Grandke et al. BMIC Genomics (2016) 17:672
DOI 10.1186/512864-016-2926-5

BMC Genomics

@ CrossMark

Advantages of continuous genotype
values over genotype classes for GWAS in
higher polyploids: a comparative study in
hexaploid chrysanthemum

Fabian Grandke'?" @, Priyanka Singh'3, Henri C. M. Heuven'#, Jorn R. de Haan' and Dirk Metzler?

Abstract

Background: Association studies are an essential part of modern plant breeding, but are limited for polyploid crops.
The increased number of possible genotype classes complicates the differentiation between them. Available methods
are limited with respect to the ploidy level or data producing technologies. While genotype classification is an
established noise reduction step in diploids, it gains complexity with increasing ploidy levels. Eventually, the errors
produced by misclassifications exceed the benefits of genotype classes. Alternatively, continuous genotype values
can be used for association analysis in higher polyploids. We associated continuous genotypes to three different traits
and compared the results to the output of the genotype caller SuperMASSA. Linear, Bayesian and partial least squares
regression were applied, to determine if the use of continuous genotypes is limited to a specific method. A disease, a
flowering and a growth trait with h? of 0.51,0.78 and 0.91 were associated with a hexaploid chrysanthemum
genotypes. The data set consisted of 55,825 probes and 228 samples.

Results: We were able to detect associating probes using continuous genotypes for multiple traits, using different
regression methods. The identified probe sets were overlapping, but not identical between the methods. Baysian
regression was the most restrictive method, resulting in ten probes for one trait and none for the others. Linear and
partial least squares regression led to numerous associating probes. Association based on genotype classes resulted in
similar values, but missed several significant probes. A simulation study was used to successfully validate the number
of associating markers.

Conclusions: Association of various phenotypic traits with continuous genotypes is successful with both uni- and
multivariate regression methods. Genotype calling does not improve the association and shows no advantages in this
study. Instead, use of continuous genotypes simplifies the analysis, saves computational time and results more
potential markers.
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Background

Many agriculturally and horticulturally important crops
are polyploid [1, 2]. Polyploids have multiple sets of chro-
mosomes and have arisen by extensive genomic alteration
and genome duplication [3, 4]. Diploidization, the dif-
ferentiation of duplicated loci, converts most polyploids
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back to diploids on the long term [5, 6]. The phenomenon
of polyploidy results in complex genomic architecture in
many flowering plants thus complicates genomics-based
breeding [7]. Research in polyploids is also limited by the
available methods and technologies [8]. Most bioinfor-
matic tools have been developed for diploids and cannot
be applied to higher ploidy levels. Recently, several meth-
ods have been developed to overcome this limitation, but
most of them are restricted to tetraploids [9, 10]. Asso-
ciation studies aim to determine a genetic origin for a
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phenotypic trait [11]. While phenotyping is independent
of the ploidy level, genotyping has been identified as a bot-
tleneck in breeding of polyploid crops [12]. Genotyping
describes the process of determining an organism’s geno-
type [13] and is known to be erroneous [14]. It involves
the extraction of genetic material, molecular biological
processes and the assignment of genotypic classes.

The latter one is also referred to as genotype calling and
is a challenging task for polyploids. While there are many
methods available for diploids [15], only three open access
tools have been developed for polyploids, namely fitTetra,
beadarrayMSV and SuperMASSA [12, 16, 17]. The former
two are restricted to tetraploids and optimized for data
sets originating from Illumina GoldenGate™ and Illumina
BeadArray™, respectively. Subsequently, they underper-
form for data originating from other technologies [16].
SuperMASSA is a web tool that requires upload of indi-
vidual data files for each SNP resulting in a poor per-
formance. Further, the source code is not available and
the algorithm cannot be validated. Density-based spatial
clustering algorithms like OPTICS and DBSCAN [18, 19],
were successfully applied in hexaploid wheat [20]. Pre-
liminary analysis showed that they did not succeed for
our genotypes, because the data points do not segregate
into clusters, which can be distinguished based on density
(Fig. 1).

