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Abstract

Background: Annual hibernation is an adaptation that helps many animals conserve energy during food shortage
in winter. This natural cycle is also accompanied by a remodeling of the intestinal immune system, which is
an aspect of host biology that is both influenced by, and can itself influence, the microbiota. In amphibians,
the bacteria in the intestinal tract show a drop in bacterial counts. The proportion of pathogenic bacteria is
greater in hibernating frogs than that found in nonhibernating frogs. This suggests that some intestinal gut
microbes in amphibians can be maintained and may contribute to the functions in this closed ecosystem
during hibernation. However, these results were derived from culture-based approaches that only covered a
small portion of bacteria in the intestinal tract.

Methods: In this study, we use a more comprehensive analysis, including bacterial appearance and functional
prediction, to reveal the global changes in gut microbiota during artificial hibernation via high-throughput
sequencing technology.

Results: Our results suggest that artificial hibernation in the brown tree frog (Polypedates megacephalus) could
reduce microbial diversity, and artificially hibernating frogs tend to harbor core operational taxonomic units
that are rarely distributed among nonhibernating frogs. In addition, artificial hibernation increased significantly
the relative abundance of the red-leg syndrome-related pathogenic genus Citrobacter. Furthermore, functional
predictions via PICRUSt and Tax4Fun suggested that artificial hibernation has effects on metabolism, disease,
signal transduction, bacterial infection, and primary immunodeficiency.

Conclusions: We infer that artificial hibernation may impose potential effects on primary immunodeficiency
and increase the risk of bacterial infections in the brown tree frog.
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Background
The gut mucosal immune system forms the largest ver-
tebrate immune compartment [1]. It is well established
that the immune function depends partly on the pres-
ence of intestinal microbes. The intestinal microbiota
can develop a natural defense barrier exerting different
protective, structural, and metabolic effects on the host

epithelium [2, 3]. The composition of the microbial
community reflects the coevolution of host and mi-
crobes to achieve a balanced mutually beneficial state.
Intestinal bacteria benefit from a stable environment and
the host gains digestive and metabolic capabilities. It has
been clearly demonstrated that diet has a considerable
effect on the composition of the gut microbiota [4].
There is now mounting evidence that the microbiota is
altered in people with allergies and asthma [5, 6]. Daily
consumption of fermented foods may be important for
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maintaining the necessary amount of Lactobacillus
bacteria and may diminish the prevalence of allergic
disease. In communities in which consumption of fer-
mented foods is high and antibiotics are not used,
causes of allergy and asthma are low. These studies
suggest that changes in diet and associated changes in
the gut microbiota are driving the increasing inci-
dence of inflammatory disease.
Hibernators, such as the Syrian hamster, ground squir-

rel, and brown bear, have been shown to restructure gut
microbiota during hibernation [7–9]. Slow metabolism,
nutrient turnover, and wide variation of temperature can
support a dense system of anaerobic bacteria. For ex-
ample, Akkermansia muciniphila, of the phylum Verruco-
microbia, is increased during hibernation in the Syrian
hamster and ground squirrel. However, in larger animals,
such as free-ranging brown bears, Verrucomicrobia, in-
cluding Akkermansia muciniphila, are decreased during
hibernation. The gut microbiota turnover of hibernators
can further modulate metabolic functions. For example,
the molar proportion of acetate ions rose during hiberna-
tion, which may be due to the activity of mucolytic bac-
teria, such as Akkermansia muciniphila, that convert
mucins to acetate ions [10]. Akkermansia muciniphila has
been studied to associate with the mucus layer and is able
to grow on mucin as its sole carbon and nitrogen source
[10–12]. Other evidence in brown bears shows that Bac-
teroides fragilis is the predominant bacterium in the
microbiota from the hibernating bear, whereas both
Streptococcus and TM7 are reduced during hibernation.
Furthermore, two studies of calorie-restricted mice re-
ported an increase in Bacteroides fragilis [13] but decrease
in Streptococcaceae and TM7 [14]. Together, these data
indicate that many of the changes in the brown bear
microbiota are associated with calorie restriction. This
suggests that the changes in gut microbiota contribute to
host metabolism in the hibernators. On the other hand,
colonization of the intestinal tract with diverse microbes
has a profound influence on the development and func-
tion of both innate and adaptive branches of the immune
system. For instance, in ground squirrels, numbers of
intraepithelial lymphocytes and lamina propria leukocytes
(LPL) were greater in hibernators compared with their
level in summer. Compared with the summer levels, the
percentage of B cells was higher and the percentage of T
cells was lower in the hibernator LPL. Mucosal IgA levels
were greater in entrance and torpid hibernators compared
with summer levels. The results suggest that hibernation
in ground squirrels is accompanied by a remodeling of the
intestinal immune system, which is an aspect of host biol-
ogy that is both influenced by, and can itself influence, the
microbiota [15].
In amphibians, studies have shown that artificial hiber-

