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Abstract

Background: Understanding how plants and pathogens modulate gene expression during the host-pathogen
interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in
sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this
study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat
yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection.

Results: We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with
PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (i) substantially improved
the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression
for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing
on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST
infection on the expression of various defence components and host immune receptors.

Conclusions: Our data showed sequential, temporally coordinated activation and suppression of expression of a suite
of immune-response regulators that varied between compatible and incompatible interactions. These findings provide
the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the
expression of defence components in wheat to successfully colonize a susceptible host.

Background

For a pathogen to successfully infect a host plant, the
pathogen must overcome several layers of innate im-
munity and reprogram the plant cells; this reprogram-
ming allows the pathogen to evade host defences and
colonise the plant. Plant defence responses can act in
two waves. First, perception of pathogen-associated
molecular patterns by pattern recognition receptors at
the plant cell surface causes activation of basal defence
responses [1]. Pathogens suppress these basal defence
responses by secreting an array of effector proteins from
specialized feeding structures, called haustoria in fila-
mentous pathogens [2]. Effector proteins remodel the
plant cell’s circuitry for the benefit of the pathogen.
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Second, in resistant plant genotypes, plant immune re-
ceptors (resistance proteins) recognize these effector
proteins and activate a second wave of defence re-
sponses. This second wave includes localised cell death,
known as the hypersensitive response.

Recent studies have characterised changes in gene
expression in plant pathogens during infection. For in-
stance, studies on Fusarium oxysporum (3, 4], Melamp-
sora larici-populina [5, 6], Phytophthora infestans [7, 8],
and Magnaporthe oryzae [9, 10] have addressed how
genes, particularly those involved in immunity, are regu-
lated at the host-pathogen interface. However, few stud-
ies have focused on the Pucciniaceae, a family of fungal
pathogens that constitutes the largest group of plant
pathogens characterised to date, as most transcriptomic
studies on this family have focused on effector identifica-
tion and characterisation [11].

The Pucciniaceae infect an array of food crops and
pose a substantial threat to global food security. For
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instance, yellow rust disease, caused by the fungus Pucci-
nia striiformis f. sp. tritici (PST), endangers wheat pro-
duction worldwide, leading to complete crop loss when left
untreated [12]. As an obligate biotroph, the PST pathogen
is dependent on its host for survival and propagation.
Yellow rust disease begins when aerial spores land on a leaf
and/or other green tissues of a susceptible wheat variety in
environmental conditions favorable for the establishment of
disease. The pathogen enters its host through stomata and
proliferates by generation of invasive hyphae in the meso-
phyll layer. These hyphae produce haustoria, which form
intimate connections with plant cells through invagination
of the host cell membranes [13]. In a susceptible host, the
pathogen can evade the plant’s innate immune system and
manipulate the plant cells to acquire nutrients and enable
colonization. The PST asexual reproduction cycle is then
completed by the production of urediniospores, which
burst through the leaf surface [14]. Although the asexual
infection cycle of yellow rust on wheat has been well docu-
mented morphologically, we know very little about the
cellular processes that occur in the pathogen and host dur-
ing infection.

In this study, we used a transcriptome-based approach
to characterise the rust-wheat interaction and uncover
pivotal events that may lead to parasitism. We used
RNA-seq [15], which provides a method for unbiased
quantification of expression levels. Since RNA-seq does
not require a genome sequence, it allows simultaneous
analysis of host and pathogen transcriptomes, thus enab-
ling us to assess how pathogens regulate the expression
of their molecular components for disease progression
and how they influence the host plant’s circuitry during
a susceptible reaction [16].