Generally, determination of genotype classes (genotype
calling) reduces noise and leads to better associations.
In polyploids, this task is not as straightforward and the
advantage of noise reduction is reversed by the high risk
of misclassification, i.e. assignment of wrong genotypes
to samples. Therefore, we skipped genotype calling and
used the continuous genotypic values (compare Eq. 6)
directly. The aim of this study was to use these contin-
uous values to detect probes associating to three traits
in hexaploid chrysanthemum and compare the results
to genotype classes to evaluate the advantage of our
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approach. The traits have been selected to represent dis-
tinctive types (disease resistance, flowering and growth)
and heritabilities (0.51, 0.78 and 0.92). We applied linear
regression (LR), bayz (Bayesian regression) [21, 22] par-
tial least squares regression (PLSR) [23, 24] and compared
the results to avoid methodological bias. We showed that
the assignment of genotype classes would not improve our
findings, but lead to misclassification. In this article we
demonstrate that we are able to use continuous genotype
values to detect associations with three different traits in
hexaploid chrysanthemum.

Results and discussion

We applied LR, bayz and PLSR to identify significant
probes associated with the disease, flower and growth
traits (Additional file 1). Later, we compared sets of signif-
icant probes identified by the above mentioned methods.
Figure 2 gives an overview about total numbers of asso-
ciated probes per method and overlap between them. We
repeated the LR analysis with genotype calls by Super-
MASSA and compared the results. Further, we simulated
datasets with the same properties of our real dataset to
determine the expected number of significant markers.

Disease trait

LR detected ten significant probes (g-value < 0.01) when
we used the continuous values. We called the genotype
classes with SuperMASSA and repeated the LR analysis
leading to 2 significant probes. We compared the results to
see which approach worked better. An example is shown
in Fig. 3(a-c). The axes in A represent the raw values of
the two alleles. Three genotypes (red squares, blue cir-
cles and green triangles) were identified and assigned
to the samples. The three lines represent the expected
angles for each cluster center. The clusters identified by
SuperMASSA (colors) do not match the groups that are
indicated by the shape of the scatter plot. We consider the
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Fig. 1 Example probe. Example of genotype values for a hexaploid probe and 228 samples. The x-axis shows the difference between the signals of
the two alleles. The y-axis shows the average signal strength per sample. The left and right sides show simulated and real data, respectively. a The
simulation demonstrates how the seven genotype classes cluster into groups. b The real data shows the full segregation over the whole spectrum,

but no clustering into seven genotype classes
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Fig. 2 Result comparison. Venn diagrams of significant probes for the disease (a), flowering (b) and growth (c) trait. The significance thresholds for
LR(g-value), bayz (BF) and PLS(VIM score) were < 0.01, > 10 and > 2, respectively

genotype calling as failed in that case. The blue cluster
ranges over two groups, while the green cluster consists of
outliers of the blue cluster. LR of the genotype class values
with the phenotypes results in a p-value of 0.222 (Fig. 3c).
Hence, the probe would be classified as non-significant,
although it has not been corrected for multiple testing.
The p- and g-values of the LR of the continuous geno-
types for the same probe were 9.97 x 10~ and 0.0078,
respectively (Fig. 3b).

Additional file 2 shows a comparison of the signifi-
cance values by SuperMASSA and the continuous values.
Taken together, genotype calling distorted genotypic
INFORMATION for some markers and the prevented
their correctassociation. The desired noise reduction,
which improves associations, could not be achieved.
PLSR detected 83 probes with variance importance (VIM)
scores > 2. Three of them overlap with the LR results.
bayz did not find any significant probes with a Bayes factor
(BF) threshold over 10. Even with a less-strict threshold of
5 there were no findings (compare Additional file 3).

Flowering trait

LR detected 439 significant probes for the flowering trait
with the continuous values. SuperMASSA genotype calls
led to 332 significant probes (Additional file 4). Again,
the continuous genotypes generally lead to lower g-values
than the genotype calls (compare Additional file 2). We
simulated the experiment with varying numbers of signif-
icant probes (2-10) 100 times each. That way, we could
observe how many significant probes we would detect
if the true genotypes are known. The simulation results
are shown in Additional file 5 and show that we expect
around 100-2000 significant probes. Hence, our associa-
tion results are in the correct magnitude. For our dataset
continuous genotype values are advantageous over geno-
type classes because we obtain more significant probes
and are less likely to miss trait related probes. However,
our method is not too insensitive and does not result in
thousands of false positive markers. In fact, the simulation

study detected even more false positives. It reduces the
number of potential candidate probes from 55,825 to 439.