nation of northern leopard frogs (Rana pipiens) and

bullfrogs also led to a drop in bacterial counts and a
change in the composition of gut microbiota [16, 17].
Hibernating northern leopard frogs [18] and chilled
southern bullfrogs (Rana catesbiana) [17] had fewer
types of facultative bacteria than that in control warm
frogs. More importantly, potentially pathogenic faculta-
tive bacteria in the intestine contribute to septicemia
during hibernation. For example, facultative (preferen-
tially aerobic but facultatively anaerobic) bacteria from
the intestines of frogs have been investigated as a source
of septicemia, often associated with chilling and hiberna-
tion [17, 19], which occasionally kills large numbers of
frogs in the laboratory and in the wild [19, 20]. Carr et
al. [17] and Gibbs et al. [19] also found that hibernation
can alter the relative concentrations and proportions of
facultative versus anaerobic bacteria, leading to disease.
Furthermore, indigenous anaerobic bacteria have been
shown to control the colonization of facultative bacteria
in the intestine of birds and mammals [21, 22], suggest-
ing that species composition is positively correlated with
ecosystem functioning. Therefore, characterizing micro-
bial composition during hibernation appears to be cru-
cial in ecological functions in amphibian guts.
Amplicon-based sequencing of marker genes is widely

used for large-scale studies that involve many different
sampling sites or time series. The conventional 16S
rRNA gene-based analysis is a powerful tool for asses-
sing microbial composition, but does not provide insight
into the metabolic potential in the microbial communi-
ties. Therefore, the prediction of the functional capabil-
ities of a microbial community based on marker gene
data would be highly beneficial. In this study, we use
high-throughput sequencing technology to provide a
comprehensive analysis to characterize the shift of gut
microbes before and after artificial hibernation. We first
distinguish the difference of dominant gut microbes be-
tween artificially hibernating frogs (AH frogs) and non-
hibernating frogs (NH frogs). In addition, the relative
abundances of both potentially pathogenic facultative
and anaerobic bacteria were characterized. Furthermore,
we predicted the gene content of a microbial community
from a marker gene survey via PICRUSt (phylogenetic
investigation of communities by reconstruction of unob-
served states) [23] and Tax4Fun [24] to infer a functional
profile. This study demonstrates that the overall shifts in
both gut microbiota and functions are affected by artifi-
cial hibernation in the brown tree frog.

Methods
NH frogs were collected from Wazihwei Nature Reserve
(121.41432° E, 25.16775° N) and private botanic gardens
(120.31423° E, 23.53302° N) in the wild (snout–vent
length (SVL), 2.8–8.3 cm), where the population of brown
tree frogs is widely distributed in Taiwan. Individuals were
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collected in three distinct seasons (Table 1): 12, 18, and
six individuals in fall (October and November, 2013), win-
ter (December 2013 to February 2014), and spring
(March, 2014), respectively.
Artificial hibernation was implemented in the laboratory

as used in previous studies [16, 25, 26]. After capture, we
designed a lab husbandry system in the tank with the size
of 90 × 45 × 60 cm3 and filled each tank with 5 L of water.
Ivies in tanks were used as frogs’ hiding spots and facili-
tated the exchange of oxygen and carbon dioxide. The
frogs were housed in a 23 °C room temperature with an
8:16-h light–dark cycle for at least 3 months before artifi-
cial hibernation. Frogs were fed twice a week. We used
Turkestan cockroach nymphs, as they are feeder insects
and a good source of protein [27]. The total feeding load
is ~3% weight/body weight daily [28]. Fresh dechlorinated
water was replaced every 2 days. After 3 months of accli-
mation, frogs were deprived of food for 1 week and all
fasting frogs were then transferred into an incubator in
constant darkness. The incubator always maintained a
relative humidity of 90% for the AH frogs. The
temperature was decreased by 5 °C every 12 h until reach-
ing 4 °C, and remained at this value for a week.
The SVL and body weight of all individuals (both NH

