypes in the respective relaxed
lines implies that the selected lines were already fixed
(or nearly fixed) by generation 24, when the relaxed lines
were founded. The length of this sweep, together with
the rapid fixation, suggests that the selection acted
strongly and fixation occurred swiftly, before multiple
recombination events could break down the linkage
within this region and leave a shorter sweep.
The strong selection signature suggests that the

TGFBR2 haplotypes might have played a major role in
determining antibody response, most likely due to its
key function in the TGF-beta pathway. Evidence is lack-
ing, however, that this large sweep region was associated
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with 5 day antibody titers in the F2 intercross between
HAS32 and LAS32, despite being covered by 7 segre-
gating SNP markers (6 markers with MAF > 0.05;
605,124 bp or greater distance from the TGFBR2 anno-
tated gene). It should be noted, however, that these SNP
markers were fixed or near fixed for alternative alleles in
generation 39. As the population used for association
analysis was small, the power in this analysis was low.
Therefore it difficult to make strong conclusions as to
whether these haplotypes had no or only minor effects
on antibody response, or whether their functional sig-
nificance was reliant on the genetic background of the
population.
Defects in TGFBR2 can result in serious debilitating

and fatal diseases in humans, most notably the auto-
somal dominant aortic aneurysm syndrome, Loeys-Dietz
syndrome, as well as an increased risk of certain cancers
[45, 46]. That none of these conditions has been ob-
served in LAS suggests that the deletion observed in
LAS39 and LAR16 did not completely disrupt the func-
tion of the gene or that the function of this gene is less
important in chickens than in humans. It is relevant to
point out that mortality in these populations is low
under our husbandry conditions. The deletion of only
one set of duplicated exons may indicate that the LAS
haplotype may still result in a functional TGFBR2 pro-
tein, but with less splice variant options than the HAS
haplotype.

Major histocompatibility complex region
The major histocompatibility complex (MHC) is the most
well studied immune gene complex in vertebrates due to
its key role in the pathogen surveillance [47]. Accordingly
the MHC has previously been investigated in the Virginia
Antibody lines, albeit not at a sequence level [28, 29, 48].
The chicken MHC region is relatively small, simple and
tightly-linked, compared to that of mammals, and thus
termed the minimal essential MHC [49, 50]. Bidirectional
selection on the MHC was evident as early as generation 12
in the Virginia Antibody lines, and alternative haplotypes
were fixed by generation 32 (haplotype frequencies are
summarized in Table 7; [28, 48]). Fixation for B21 in HAS39
and B13 in LAS39 was confirmed in our pooled genome se-
quencing and this divergent fixation contributed to the
sweep signal on GGA16 from 2000 to 323,000 bp.
The sweep overlapping the MHC region spans a total

321 kb, and encompasses genes vital to antigen process-
ing and presentation including MHC class I and II, TAP
genes and tapasin. Association analysis between MHC
haplotype and antibody response has demonstrated that
the B21 allele acts dominantly, with higher day 5 and day
12 titers of antibodies in homozygous and heterozygous
B21 individuals [48]. This explains the rapid fixation for
the recessive B13 in the LAS, as inferred by the fixation
in LAR16, and why both haplotypes still segregate in
HAR16. Although the HAS13 was close to fixation for
B21, at least one B13 haplotype must have persisted until
generation 24 the origin of the relaxed lines, as it con-
tinues to segregate in HAR16. The immunological ad-
vantage of the B21 allele is well known in the context of
Marek’s herpevirus [51]. Studies have also demon-
strated that the B21 haplotype has wider peptide recog-
nition with more flexibility in the peptides it could
bind, whereas B13 is limited to peptides between 8 and
10 amino acids and negative anchor amino acids at cer-
tain sites [52–54].

Conclusions
Adaptation to long-term, bidirectional selection for anti-
body response in this experimental chicken population has
been facilitated by standing genetic variation across many
regions of the genome. Although selective-sweep studies by
themselves were unable to quantify the contribution by in-
dividual genes and polymorphisms to adaptation, data from
earlier association and functional studies highlight three
particularly interesting candidate sweeps and underlying
candidate genes involved in immune surveillance (MHC)
and immune regulation (TGFBR2 and SEMA5A). Further
work to investigate the large numbers of additional im-
mune genes that are likely to have contributed to the re-
sponse to selection in this experimental population would
be useful to improve our understanding of selection on im-
mune traits and to unravel the complexity of their interac-
tions. These experimental lines continue to present a
unique opportunity towards understanding the mode and
tempo of selection in a higher vertebrate organism.