An example probe for the flowering trait is shown in
Fig. 3d-f. SuperMASSA identified three different geno-
type classes. Continuous genotype values indicate four
genotype classes, roughly centered at 0.75, 1.5, 2.2 and
3.5 (Fig. 3e). In contrast, the genotype classes by Super-
MASSA combine the first two clusters (Fig. 3d). The
blue one contains samples of the first and third cluster,
which leads to its spread over the whole DEBV range
(Fig. 3f). This leads to a lower p-value, but the probe is still
highly significant. Nevertheless, in other cases this differ-
ence might determine whether the null hypothesis can be
rejected or not.

Figure 4 shows the detailed distribution of both probes
and contigs for the 439 probes. 206 probes were dupli-
cates, i.e. one codes for the forward and one for the reverse
strand of 103 SNPs. The significance of both probes adds
to the probability of the SNPs association. Accordingly,
the 233 remaining probes code for unique SNPs. There are
multiple scenarios when only one probe is selected. First,
there is an additional SNP within the primer sequence of
the failing probe and the hybridization is disturbed. Sec-
ondly, the other probe had a similar signal, but was above
the significance threshold and filtered out. Thirdly,the
SNP is not associated to the trait and the probe was
selected erroneously. Lastly, the other probe has been fil-
tered out in a preprocessing step, based on the segregation
range of the 0 values.

The probes were selected so that not more than three
SNPs (six probes) lay on one contig. Thus, it is unlikely to
detect two or more significant SNPs from the same contig
by chance. The fact that we found up to three SNPs from
the same contig is a good indicator for real association. We
detected 5 probes from one contig, coding for three differ-
ent SNPs. The white area in the second bar in Fig. 4 shows
28 single probes, which code for different markers, but
are located on the same contig. Accordingly, the missing
second probe is not required to proof association.
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Fig. 3 Comparison of genotype calls and continuous genotypes. Comparison of continuous values and genotype calls for three selected probes.
a-¢, d-f and g-i are the disease, flowering and growth trait, respectively. a, d and g were generated by SuperMASSA, based on the signal intensity
values of the two alleles. The shapes and colors represent genotype clusters. The expected cluster centers are indicated by solid lines. b, @ and h
show the correlation of the raw genotype values with the corresponding EBVs. The solid lines represent the LR. ¢, f and i show the correlation of the
genotype classes with the EBVs. The solid lines represent the LR

The PLSR and bayz associations detected 123 and 4 sig-
nificant probes, respectively. The four probes, detected
by bayz overlap with the LR and PLSR results. In
addition there is an overlap of 89 probes between
PLSR and LR. However, the associating probes have
low R? values and explain only parts of the pheno-
typic variance. Table 1 shows the four probes, which
have been identified by all three methods. The scores
do not correlate because the methods base on differ-
ent approaches. The R? values are obtained from the LR
association.

Growth trait

LR did not result in any significant probes for the growth
trait. Growth is known to be a polygenic trait [25]. Hence,
we did not expect single probes to show strong asso-
ciation. The association with the SuperMASSA geno-
type calls did not output any significant probes, either
(Additional file 6). An example probe is shown in Fig. 3g.
All but five samples were assigned the same genotype
class. We expect monomorphic probes, but in Fig. 3h
we see that the genotype values span a large portion of
the negative 6 range. Thus, we expect multiple genotype
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Fig. 4 Overview of contigs and probes for the flowering trait. Probe and contig distribution of the significant markers of the flowering trait. The five
bars represent the number of markers that lay in the same contig. The colors distinguish between markers where both or only one of the probes
were significant and are more reliable. Multiple markers from the same contig indicate its association to the trait

classes within that cloud of data points. However, they
could neither be determined manually nor computation-
ally. bayz did not detect any significant probes, either.
In contrast, the PLSR association detected 62 significant
probes. It includes low effect markers as well and is not
limited to single loci. For polygenic traits PLSR is therefore
advantageous.

General

We could have applied sparse partial least squares (SPLS)
regression to deal with very high-dimensional data. The
expected number of associating probes would be even
higher than. We decided against it because the num-
ber of false positives and low impact probes (based on
explained variance from the LR analysis) would have
increased significantly. PLSR is less restrictive in the
growing and disease trait but not in the flowering
trait.