and AH frogs) were measured (Table 1). Fecal contents
were collected from the large intestine. The anatomical
site of the large intestine of the frog was clearly de-
scribed in [29]. Bacterial DNA was extracted from each
thawed stool sample using the QIAamp® DNA Stool
Mini Kit (Qiagen, GmbH, Hilden, Germany). Before ex-
traction, feces were loaded into a bead tube with 15 min
of vibration to increase the efficiency of DNA extraction
for each sample. The remaining procedures were per-
formed according to the manufacturer’s protocol. Con-
centrations of double stranded DNA in the extracts were
determined by the Quant-iT dsDNA HS assay kit and
the Qubit fluorometer (Invitrogen, Life Technologies,
Carlsbad, CA, USA). All procedures were performed in
a laminar flow cabinet to avoid contamination.
For NH frogs, we used barcoding pyrosequencing to

determine microbial community composition. The pri-
mer set was 515 F/806R, which targets the V4 region of
the 16S ribosomal RNA gene, found to be well suited to
the phylogenetic analysis of pyrosequencing reads [30].

Considering that previous studies described sources of
errors in 454 sequencing runs, the valid reads should
comply with appropriate rules to remove the mismatch
sequences. We followed the MOTHUR [31] pipeline,
which was especially designed for 454 sequencing to per-
form operational taxonomic unit (OTU)-based analyses.
Each pyrosequencing read containing a primer sequence
should be 300–350 bp in length, have no ambiguous
bases, and match the 5′ primer and one of the used bar-
code sequences. These pyrosequencing reads were sim-
plified using the “unique.seqs” command to generate a
unique set of sequences, and then were aligned using
the “align.seqs” command and compared with the Bac-
terial and Archaeal RDP database (RDP version 9). The
aligned sequences were further trimmed and the redun-
dant reads were eliminated using the “unique.seqs.” The
remaining sequences were assigned to OTUs using the
RDP classifier [32]. Only OTUs containing 0.001% of the
total number of sequences were used in the analyses.
The “chimera.slayer” command was used to determine
chimeric sequences.
For AH frogs, we used Illumina pair-end sequencing

for microbial 16S rRNA gene amplicon. The primer set
was 515 F/806R, which was the same as for NH frogs.
All sequences were analyzed via the Quantitative In-
sights Into Microbial Ecology (QIIME) pipeline [33]. Se-
quence reads that had ambiguous bases, had a quality
score <25, had an unreadable barcode, more than one
mismatch to primer sequences, did not contain the pri-
mer sequences, or <200 bp in length were removed. The
remaining sequences were clustered by UCLUST [34] at
a 97% similarity cutoff. The representative sequences
were picked and aligned using using PyNAST [35] and
taxonomy was assigned using UCLUST.
Bray–Curtis dissimilarity distances were calculated

among individual samples to determine the differences
in bacterial community composition across individuals
[36]. Beta-diversity patterns were visualized using the
NMDS (nonmetric multidimensional scaling) ordination
approach [37]. A two-way nested ANOSIM (analysis of
similarity) was also used to test for significant differences
in bacterial composition.
To examine the relationship of gut microbiota between

NH and AH frogs, Venn diagrams were created using the
R package to visualize the OTUs that were shared between
NH and AH frogs. Student’s t-test was used to compare
the abundance changes between NH and AH frogs. Only
differences for which p-value < 0.05 are reported.
To reveal the potential pathogenicity, several bac-

teria were selected for comparison. For example, fac-
ultative and anaerobic bacteria that were found in
amphibians as shown in Banas et al. [25], in brief,
anaerobic genera in the frog included Bacteroides, Clos-
tridium, Eubacterium, Fusobacterium, Peptococcus,

Table 1 Summary of sample information for AH frogs and NH
frogs

NH frogs AH frogs

Fall Winter Spring 4 °C

Sample size (N) 12 18 6 3

Snout–vent length (cm) 5.7 ± 0.6 5.6 ± 1.3 6.5 ± 1.0 5.4 ± 0.4

Body mass (g) 12.2 ± 4.4 11.8 ± 6.3 18.7 ± 13.1 8.1 ± 2.2

Abbreviations: AH frogsartificially hibernating frogs, NH frogs nonhibernating
frogs. Values are means ± SE
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Peptostreptococcus, Propionibacterium, and Ruminococcus,
and facultative genera included Azotobacter, Bacillus,
Corynebacterium, Enterococcus, Flavobacterium, Lacto-
bacillus, Pseudomonas, and Streptococcus. There are
several pathogenic bacteria associated with red-leg
syndrome (RLS)–one of the main infectious diseases
that affects amphibians and causes high mortality
[38]. The etiological agents involve Aeromonas hydro-
phila, Citrobacter freundii, Chryseobacterium indol-
genes, Edwardsiella tarda, Proteus mirabilis, Proteus
vulgaris, Pseudomonas aeruginosa, Staphylococcus epi-
dermidis, and Streptococcus iniae [39–43].
We implemented both PICRUSt and Tax4Fun to pre-