We defined the global gene expression profiles for
PST and its wheat host, identifying clusters of differen-
tially expressed host and pathogen genes to reveal sig-
nificant enrichment of genes associated with the defence
response, signaling, and metabolism of protein and fatty
acids. We were able to visualise the activation of these
defence components and the downstream host immune
receptors upon infection with PST. Our data showed
that the expression of these defence components per-
sisted in an incompatible interaction, but was rapidly
suppressed in a compatible interaction. Numerous stud-
ies have reported the suppression of individual immune
components during pathogen invasion and our results
establish that pathogen invasion also involves sequen-
tially and temporally coordinated activation and suppres-
sion of a suite of immune response regulators. Our work
thus describes the global expression levels and patterns
for these key defence components in compatible and
incompatible interactions, and provides insight into
pathogen suppression of host gene expression to enable
colonization of a susceptible host.
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Results

Gene expression profiling of the host-pathogen interface
To characterise gene expression profiles in wheat and
PST during infection, we performed an RNA-seq time-
course. We inoculated a highly susceptible wheat variety
(Vuka) with PST strain 87/66 and harvested leaf samples
at 0,1, 2, 3,5,7,9, and 11 days post-inoculation (dpi).
Germinating PST spores were also collected as a control.
For each time point, three biological replicates were used
to generate a total of 27 poly(A) enriched cDNA librar-
ies, which were sequenced on the Illumina HiSeq 2000
platform. Following quality filtering and data trim-
ming, high-quality reads were aligned to both the
wheat and PST-130 reference genomes [17, 18]. The
percentage of reads that aligned to the wheat reference
decreased from a maximum of 77.35 % (S.D. £2.02 %)
at 0 dpi to 34.37 % (S.D. £1.30 %) at 11 dpi (Fig. 1a;
Additional file 1: Table S1). Less than 1 % of reads
mapped to the PST-130 reference genome at 1, 2, and
3 dpi, similar to the results observed in the uninocu-
lated plant control (Additional file 1: Table S1). Therefore,
these time points were not included in downstream ana-
lysis of the pathogen. At later time points, the proportion
of reads aligning to the PST-130 reference increased from
1.02 % (S.D. £0.55 %) at 5 dpi to 38.80 % at 11 dpi (S.D.
+2.72 %; Fig. 1a).

Improving the PST gene models
When using the previously published PST-130 gene
models [11, 17] we found that a high percentage of reads
(27 £ 19 %) that mapped to the PST-130 genome did not
align to predicted exons (Additional file 1: Table S2).
Therefore, we used our transcriptome data to generate
an updated set of transcript annotations using the soft-
ware Cufflinks [19] and the reference annotation based
transcript (RABT) assembly pipeline [20], which gener-
ated a minimal set of predicted transcripts that best
explained the observed spliced RNA-seq alignments.
This significantly reduced the number of reads mapping
to intergenic regions (0.18 +0.09 %; Additional file 1:
Table S3). RNA-seq alignments with short intergenic
lengths indicate the presence of overlapping genes incor-
rectly characterised as distinct loci [21]. In accordance,
our updated PST transcripts have intergenic regions that
are 3.5 times longer than those in the original gene models
and consist of multiple domains that were previously de-
fined as separate genes (Additional file 1: Table S4).
Coding and untranslated regions (UTRs) were then
identified in the new set of PST transcripts using Trans-
Decoder and a predicted proteome was generated [22].
We identified a total of 9,675 distinct genomic loci that
encoded 17,582 expressed transcripts with significant
OREFs. This new proteome was then annotated using the
EBI Interproscan tool [23]. This approach led to the
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Fig. 1 An initial depression in the percentage of reads mapping to the
wheat genome early in infection could be restored by supplementing
the wheat genome with plant-derived de novo assembled transcripts.

a Alignment of RNA-seq data from the various time points during
infection to both the wheat host and PST-130 pathogen reference
genomes revealed a notable drop in the percentage of reads mapping
to the wheat reference genome specifically at 3 days post inoculation
(dpi). b The wheat reference genome, generated by the International
Wheat Genome Sequencing Consortium (IWGSC), was supplemented
with plant transcripts from a de novo assembly of the unmapped RNA-
seq reads. Alignment of the RNA-seq data to this combined reference

("IWGSC + Plant”) restored the previous depression at 3 dpi

annotation of 7,290 out of the 9,675 putative protein-
coding genes (Additional file 2).