EBVs are established metrics in breeding, but have been
criticized for genome-wide association studies (GWAS)
because their naive usage reduces power, increases the
false positive rate and misestimates effect sized of quan-
titative trait loci (QTL) [26]. Hence, we used dere-
gressed EBVs to account for fixed effects and repeated
measurements, as described by Garrick et al. [27].

Table 1 Overlapping significant markers between all three
methods for the flowering trait

Marker R? g-value BF VIM
AX-89300609 031 172 x 1071 11.03 3.23
AX-89215144 0.26 890 x 10713 15.49 2.90
AX-89213862 0.18 174 x 1078 24.82 412
AX-89256548 0.09 516 x 1076 1227 345

SuperMASSA misclassifies genotypes in some cases
because it assumes clusters of equal distance at fixed posi-
tions. Instead, the data does not necessarily segregate
into clusters (Fig. 3g). If clusters can be identified, they
are not always at fixed positions, as assumed by Super-
MASSA (Fig. 3d). Further, it does not account for outliers
and assigns genotype classes to every sample. This results
in clusters of only one sample in some cases and does
not represent the genotype. Taken together, SuperMASSA
does not cluster the data points properly for all probes. It
seems to be optimized for data produced with two tech-
nologies and therefore performs less well on other data
sets. The same situation was described by Voorips et al.
[16], when they compared fitTetra and beadarrayMSV.
Thus, genotype calling has no advantage for polyploid
data generated with the Affymetrix Axiom™ technology,
as long as no method works properly. This underpins
our preliminary analyis, which showed that the resolution
of the signal intensities is not large enough to distigu-
ish between the increased number of genotype classes
expected in hexaploids (Fig. 1). To this end, associa-
tion of the continuous genotypes is currently the best
method.

Genotyping by sequencing (GBS) results in similar
datasets, where the continuous genotypes are replaced by
read counts. In general, our approach can be applied to
this kind of data, but it is limited to bi-allelic SNPs and
requires an extension to account for multi-allelic SNPs.
Assuming an additive genetic effect [28] and a multi-allelic
SNP, 0 needs to be upgraded to 6;:

4
6; = log, (G;) — Z log,(G)) (1)
j=1j#i
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where G is the set of alleles and G; is the read count of
allele i. Alternatives to the log-transformations might be
more effective and need to be investigated [17].

The higher the ploidy level, the smaller is the advan-
tage of genotype classes over the continuous values. With
increasing numbers of genotype classes, the effect of noise
reduction declines. For instance, in a diploid we expect
the clusters AA, AB and BB at around 2, 0 and —2,
respectively. A value of 1.2 would be assigned to cluster
AA, so we correct for a large proportion of the signal.
For any ploidy level n we expect up to 2n + 1 clusters
on a similar range, because the overall signal strength is
limited by the used technology (e.g. amount of genetic
material, GBS read depth). Consequently the distances
between clusters decrease and the correction accounts
for smaller proportions of the signal. In addition, the
risk of misclassifications increases, because there is less
tolerance for variation in the signal intensity or clus-
ters overlap. Further, the distribution of genotype values
approximates a continuous distribution with increasing
ploidy levels. Figure 1 shows an example of a simu-
lated hexaploid marker and one from the real data set.
We were not able to identify the genotype classes for
all samples in that case, because the clusters are indis-
tinguishable. Nevertheless, the data points spread over
the whole range of 6 and provide genotypic information.
From a biological perspective, continuous genotypes are
difficult to interpret, because the number of alleles is dis-
crete and should fall in one of the genotype classes. One
explanation are tri- and tetra-allelic SNPs, where more
than two nucleotides are present at the same position
[29, 30]. If they are measured with bi-allelic technology
(e.g. genotyping arrays), the sum of the two allele counts
does not necessarily add up to the expected number
(ploidy level). Alternatively, we might observe fractiona-
tion, the deletions in sub-genomes of allopolyploids [31].
Both result in data points outside of the expected clus-
ters. For the association we mean-centered the genotype
values.

Skipping genotype calling leads to further challenges
with current linkage mapping and haplotype phasing
methods, because they require genotype classes. Never-
theless, the choice of tools that work for polyploids is
very limited anyways and new solutions need to be devel-
oped. Further, low-coverage sequencing and imputations
of genotypes add more difficulties [32].