dict the functional shifts in AH frogs. The PICRUSt ap-
proach was proposed to predict KEGG Ortholog (KO)
functional profiles of microbial communities using 16S
rRNA gene sequences [23]. This algorithm uses a phylo-
genetic tree of 16S rRNA gene sequences to link OTUs
with gene content. Thus, PICRUSt predictions depend
on the topology of the tree and the distance to the next
organism, where a nearest neighbor within the tree top-
ology always exists, even if distances are large. There-
fore, we also apply Tax4Fun, which links 16S rRNA gene
sequences with the functional annotation of sequenced
prokaryotic genomes, which is realized with a nearest-
neighbor identification based on a minimum 16S rRNA
sequence similarity [24]. Wilcoxon’s test was used to

compare the relative abundance changes between NH
and AH frogs. Only differences for which p-value < 0.05
are reported.

Results
Distinct alpha diversity between AH and NH frogs
Our sequencing reads resulted in an average of 21,289 ±
6300 high-quality sequences per sample for the colonic
samples in NH and AH frogs. The observed OTUs of all
AH frogs are fewer than those in NH frogs (Fig. 1). Fast-
ing and low temperature (4 °C) are two major factors
that alter microbial diversity. Here, we utilized the
phylogenetic index to reveal the change in phylogenetic
diversity between AH and NH frogs. Overall, the average
richness was greatest in the fall, and lowest in the artifi-
cial hibernation (Table 2). All phylogenetic indices
(Shannon index, Simpson index, and Inversed Simpson
index) showed that the fall represented the highest mi-
crobial diversity while the artificial hibernation was the
lowest (t-test, p-value < 0.05).

Compositional changes between AH and NH frogs
Microbial composition was similar among NH frogs, in-
cluding fall, winter, and spring, except for the first indi-
vidual in the fall showing that chloroplast dominated the
fecal sample while others were dominated by Firmicutes
(Fig. 2). There were no significant differences between

Fig. 1 Alpha-diversity rarefaction plot of fecal microbiotas between AH frogs and NH frogs (fall, winter, and spring). The X- and Y-axes represent
sample size and number of observed OTUs, respectively. Red, blue, green, and black colors refer to fall, winter, spring, and AH (4 °C), respectively.
AH frogs differ significantly from NH frogs (p-value < 0.05)
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fall, winter, and spring in relative abundance (on aver-
age) within NH frogs (t-test, p-value > 0.05). However,
Firmicutes were significantly more abundant in NH
frogs than in AH frogs (t-test, p-value < 0.05; Table 3).
This suggests that artificial hibernation may alter some
specific bacteria.
To reveal compositional change between AH and NH

frogs, we conducted NMDS to compare microbial com-
position in the AH frogs with that in fall, winter, and
spring frogs (Fig. 3). There is no difference in microbial
composition between the fall, winter, and spring. How-
ever, we found that the AH frogs clustered separately
with NH frogs (ANOSIM, p < 0.05). In addition, we
compared the compositional similarity between AH and
NH frogs by calculating the pairwise distance among
OTU abundance (Fig. 4). Most of the NH frogs clustered

together. This suggests that AH frogs contain distinct
microbial composition compared with NH frogs.