Identifying wheat transcripts expressed during infection

For the wheat host, the proteome was defined from a set
of 123,532 previously identified gene models [24] and
Interproscan annotated a total of 88,951 genes [23]. Pre-
dicted proteins were assigned to orthologous groups in
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the KEGG database using the GhostKoala mapping tool
[25]. A total of 31.6 % of host proteins were assigned,
with 72.1 % of these showing similarity to proteins from
monocots (Additional file 1: Table S5).

We observed a drop in the percentage of reads map-
ping to the wheat reference genome specifically at 3 dpi
(Fig. 1a; Additional file 1: Table S1). As the wheat
genome is currently incomplete, we examined the un-
mapped reads to determine whether this drop was due
to the expression of transcripts currently not repre-
sented in the wheat genome assembly. We undertook a
de novo assembly of the unmapped reads and used se-
quence similarity searches against the National Center
for Biotechnology Information (NCBI) non-redundant
(nr) protein database to annotate the newly assembled
transcripts. Of the 2,019,326 total transcripts generated,
1,006,674 (49.85 %) could be annotated using this
method. Among these BLAST-annotated transcripts, we
selected transcripts for which hits matched a plant-related
protein (871,367 sequences), including sequences from 387
different species with 59.69 % being monocots. To avoid re-
dundancy, we removed ambiguous sequences using the
CD-HIT-EST programme [26] and combined the wheat
genome with these 657,021 new, non-redundant tran-
scripts. Aligning our RNA-seq data to the combined
wheat reference removed the decrease at 3 dpi in the
percentage of reads that mapped to the genome (Fig. 1b;
Additional file 1: Table S1).

Comparison of RNA-seq quantification methods

The next step was to quantify the expression of PST and
wheat transcripts during infection. Properly accounting
for the sampling process and inherent biases in RNA-
seq approaches requires sophisticated statistical infer-
ence techniques [19]. Raw read counts or simplistic
normalization such as counts per million (CPM) mapped
reads are insufficient, particularly when considering
alternative splicing and reads that map to multiple loca-
tions. To evaluate the performance of these statistical
inference techniques and select the most appropriate
method for our data, we first generated two test datasets
that consisted of triplets of homoeologous genes from
each of the A, B, and D genomes. These datasets in-
cluded 4,307 triplets mined from the Ensembl Plants
Triticum aestivum portal, and a subset of 239 triplets
identified as core eukaryotic genes (Additional file 1:
Tables S6 and S7). As a metric for comparison of the
methods, we considered both the mean pairwise co-
sine similarity, which measures the similarity in shape
of the temporal expression pattern independent of the
magnitude, and the mean pairwise Euclidean distance
between sets of homoeoloci, which depends on the
magnitude of expression. Although recent results have
suggested that sets of homoeologues have significantly
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biased expression levels between genomes in hexa-
ploid bread wheat [27], we hypothesise that the nor-
malised temporal expression profiles of homoeologous
genes should be comparable (cosine similarity ~ 1), particu-
larly for triplets of core eukaryotic genes. Furthermore,
similar profiles of expression have been reported for the
Rht-Al, Rht-B1, and Rht-D1 homoeologous dwarfing genes
in tissues of different regions of the developing wheat stem
[28] and in wheat homoeologues of the defence-related
WRKY transcription factors [29].

We selected the programs Cufflinks [19], RSEM [30],
Salmon [31], and Kallisto [32] for comparison, with the
first two as examples of widely used programs and the
latter two being newly developed ultra-fast algorithms.
Cufflinks gave the overall highest similarity (0.996 +
0.022, 92.8 % >0.99) between homoeologues for both
datasets (Fig. 2). By contrast, RSEM, Salmon, and
Kallisto consistently gave lower levels of similarity
(0.978 £ 0.026, 0.927 £0.141, and 0.942 +0.144 re-
spectively). Strikingly, the quantification methods pro-
duced contradictory results when tested on individual
genes. By defining the relative difference between
genes as the magnitude of their difference divided by
their mean [32], we found that the average of the pair-
wise median relative differences for the same gene be-
tween the different programs was 1.08 and the mean
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Fig. 2 Cufflinks gave the overall highest similarity between
homoeologues for test datasets of triplets of homoeologous genes.
The programs Cufflinks, RSEM, Salmon, and Kallisto were compared,
using two datasets that consisted of: (i) 4,307 triplets mined from the
Ensembl Plants Triticum aestivum portal (“Ensembl”), and (ii) a subset of
239 triplets identified as core eukaryotic genes (“Core genes”)
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correlation of the expression vectors was 0.72
(Additional file 1: Table S8). This result is consistent
with a previous study, which reported that orthologous
genes between nematode species with cosine similarities >
0.95 had matching expression profiles during development
[33]. Based on this analysis, we decided to use Cufflinks to
determine the expression profiles of PST and wheat in all
downstream analyses.