Conclusions

We showed that continuous genotype data can be used
successfully in an association study of a polyploid crop and
validated our findings in a simulation study. Application
of different regression tools show that our approach is not
limited to a specific method, but the results vary to a large
extend.
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Genotype calling leads to misclassification and false
association results in some cases, where significant mark-
ers could not be detected. However, the majority of
markers lead to similar results with genotype classes and
continuous values, indicating that genotype calling is not
adversely in general. In this study genotype calling has
no advantage and can be skipped unless better methods
are developed. Instead, use of continuous genotypes sim-
plifies the analysis, saves computational time and results
more potential markers. Nevertheless, the overlapping
clusters of the given data set remain a challenge and the
use of continuous genotypes is a successful solution to that
problem.

Methods

A hexaploid chrysanthemum population consisting of 228
F1 offspring was used for our study. The cultivated plant
material was provided by Ditmmen Orange and all experi-
ments have been performed according to legal guidelines.

Phenotypes

Three different traits have been used, as shown in
Table 2. They represent the three areas that are rele-
vant in a horticultural crop association study: disease,
growth and flowering. Further, they span a wide range
of heritability values. Details about the traits are not
provided, because they are confidential and not impor-
tant for the methodology itself. All traits’ distributions
are bell shaped and can be approximated by a nor-
mal distribution. The replicated measurements have been
transformed into deregressed estimated breeding values
(DEBV).

The estimation of the breeding values (EBVs) was per-
formed using ASReml-R [33]. The EBVs for the indi-
viduals were derived by fitting a mixed linear model
using the REML (residual maximum likelihood) proce-
dure (Additional file 7). The asreml model was fitted
to optimally use the information available for each indi-
vidual, while simultaneously adjusting for environmental
effect i.e. block and plate numbers. The mixed model for
calculation of EBVs can be presented as

yi=o+ Bl + B} +gi+e 2)

Where y; is the observed trait value, « is the population
mean, ,Bil is the fixed block effect, ,Biz is the fixed plate
number effect. g; is the random accession effect, where

Table 2 Overview of traits (DEBV)

Trait h? Mean SD Range Samples
Disease 0.51 0.05 1.2 6.19 228
Flowering 0.78 0.00 33 19.01 228
Growth 0.92 0.21 12.2 63.57 228
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g ~ N(O, ng) and e; is the random error of the observed
trait value, where e ~ N(O, 082). In order to calculate
DEBV s as described by Garrick et al. [27], the predic-
tive error variance (PEV) was calculated from the model
parameters. Here, we have used variances of EBVs as a
measure for PEV. The DEBV s were calculated using

by
debv; = ¢ 21/ ! (3)
T
With
PEV;
ri2 =1- Gzl (4)
g
and
PEV; = var(ebv;) (5)

where 7 is the reliability of the EBV of plant i and ng is
the additive genetic variance.

Genotypes

The genotypes were measured with a customized
Affymetrix Axiom™ microarray. It provides ~ 100k probes
for hexaploid chrysanthemum. We filtered out probes
with a 0 range below 2, because association requires seg-
regation. The final data set consists of 55,825 probes.
Each SNP is represented by two probes, upstream and
downstream, respectively. We genotyped 228 samples and
preprocessed them with Affymetrix Power Tools [34].
This includes quantile normalization and transformation
of the microarray measurements. The genotype calling
step from Affymetrix Power Tools was not performed,
because it is limited to diploids and cannot detect more
than three clusters. The microarray provides one value for
each of the two alleles for every probe. The two measure-
ments A and B are transformed into difference values 0,
where

6 = log,(B) — log,(4) ©)
and a signal strength s where

o log, (A) + log,(B)

5 (7)

An example of a bi-allelic probe from a hexaploid
chrysanthemum data set is shown in Fig. 1. The x-axis
represents 6, the difference between the two alleles A and
B. The values span the whole range of potential geno-
types and represent seven different genotype classes. The
leftmost samples are homozygous A, while the rightmost
ones are homozygous B. The intermediates are heterozy-
gous in varying proportions. The y-axis shows the mean
signal strength s. The homozygous s values are lower,
because logarithmic values are used.
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The genotype calling was done with the web applica-
tion of SuperMASSA without population-level informa-
tion (http://statgen.esalq.usp.br/SuperMASSA/) [12]. The
ploidy range was set from 2 to 6; the other parameters
were used with the default parameters. We used the raw
values of the two alleles as input. The resulting genotypes
represented the numbers of the two alleles. For the asso-
ciation we used the difference between the counts of the
first and second allele.