Core OTUs between AH and NH frogs
To reveal whether AH frogs harbored a specific micro-
bial composition to adapt to artificial hibernation, we
compared core gut microbiota between AH and NH
frogs. Core gut microbiota were defined as OTUs that
were present on >80% of individual hosts in a popula-
tion. Overall, a total of 139, 114, 141, and 48 core genera
were observed in fall, winter, spring, and AH frogs, re-
spectively (Fig. 5). Twelve core genera were shared
among fall, winter, spring, and AH frogs. AH frogs har-
bored the highest ratio of core genera that were not
present as core genera in NH frogs (63%, 30 of 48 core
genera). This suggests that AH frogs may harbor certain

Table 2 Phylogenetic diversity indices of AH frogs and NH frogs

Diversity indices NH frogs AH frogs

Fall Winter Spring 4 °C

Richness 375 ± 165a 350 ± 163a 282 ± 66a 91 ± 15b

Shannon index 3.50 ± 0.68a 3.45 ± 0.53a 3.46 ± 0.42a 1.88 ± 0.51b

Simpson index 0.90 ± 0.11 0.91 ± 0.05 0.91 ± 0.05 0.76 ± 0.11

Inverse Simpson index 16.58 ± 12.63a 14.86 ± 7.75a 15.26 ± 7.51a 4.80 ± 1.86b

Abbreviations: AH frogs artificially hibernating frogs, NH frogs nonhibernating frogs. Values are means ± SD. Within each row, values not sharing superscripts (a and
b) differ significantly (p-value < 0.05, Student’s t-test)

Fig. 2 Taxonomic composition between AH and NH frogs. Bacterial taxonomic representation in fecal microbiota in AH frogs and NH
frogs (fall, winter, and spring) at the phylum level
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microbes to regulate metabolic functions and facilitate
adaptation of artificial hibernation.

Changes in the amount of facultative, anaerobic bacteria,
and RLS-related pathogens
Comparing eight facultative bacteria and ten anaerobic
bacteria (listed in Methods) shared by AH and NH
frogs, none of them showed significant differences in
relative abundance. Considering the RLS-related patho-
gens of bullfrogs that were reported in previous studies,
we found that the genus Citrobacter was significantly

higher in relative abundance in AH frogs than NH
frogs, while genus Aeromonas was significantly lower in
AH frogs than NH frogs (t-test, p-value < 0.05; Table 3).
Other RLS-related pathogens, such as Staphylococcus
and Streptococcus, were not characterized in AH frogs
and rarely distributed in NH frogs.

AH frogs are exposed to a higher ratio of pathogens than
NH by functional prediction via PICRUSt and Tax4Fun
We used PICRUSt to impute the metagenome from our
16S rRNA sequencing results. PICRUSt assignment of

Table 3 Relative abundance of dominant phyla in AH frogs and NH frogs

OTUs NH frogs AH frogs

Fall Winter Spring 4 °C

Bacteroidetes 17.07 ± 10.66 19.07 ± 12.45 11.82 ± 6.25 17.63 ± 14.49

Firmicutes 45.24 ± 13.82a 42.94 ± 13.56a 42.92 ± 10.56a 13.26 ± 13.84b

Fusobacteria 2.27 ± 5.22 4.67 ± 9.46 3.62 ± 3.76 0.23 ± 0.31

Proteobacteria 12.02 ± 11.59 14.98 ± 8.99 13.77 ± 6.87 57.82 ± 38.77

Aeromonas 0.09 ± 0.20 0.13 ± 0.24a 0.01 ± 0.02 0.001 ± 0.002b

Citrobacter 5.26 ± 8.58 3.11 ± 5.32a 3.55 ± 4.99 7.03 ± 0.57b

Pseudomonas 0.02 ± 0.07 0.01 ± 0.02 0.02 ± 0.02 13.48 ± 23.14

Verrucomicrobia 4.37 ± 7.23 7.65 ± 12.07 8.79 ± 15.45 9.50 ± 11.75

Abbreviations: AH frogs artificially hibernating frogs, NH frogs nonhibernating frogs. Values are means ± SD. Within each row, values not sharing superscripts (a and
b) differ significantly (p-value < 0.05, Student’s t-test). The RLS-related genera listed in Methods differ in AH frogs compared with NH frogs are underlined

Fig. 3 Compositional variation in microbial communities between AH and NH frogs. NMDS ordination between microbial communities of AH
frogs and NH frogs (fall, winter, and spring). Each point represents an individual frog sample. Red, blue, green, and black colors refer to fall, winter,
spring, and AH, respectively
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predicted metagenome content to Level 2 KEGG ortho-
logs (KOs) suggested no significant functional differ-
ences within NH frogs (i.e., fall, winter, and spring).
However, we found most predicted functional categories
in the KEGG pathways are significantly change in AH
frogs, compared with NH frogs (Level 2 KOs, Wilcoxon’s
test, p-value < 0.05; Table 4), including amino acid
metabolism and lipid metabolism. We also fount that
KOs of infectious disease and immune system disease
significantly increase in AH frogs, while environmental
adaptation and signal transduction significantly decrease
in AH frogs compared with NH frogs. In addition, KOs of
Vibrio cholera infection, Vibrio cholera pathogenic cycle,
pathogenic Escherichia coli infection, and primary im-
munodeficiency significantly increase in AH frogs
compared with NH frogs via Tax4Fun (Wilcoxon’s
test, p-value < 0.05; see Additional file 1). These results
imply that artificial hibernation not only changes metabol-
ism, environmental adaption, and environmental informa-
tion processing, but also might be important to immune
system and the activity of pathogenic invasion.