Dynamic progression of PST infection in wheat
To understand the modulation of biological processes
and pathways throughout the infection process, we in-
vestigated the gene expression profiles for the host and
the pathogen. First, following the Cufflinks pipeline,
c¢DNA libraries were normalized to generate transcripts
per million (TPM) expression values and the significance
of differential expression was tested using the Cuffdiff
companion software with the 0 dpi or PST germinating
spores used as controls in the analysis. A total of 64,618
host genes and 4,855 pathogen genes were identified as
differentially expressed (FDR < 0.05) between at least one
pair of time points (Additional file 1: Tables S9-11). TPM
expression data for significantly differentially expressed
genes were normalized and clustered into sets of genes with
qualitatively similar expression profiles using the mini batch
k-means algorithm [34], resulting in seven clusters for the
host and eight for the pathogen (Additional files 3 and 4).

To elucidate the biological function for each cluster,
manually curated groups of related annotation acces-
sions, GO term annotations, and KEGG pathway mem-
berships were tested for significant enrichment in each
cluster relative to the entire proteome (Fig. 3; Additional
file 1: Tables S12-15). For the wheat host, we identified
(i) Cluster VII, which peaked in expression at 1 dpi
during initial penetration and was enriched for genes an-
notated as peptidase inhibitors, glycosyl hydrolases, and
peroxidases, (ii) Cluster V, which peaked in expression
at 3 dpi during haustorium proliferation and was
enriched for genes annotated as part of Photosystem II,
and genes coding for cytochromes, ATP synthases, and
RNA polymerases, and (iii) Cluster III, which peaked in
expression at 11 dpi during sporulation and was enriched
for genes involved in membrane transport and genes for
ABC transporters and chitinases. The biosynthetic and
downstream response pathways for the plant stress-
induced hormones salicylic acid (SA), jasmonic acid (JA),
ethylene (ET) and abscisic acid (ABA) were highly repre-
sented in Clusters I, III, and VII, which all had peaks of
expression at 1 and 11 dpi. MAPK signalling was enriched
in Clusters I, IV, and VI, and Ca** signalling and apoptosis
were enriched in Cluster L.

For the pathogen (Fig. 3b) we also identified several
clusters. Cluster I, which contained genes that peaked in
expression at 11 dpi, was enriched for genes involved in
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Fig. 3 Clusters of genes with qualitatively similar expression profiles
were specifically enriched in particular GO term annotations and
KEGG pathway memberships for both the host (a) and pathogen
(b). Heat maps display the selection of clusters where related annotation
accessions, GO term annotations, and KEGG pathway memberships
showed significant enrichment in the cluster relative to the entire
proteome. dpi, days post inoculation

fatty acid synthesis GO terms and transmembrane pro-
teins. Cluster III, which peaked in expression at 7, 9, and
11 dpi, was enriched for genes encoding catalase en-
zymes and oxidoreductase GO terms. Cluster II, which
was upregulated from 7 dpi onwards, was enriched for
carbohydrate catabolism, including GO terms related to
glucan, glycogen, and polysaccharides. Cluster IV, which
peaked in expression at 7 dpi, was enriched in genes
related to nucleic acid metabolism, ubiquitination pro-
cesses, and peptidase activity GO terms. Cluster IV was
also enriched in histone transcripts. Cluster V peaked in
expression at 11 dpi and was enriched in putative tran-
scription factors containing the Zn(II),Cysg (Zn,Ce) do-
main, which has only been identified in fungal proteins
to date [35]. Cluster VI peaked in expression at 5 dpi
and was enriched in HSP20 proteins, which are induced
during the development of infection in other fungal
organisms [36]. Clusters III, V, VII, and VIII were also
enriched in transcripts for proteins that contained a
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secretion signal but were annotated with no particular
GO term (Additional file 1: Table S15).