Methods
Experimental populations: the long-term bidirectionally
selected Virginia Antibody chicken lines
The Virginia Antibody chicken lines were established
from the Cornell randombred White Leghorn population
[16]. From this base-population, two bidirectionally se-
lected lines have been bred for high (HAS) and low (LAS)
antibody response to an intravenous inoculation of 0.1 ml
of 0.25% suspension SRBC, administered between 41 and
51 days of age. Plasma was collected five days after the in-
oculation and antibody response measured through a sim-
ple hemagglutination assay [55].
Selection has been carried out once every year, with

approximately 120 chicks hatched per generation
[16, 48]. Between generations 1–10, 7 males and 28 females
were selected to produce the next generation of each line,
and from generation 11 onwards, 8 males and 32 females
were used. Within each line the parents for the next gener-
ation were selected from male and female groups of 30 and
60, respectively. Restricted truncation selection was used in
each generation to avoid selection that would result in over
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representation of particular sire or dam families [48]. This
procedure reduced, but could not avoid, inbreeding from
common ancestry and did result in similar population
structures in both lines.
Response to selection continues in HAS, whereas the

LAS line appears to have reached a selection-plateau
(Fig. 1). This plateau may be due to a threshold in re-
sponse to the SRBC challenge or a limit in the technical
sensitivity of the standard hemagglutination assay
employed in antigen quantification [48, 56]. Relaxed
sublines from both the HAS and LAS lines were estab-
lished in generation 24. The relaxed lines from the high
(HAR) and low (LAR) antibody response lines were
founded by randomly selecting parents from the HAS
and LAS lines, respectively.
DNA for the genomic analyses was prepared from

blood samples collected from 16 to 30 individuals from
each line and pooled in equimolar ratios prior to library
construction (Table 8).

Pooled whole-genome re-sequencing, sequence alignment,
variant-calling and population genomic analyses
Genome sequencing library construction and sequencing
was carried out by SciLifeLab (Uppsala, Sweden) using
two lanes on an Illumina Hiseq 2500. Reads were aligned
to the Gallus gallus genome (Galgal4; INSDC Assembly
GCA_000002315.2, Nov 2011) using BWA [57]. Picard
(v1.92; http://broadinstitute.github.io/picard/) was used
to sort genomes and to mark and remove duplicates.
GATK [58] was used for realignment around indels.
Samtools (v3.3.0; [59, 60]) was used to generate mpileup
files for population genomic comparisons. GATK Uni-
fiedGenotyper was used to generate allele calls at all sites
(option: emit all sites) and with ploidy = 30 to account
for the pooled genome sample. Sites were filtered to only
include those with >10 and <100 reads, wherefrom allele
frequency, heterozygosity, and pairwise FST between all
populations were calculated. PoPoolation2 (v1.1; [61])
was used to calculate FST over 1000 bp sliding windows
with 50% overlaps between the population samples using
the Karlsson et al. (v1.201; [62]) method, with minimum
Table 8 Information about the populations, samples, phenotypes,
and sequencing-depth used in the genomic analyses of the
Virginia Antibody chicken lines

Population N Day 5 log2(AB titers) Genome coverage

Mean sd

HAS39 30 16.7 4.3 32.3

LAS39 30 2.6 1.6 36.7

HAR16 20 15.0 3.2 35.4

LAR16 16 5.3 2.2 34.8

Population: H High, L Low, A Antibody, S Selected, R Relaxed, 39-generation;
N number of individuals in the sequenced pool; Genome Coverage: average
sequence-depth of the pool; AB antibody
count 3, minimum coverage 10, maximum coverage 100,
and minimum coverage fraction 1.

Identification of candidate selective sweep regions
A stringent FST cutoff (>95% percentile FST = 0.946) was
used when defining the sweeps to limit the number of
candidate regions due to drift. Windows with FST values
above this cutoff were clustered into candidate sweep re-
gions when they were less than 0.5 Mb from one an-
other (custom R scripts). Clusters containing only a
single 1000 bp window, or less than 2 SNPs, were re-
moved from the dataset.

Estimating the expected contribution of genetic drift to
the genomic divergence between the populations
Our experimental populations were small (Ne(1-10) = 22.4
and Ne(11-39) = 25.6; calculated Ne~ 4*Nef*Nem/(Nef +Nem)),
whereby genetic drift could be a prominent force affecting
allele frequencies which would confound the identification
of selective sweep signatures. Simulations were carried out
for a 5 Mb locus using SFS_CODE [20] taking into account
mutation (the high mitochondrial mutation rate of 3.13 ×
10-7 was implemented to promote high standing genetic
variation in the ancestral population; [63]), recombination
(6.4 cM/Mb for microchromosomes and 720 2.8 cM/Mb
for macrochromosomes; [64]) change in population sizes
between ancestral breed to the selected lines (effective
population size of 500 was chosen to allow for generation
of mutations and rearrangement of haplotypes in the base
population then population size reduced to 25 for 39 gener-
ations for selected lines) and proportion of females (0.8) in
the selective breeding scheme.
Resulting allele frequencies from simulations were

used to calculate FST between the two simulated popula-
tions. Average FST was calculated per 1000 bp window
with 50% overlaps then regions of differentiation were
clustered together if distance between differentiated SNP
sites was less than 50 kb, following a similar method-
ology applied to the real genomic data.