Discussion
Some intestinal microbiota and their host develop a
strong relationship. Studies have shown that artificial
hibernation alters gut microbiota and is able to cause
pathogen-induced disease, such as septicemia, due to
the rise of pathogenic bacteria triggered by chilling to
close to 4 °C [17, 19]. The effects on gut microbiota
of the slower metabolism and nutrient turnover that are
triggered by hibernation still lack a comprehensive ana-
lysis in amphibians. To explain compositional and func-
tional shifts that were triggered by hibernation, we
revealed the change of gut microbiota between AH and
NH frogs by metagenomic analysis. We calculated several
diversity indices, NMDS, heat map to infer alpha, beta di-
versity, and the change of gut microbiota between AH and
NH frogs. The number of species and evenness within the
community are usually thought to affect the biodiversity–
ecosystem functioning relationship, as well as functional
traits and their interaction [44–48]. Therefore, we further
investigated the changes in microbial composition and
predicted their function by PICRUSt and Tax4Fun.

Fig. 4 Heat map. A color-scale heat map demonstrates the relative abundance of bacterial phylotypes on the phylum level. Red, blue, green, and
black colors on the left refer to fall, winter, spring, and AH, respectively
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Fig. 5 Core OTUs of AH frogs and NH frogs (fall, winter, and spring). Venn diagram summarizing the overlap of core OTUs of brown tree frog
fecal microbiota in fall, winter, spring, and AH

Table 4 PICRUSt showing predicted relative abundance of KEGG ortholog groups (Level 2 KOs)

KEGG pathways NH frogs AH frogs

Fall Winter Spring 4 °C

Amino acid metabolism 9.169 ± 0.301a 9.222 ± 0.337a 9.084 ± 0.215a 10.855 ± 1.291b

Cell motility 4.297 ± 0.552a 4.338 ± 0.508a 4.674 ± 0.238a 3.258 ± 0.3b

Cellular processes and signaling 3.572 ± 0.107 3.64 ± 0.135 3.702 ± 0.123a 3.488 ± 0.102b

Circulatory system 0.005 ± 0.004 0.004 ± 0.003a 0.004 ± 0.005 0.025 ± 0.026b

Endocrine system 0.265 ± 0.018a 0.273 ± 0.026a 0.258 ± 0.02a 0.463 ± 0.196b

Environmental adaptation 0.165 ± 0.013a 0.169 ± 0.013a 0.172 ± 0.012a 0.149 ± 0.004b

Enzyme families 2.224 ± 0.059a 2.216 ± 0.052 2.155 ± 0.128 1.946 ± 0.391b

Folding, sorting and degradation 2.092 ± 0.107a 2.162 ± 0.173a 2.095 ± 0.142a 2.384 ± 0.065b

Genetic information processing 2.404 ± 0.081 2.472 ± 0.118 2.507 ± 0.121a 2.321 ± 0.072b

Immune system diseases 0.03 ± 0.006a,c 0.029 ± 0.006a,c 0.024 ± 0.005b 0.036 ± 0.007c

Infectious diseases 0.312 ± 0.013a 0.318 ± 0.016a 0.319 ± 0.031 0.394 ± 0.055b

Lipid metabolism 2.759 ± 0.107a 2.733 ± 0.128a 2.71 ± 0.112a 3.96 ± 1.373b

Membrane transport 14.685 ± 1.045a 14.072 ± 1.519a 14.645 ± 1.177a 9.828 ± 2.509b

Metabolism 2.492 ± 0.057a 2.505 ± 0.068a 2.492 ± 0.065a 2.616 ± 0.102b

Metabolism of other amino acids 1.479 ± 0.08a 1.463 ± 0.077a 1.442 ± 0.107a 2.042 ± 0.516b

Metabolism of terpenoids and polyketides 1.353 ± 0.115a 1.384 ± 0.142a 1.351 ± 0.134a 2.282 ± 0.884b