Suppression of expression of host defence genes by PST
is alleviated in a resistant host

On average 25 % (S.D. +4.07 %) of the reads at each time
point did not align to the wheat or PST reference ge-
nomes (Additional file 1: Table S1). Therefore, we inves-
tigated the de movo assembled transcripts from these
unmapped reads by annotating their potential biological
functions. We focused on identifying transcripts in-
volved in the defence response, as the modular nature of
immune receptors may have limited their assembly in
the current wheat genome. We annotated the assembled
transcripts that likely encode nucleotide-binding domain
leucine rich repeat proteins (NLRs) using the NLR-parser
tool [37]. We supplemented this set of NLR-encoding
genes with additional genes that encode proteins with
similarity to known or predicted disease resistance pro-
teins, as identified through BLAST searches, and com-
bined these two datasets (Fig. 4a). Through this analysis,
we revealed a peak in the number of defence-related genes
expressed at 2 dpi in the susceptible host, when compared
to other time points. This peak in expression of defence-
related genes at 2 dpi dropped sharply by 3 dpi; we
hypothesize that this could be due to active suppression
of the expression of these host genes by PST in the sus-
ceptible host.

To test this hypothesis, we generated a second RNA-
seq time-course by infecting a wheat variety resistant to
the PST 87/66 strain. For the resistant variety, we se-
lected an Avocet introgression line containing the resist-
ance gene Yr5 and harvested leaf samples at 0, 1, 2, 3,
and 5 dpi. For each time point, three biological replicates
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Fig. 4 The number of host defence-related genes expressed during
infection was specifically suppressed in a susceptible interaction with PST
by 3 days post inoculation (dpi). A de novo assembly of the reads that
did not align to the host or pathogen genomes from both a susceptible
(@) and resistant (b) interaction was interrogated for defence-related
genes. We highlighted transcripts that likely encode nucleotide-binding
domain leucine rich repeat proteins (NLRs) using the NLR-parser tool
("NLR") and genes that encode proteins with similarity to known or
predicted disease resistance proteins through BLAST searches (“BLAST")
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were used to generate a total of 15 poly(A)-enriched
c¢DNA libraries, which were again sequenced on the Illu-
mina HiSeq 2000 platform. Following quality filtering
and data trimming, high-quality reads were aligned to
both the wheat and PST-130 reference genomes [17, 18]
(Additional file 1: Table S16). We carried out de novo
assembly of the unmapped reads and annotated the
assembled transcripts using the NLR-parser tool [37]
and similarity searches as above. When we assessed the
expression of host defence-related genes during the re-
sistant interaction, we determined that the number of
expressed genes increased steadily throughout the time-
course, without the suppression at 3 dpi that we ob-
served in the susceptible host (Fig. 4b). This is consistent
with the hypothesis that the pathogen suppresses
defence-related gene expression in a compatible inter-
action to enable successful colonization.

Wheat homologs of the rice defensome complex show
coordinate expression

To further explore the regulatory networks involved in
the plant innate defence response, we integrated tran-
scriptomic data with sequence similarity and protein
functional domain searches to identify likely orthologs of
interactors and complex partners of OsRacl, a central
regulator of defence responses in rice (Oryza sativa).
OsRacl is a highly connected core component of the
innate immune response, connecting with chitin percep-
tion though OsCERK1/OsCEBIP, reactive oxygen species
generation through Rboh, phosphate signalling through
MAPK®6, and hormone signalling through RACK1 [38].
Of the ten genes we identified in Fig. 5, at least five have
already been cloned in wheat and the interactions veri-
fied in wheat, rice, or barley [39-44]. We found that the
expression dynamics of all the genes in the predicted
defensome were significantly correlated compared to
Monte Carlo simulations drawn from the null model of
uniformly distributed gene vectors, strongly suggesting
that they are functionally linked (Additional file 5). We
were unable to confidently identify homologs of two
other defence-related OsRacl-interacting proteins, OsC
CR1 and OsMT?2, which are involved in cell wall lignifi-
cation and H,O, scavenging, respectively [45, 46].