Gene ontology analysis to identify immune genes within
differentiated regions
We used GO analysis to identify functional candidate
sweeps that were enriched for immune-related genes.
BEDOPS [65] was used to extract all Ensembl geneIDs
underlying candidate sweep regions then used for GO
annotation analysis via i) the Database for Annotation,
Visualization and Integrated Discovery [66] and ii) the
Protein ANalysis THrough Evolutionary Relationships
PANTHER v10.0; [67, 68]). GeneIDs with immuno-
logical GO terms were identified and mapped back onto
candidate sweep clusters.
To confirm transcription of the genes predicted by

Ensembl genebuild within candidate sweep regions, White

http://broadinstitute.github.io/picard/
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Leghorn spleen RNA sequence reads were accessed from
the Short Read Archive (http://www.ncbi.nlm.nih.gov/sra;
runs SRR2889287, SRR2889288, SRR2889289) and aligned
using STAR (v2.3.1; [69]). Genome coverage of the RNA-
seq alignments was calculated with BEDTools v2.25.0;
[70]. RNAseq assemblies and genome coverage were visu-
alized in IGV (v2.3.52; [71, 72]).

Identification of associations between candidate selective
sweep regions and immune-traits
A number of QTL and GWAS studies have been per-
formed for immunological traits in chickens, including an
analysis of an F2 intercross between the HAS and LAS
populations. Data and results from these studies were
used to increase our confidence in individual candidate
sweep regions. We reanalyzed the SNP association data
from Dorshorst et al. [48] to compare the overlap between
associations in those data and our candidate selective
sweeps using a multi-locus, adaptive backward-
elimination model-selection approach [10]. Briefly, this
dataset consisted of 128 individuals representing the
phenotypic extremes in 5-day antibody titer sampled from
an F2 intercross generated by intercrossing birds from
HAS32 and LAS32 that were genotyped by a custom
GoldenGate® Genotyping assay containing 3072 SNP
markers as described by Dorshorst et al. [48].
In order to focus on the most informative markers

that tag divergent selective sweep regions, we used a
subset of SNP markers that possessed an allele fre-
quency difference > 0.7 in the pooled genome se-
quence between HAS39 and LAS39. To further refine
this subset, neighboring, linked markers were clus-
tered together (< 5 Mb between SNPs in a cluster, >
5 Mb between clusters). Backward elimination was
applied to clusters with more than one marker to se-
lect the most significant marker as representative of
the cluster region for use in the genome-wide ana-
lysis. This final refined SNP subset was analyzed using
the same backward elimination process as in the within-
cluster analysis. All analyses used a standard linear model
framework, starting with a full model including the fixed
effects of sex and the additive effects of the highly differ-
entiated markers. These were regressed onto log2 trans-
formed day 5 antibody titers, and the final model from the
backward elimination analysis was decided using an adap-
tive 5–20% FDR criterion [73, 74].

Estimating haplotype segregation within candidate
sweep regions
We do not have DNA and thus genomes from the line
founders, so software estimating haplotype frequencies
within pooled sequencing samples [75] cannot be applied.
However, this experimental population has a well-
documented population history and extreme genomic
differentiation within the defined candidate sweep regions,
affording us the opportunity to disentangle highly diver-
gent haplotypes based on allele frequency differences ob-
served in the sequencing data. Where both lines are fixed
for different haplotypes, these regions can be identified by
homozygosity and haplotypes can be determined by
adjusting all allele frequencies to the reference haplotype
from one line. In other cases, one line is fixed within a
sweep region, while different haplotypes continue to seg-
regate in the other line. Here, positions are sequentially fil-
tered on an ad hoc basis by allele frequencies differing
from the selected reference haplotype present in the line
fixed for one haplotype. Allele frequencies in all lines are
adjusted to reflect alternate allele frequencies from the ref-
erence haplotype, allowing visualization and inference of
alternative segregating haplotypes (see also Additional file
7). As shown in the results, this approach was useful to es-
timate haplotype-frequencies at candidate genes.
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