Nervous system 0.093 ± 0.003a 0.092 ± 0.003a 0.091 ± 0.003a 0.104 ± 0.008b

Poorly characterized 4.872 ± 0.083a 4.909 ± 0.15 4.912 ± 0.135 5.216 ± 0.403b

Signal transduction 2.15 ± 0.171a 2.194 ± 0.18a,b,d 2.302 ± 0.126b 1.926 ± 0.111c

Transcription 2.875 ± 0.159a 2.765 ± 0.248a 2.834 ± 0.262a 2.193 ± 0.342b

Xenobiotics biodegradation and metabolism 1.75 ± 0.152a 1.709 ± 0.177a 1.789 ± 0.306a 3.463 ± 2.176b

Abbreviations: AH frogs artificially hibernating frogs, NH frogs, nonhibernating frogs. Values are means ± SD. Within each row, values not sharing superscripts (a, b,
c, and d) differ significantly (p-value < 0.05, Wilcoxon’s test)
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Ecosystem functioning is often positively correlated with
microbial composition and species richness [49–53]. Our
results demonstrated that all diversity indices in AH frogs
were significantly smaller than in NH frogs, suggesting
that artificial hibernation in frogs may reduce microbial
ecosystem functioning in the gastrointestinal tract ac-
companied by slower metabolism. There were no sig-
nificant changes in microbial composition within NH
frogs (i.e., fall, winter, and spring). However, both
NMDS and heat map showed that microbial composi-
tions in AH frogs were significantly different from
those in NH frogs, reflecting that artificial hibernation
could alter gut microbiota. This reconstruction of mi-
crobial community in the frog gut might potentially
modify species interactions for ecosystem functioning.
It is also worth noting that the distribution of domin-

ant bacteria found in frogs is different from that found
in fish. The most dominant phyla in the brown tree frog
were Bacteroidetes, Firmicutes, and Proteobacteria,
whereas the relative abundance of Bacteroidetes, Firmi-
cutes, and Proteobacteria in the leopard frog represented
22.8 ± 8.96, 66.05 ± 8.90, and 10.43 ± 3.39%, respectively
[30], suggesting that the major bacterial phyla were con-
sistent between brown tree frog and leopard frog. On
the other hand, several studies showed that the relative
abundance of Bacteroidetes is rarely represented in carp
and Nile tilapia [54–56]. Another comprehensive ana-
lysis that collected 25 fish species in the GenBank library
also showed consistent results that fish harbored Pro-
teobacteria (63%) in high relative abundance, whereas
Bacteroidetes remained relatively low on average (6%)
[57]. Therefore, our data indicated that amphibians
might host different dominant microbes compared
with that in fish.
We further compared the unique and shared OTUs

of gut microbiota between frogs and a mammal hiber-
nator, the ground squirrel. We first compared the AH
brown tree frogs with leopard frogs, which character-
ized microbial composition by culture counts and isola-
tion [16]. We found a consistent result in these two
frogs, for example, genus Pseudomonas formed a larger
proportion of gut microbiota in AH frogs than NH
frogs both in brown tree frogs and leopard frogs. How-
ever, in the case of ground squirrels, Pseudomonas
showed no significant difference in relative abundance
between hibernating and nonhibernating states. In
addition, the phyla Bacteroidetes and Verrucomicrobia
significantly increased in their relative abundance in
hibernating ground squirrels compared with nonhiber-
nating ground squirrels, where these two phyla showed
no significant differences between AH and NH frogs
[8]. Our results suggest that gut microbiota tend to
show a unique response to hibernation between am-
phibian and mammal.

According to our function analysis using 16S rRNA
profile, we found that artificial hibernation may cause
frog samples to be exposed to potential pathogens, lead-
ing to disease. For example, RLS, an infectious disease
caused by septicemia, was the main cause of frog mor-
tality [38–40]. Pathogens that increase the risk of RLS
included Pseudomonas aeruginosa and Staphylococcus
epidermidis [39, 40, 58]. Although, the RLS-related path-
ogens in brown tree frogs are still uncharacterized. Here,
we found that the relative abundance of a few RLS-
related pathogenic genera that were reported in bullfrogs
[43, 59, 60] represented higher in AH frogs than NH
frogs. For example, genus Citrobacter showed signifi-
cantly higher in AH frogs than NH frogs. The relative
abundance of genus Pseudomonas represented higher in
AH frogs than in NH frogs. Other RLS-related patho-
gens described in bullfrogs, such as Staphylococcus and
Streptococcus, rarely contributed in brown tree frogs.
We also found that microbes in AH frogs were domi-
nated with the pathways corresponding to the genes for
bacterial invasion. These results imply that the pathways
corresponding to the genes for bacterial invasion might
show higher adaptation in artificial hibernation. There-
fore, the result might explain that some of the patho-
genic populations increase in their relative abundance.
This might lead to a higher mortality rate during chilling
and hibernation reported in previous studies [19, 20]
and cause the pathogenic invasion.
An interesting case is Laribacter hongkongensis, a fac-