We identified two groups (one on chromosome 5 and
one on chromosome 3) of three homologues of Rboh, the
NADPH oxidase required for immune-related accumula-
tion of reactive oxygen species (ROS); each group contains
two genes from the B genome and one from the D or A
genome (5D, 5B, 5B and 3A, 3B, 3B). For both groups, one
of the B genes had lower sequence similarity to other group
members (average 45 and 69 %) compared with the similar-
ity observed between the other genes (88 and 95 %). The
group from chromosome 5 was strongly induced at 1 dpi
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and the group from chromosome 3 was strongly induced at
2 dpi (Fig. 5).

TaCERKI and TaCEBiP (Ta for T. aestivum) encode
components of the chitin perception system and were
strongly induced at 1 dpi. Also, the expression of genes
for the other downstream proteins peaked at 2 dpi. This
was followed by a sharp decrease in expression of many
components that then steadily increased in expression
over the time course, with the exception of TaRacl,
which returned to its basal level from 3 dpi onwards.
TaRacl, despite being a central regulator of immunity,
was expressed at low levels (max 0.49 TPM). Of the
three Hsp90 variants, Hsp90.3 had the highest expres-
sion (max 40.3 TPM), then Hsp90.2 (max 26.2 TPM),
and finally Hsp90.1 had the lowest expression level
(max 1.41 TPM), which agrees with other studies con-
cluding that Hsp90.1 is less involved in disease resist-
ance to the yellow rust fungus compared with the other
Hsp90 genes [39].

The apparent rapid suppression in expression of genes
involved in chitin perception (at 2 dpi) and the defen-
some activation (at 3 dpi) was similar to the NLR
suppression noted above. This prompted us to investigate
the defensome further in the wheat variety resistant to PST
87/66. Overall, we found higher expression of many com-
ponents, including the receptor genes TaCERK1 and TaCE-
BiB, HOP, genes for the SGT1/RAR1/HSP90 complex, and
TaRACI and TaRACKI (Fig. 5; Additional file 1: Table
S17). For the downstream gene TaRboh, the homologs from
chromosome 5 and one homolog from chromosome 3
were strongly induced at 1 dpi, whereas the other 2 homo-
logs from chromosome 3 peaked at day 3. In addition, in
the resistant host, MPK6 continued to rise above basal
levels after recovering from a small dip in expression at 2
dpi, whereas in the susceptible host it failed to recover from
this suppression and only marginally increased in expres-
sion until 11 dpi Fig. 5). Furthermore, although an initial
suppression of expression levels was observed, in particular
for TaCERK1 and TaCEBIP at 2 dpi, this was rapidly allevi-
ated by 3 dpi in the resistant host, but this alleviation did
not occur in the susceptible host.

Expression of PST genes related to vesicle trafficking
increases during germination and later during pathogen
proliferation

Transcriptional responses in the pathogen also showed
changes in gene induction over time. For instance, we
identified homologs of genes for fundamental vesicu-
lotubular carrier components that are central to mem-
brane trafficking and cargo delivery, including SNARE
proteins, GTPases, and clathrins (Fig. 6). These com-
ponents function in all five stages of vesicle traffick-
ing: sorting, uncoating, motility, tethering, and fusion
(Fig. 6a). Once we identified the sequences of these
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components, we combined homologs with similar ex-
pression profiles to create a minimal representative set
of each with at least one representative gene. The
genes were then grouped depending on their expres-
sion profile. This revealed two separate modes of
expression, namely during the germination stage at 0
dpi and during proliferation of the pathogen at 7 dpi
onwards (Fig. 6b).