Association methods

Three different methods to associate the continuous
genotypic values with the phenotypes were used: LR, bayz
and partial least squares regression (PLSR). The model to
calculate the LR for all three traits was

Yi=a+Bxi+¢ (8)

where Y; are the DEBV s, o is the population mean, g
is the regression coefficient, x; the mean-centered, con-
tinuous genotype value and ¢; the residual error. The
function Im from the R package stats (Version 3.1.3) with
the default parameters was used for the regression [35].
The resulting p-values were transformed into g-values
with the function gvalue of the R-package qvalue (Version
1.43.0) with default parameters [36, 37]. We applied a
threshold of 0.01 to select the significantly associating
probes.

The effect of each SNP was estimated using Bayesian
Variable Selection method as implemented in the bayz
software [21, 22] and described by Schurink et al. [38]. The
applied method is similar to the BayesCr method [39],
except the prior of 7 was changed from a uniform(0,1)
distribution to a slightly informative prior distribution
~ Beta(10,1). In bayz, shrinkage of allele effects was
done by applying a mixture distribution. Many SNP effects
were shrunk to nearly zero to obtain high sparsity in SNP
effects and only a small part of the SNP effects were
less severely shrunken, thereby identifying SNPs with
important associations. The prior mixture distribution
was

N (0, 020), with probability g
&\ Noo, o), with probability 71 = (1 — o) ©)
Where the ‘null’ distribution modeled the majority of
SNP with (virtually) no effect using prior settings mp =
0.99 and 020 = 0.001. The second distribution mod-
eled SNPs with large effects where prior settings were
1 = 0.01 and 021 = 0.1. Variances of the mixture dis-
tribution and other model effects were estimated using a
uniform prior and sampled with a Monte Carlo Markov
Chain (MCMC) using Gibbs sampling. The MCMC was
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run for 50,000 iterations with a burn-in of 10,000 itera-
tions and a thin-interval of 200. A Bernoulli distribution
specified probabilities for a SNP belonging to the ‘null’
or second distribution and proportions for the mixture
were set to have a slightly informative prior distribution
~ Beta(10,1).

For the PLSR analysis we used the most significant
probes of the LR analysis, based on F-statistic values > 4.
The numbers of probes were 4517, 4546 and 4957 for
the disease, flowering and growth trait, respectively. We
used the pls functions of the R package caret (version 6.0-
47) [40]. The association was accomplished in three steps.
First, the data was split into a calibration (80 %) and a test
set (20 %). Second, the calibration set was used to select
the optimal latent variables (LV). We repeated a 10-fold
cross validation 20 times and assessed 1-10 LVs based on
the lowest root mean squared error (RMSE):

RMSE = (10)

1 < .
- E (vi — 7)?
n“

i=1

Where 7 is the number of samples, y; is the observed
and p; is the predicted phenotypic value. In the third
step the model was build and the significant probes were
predicted based on their variable importance measure-
ment (VIM) scores with a lower threshold of 2 [41, 42].
The scores were determined with the varlmp func-
tion from the R-package caret [40]. The calculation is
based on the weighted sums of the absolute regression
coefficients.

Simulation

We simulated 228 F1 offspring genotypes (55,825 probes
on 18 chromosomes) based on the parental genotypes
with PedigreeSim [43]. We selected 2 to 10 associating
probes randomly and calculated phenotypic values Y; for
each offspring i with an adapted formular by Giinter
et al. [44]

Tj
6 xfi(1—f)
(11)

1= "m«N©O,1)+ )Y ay
j j

where 7; is the explained variance (Zj”j is the

heritability), f; is the allele frequency and a;; is the geno-
type of sample i for probe j. The heritability was set to
0.78 as for the flowering trait. Afterwards, we associated
the simulated phenotypes with the genotypes using LR.
This simulation procedure was repeated 100 times for
each parameter combination.
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