ultative anaerobic bacterium, was found to be associ-
ated with community-acquired gastroenteritis [61–63].
L. hongkongensis was a discovered bacterial genus and
species first isolated from the blood and empyema pus
of a man with alcoholic cirrhosis and bacteremic empy-
ema thoracis in Hong Kong [64]. In the previous stud-
ies, L. hongkongensis was found to be highly distributed
in natural freshwater environments and freshwater fish,
such as grass carp (60% recovery rate), bighead carp
(53% recovery rate), mud carp, and large-mouth bass
[65, 66]. In 2009, a population of L. hongkongensis was
also highly isolated (80% recovery rate) in amphibians
by pulsed-field gel electrophoresis [67]. This evidence
implies that the bacterium is well adapted to different
freshwater environments and freshwater animals. How-
ever, L. hongkongensis was present but rare in brown
tree frogs, suggesting that the brown tree frog might be
able to resist this pathogen.
Hibernation is associated with a dramatic remodeling of

many intestinal functions, such as energy and intestinal
immune system, in both small and large hibernators. For
example, an enrichment of Bacteroidetes and lower rela-
tive abundance of Firmicutes has previously been ob-
served in the microbiota of hibernators [7–9, 68, 69]. The
increase in Bacteroidetes may be explained by their
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capacity to switch their metabolism toward degradation of
host glycans in the absence of dietary polysaccharides [70]
or their capacity to metabolize protein and fat [71] puta-
tively provided by the intestinal epithelium. In our results,
although Bacteroidetes did not significantly increase in
AH frogs compared with NH frogs, KEGG pathways rela-
tive metabolism increase in AH frogs. This suggests that
microbiota may contribute to host energy metabolism in
the hibernating brown tree frog, and these results can only
be observed by functional analysis.
In addition, recent studies showed that seasonal

reorganization of the microbiota is a major driver of the
immune alterations because the immune system is the
primary sensor of gut microbes and their metabolites
[72, 73]. Mucins are a family of polydisperse molecules
designed to carry out multiple tasks at the mucosal sur-
face of the gastrointestinal tract. The mucosal surface
throughout the gastrointestinal tract must resist the ag-
gressive elements from the external environment present
in the diet. The mucus defensive barrier forms the first
line of defense to the external environment and contains
both innate and adaptive immune elements [74, 75].
Therefore, the defective mucus barrier with increased
permeability result in inflammation [74, 76] and may in-
crease the risk of pathological infection. Our results
show that AH frogs did not significantly increase the
relative abundance of the mucin-degrader, Akkermansia.
However, the functional predictions via PICRUSt and
Tax4Fun showed that AH frogs not only significantly
increase KEGG pathways in infectious disease, but also
significantly decrease signal transduction. Immune
changes are often associated with altered host–microbe
signaling [72, 77–79], and there is significant evidence
showing that certain cytokines are involved in not only
the initiation but also the persistence of pathogenic
pain [80]. Therefore, by applying functional analysis
using 16S rRNA profiles, we suggest that hibernation
may impose potential effects on primary immunodefi-
ciency and increase the risk of bacterial infections in
the brown tree frog.

Conclusions
Artificial hibernation in the brown tree frog reduced mi-
crobial diversity and levels of Firmicutes in the intestinal
tracts. AH frogs tend to harbor core OTUs that are
rarely distributed among NH frogs. Artificial hibernation
also increased the relative abundance of RLS-related
pathogens, such as Citrobacter and Pseudomonas. Func-
tional predictions via PICRUSt and Tax4Fun infer that
AH frogs change pathways corresponding to the genes
for metabolism, organismal system, information process-
ing, and disease. We infer that artificial hibernation may
impose potential effects on bacterial invasion and pri-
mary immunodeficiency.
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