Homologs of all vesicle trafficking components followed
the two modes of expression, with the exception of sec,
which was unique to the late expression mode. Rab
GTPase proteins cycle between activation, inactivation,
and cytosol-membrane translocation, regulating all five
stages in vesicle trafficking [47]. Their importance is
highlighted by their consistently high expression during
the active periods of both modes. The exocyst, which

includes several Sec proteins, is also involved in targeting
vesicles to the receptor membrane [47]. sec transcripts
were the most abundant component at all stages with a
mean expression of 662 TPM and a peak at 7 dpi of
1074 TPM (Additional file 1: Table S19). On average,
the constituents shared between both modes were more
highly expressed in the late mode due to a combination
of more homologs per gene and higher average expres-
sion per homolog, particularly arf and clathrin with
15.5 and 6.5 times higher expression in the late mode
compared to the early mode (Additional file 1: Table
S19). The identification of genes for a clathrin-coated
vesicle trafficking mechanism as highly expressed dur-
ing the germination stage (at 0 dpi) and during prolifer-
ation of the pathogen (at 7 dpi) indicates that this
trafficking likely plays a key role during PST nutrient
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acquisition early in infection and during effector deliv-
ery at later stages during infection.

Discussion

Global gene expression profiles at the plant-pathogen
interface

Exploring the plant host-pathogen interface is key to
uncovering the molecular mechanisms that regulate dis-
ease progression. Here, we used RNA-seq analysis to as-
sess the global expression profiles of wheat yellow rust
and its host at various time points during infection to
identify changes in gene expression that could be linked
to key aspects of the infection process. The first step
was to identify differential gene expression profiles
across time points for both wheat and yellow rust and
cluster these transcripts into sets of genes with qualita-
tively similar expression profiles. Within the seven clus-
ters identified for the host, we found overrepresentation

of components for biosynthesis and response pathways
related to the plant stress hormones SA, JA, ethylene,
and ABA (Clusters 1 to 4), whose balance is fine-tuned
to regulate plant innate immunity [48]. We also found
enrichment of genes encoding proteins with antimicro-
bial properties, like pathogenesis-related proteins, chiti-
nases, and cysteine-rich repeat proteins (Clusters 1 and
3). Moreover, the enrichment in membrane proteins in
all four of these clusters and the expression of proteins
related to vesicle trafficking in Clusters 2 and 4 indicates
a potential increase of uptake cargo vesicles in the host
plant cell as the fungus colonizes the plant cells.

In the pathogen, we identified specific enrichment of
genes encoding transcription factors containing Zn
(I1),Cysg (ZnyC), peaking at 5 dpi (Cluster V). These
transcription factors, which are unique to fungi, are re-
lated to the pathogenicity of the rice blast fungus M.
oryaze, affecting conidial germination and appressorium
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formation [49]. We also found enrichment of transcripts
related to fatty acid biosynthesis, transmembrane pro-
teins, catalases, carbohydrate catabolism, and nucleotide
metabolism, peaking specifically at 7 dpi (Clusters II, IV,
and VII). Finally, we identified a notable peak in expres-
sion at 11 dpi for HSP20 proteins (Cluster VI). In Usti-
lago maydis, HSP20 is upregulated at 11 dpi in infected
maize leaves and plays a key role in pathogenesis [36].
For instance, maize plants infected with a U maydis
strain devoid of HSP20 have reduced disease symptoms
compared to the wild-type strain [36]. The conservation
of such vital pathogenesis-related elements among dis-
tantly related fungi and, in some cases, their exclusivity
to fungi, highlights these elements as candidate targets
for inhibition to restrain pathogen colonization.

Modulation of the host defence response by PST

In this study, we observed sequential, temporally coordi-
nated activation and suppression of a suite of immune
response regulators. This suppression occurred regard-
less of the susceptibility of the host, but was alleviated
specifically in the resistant interaction. This provides
important insight into how pathogens modulate expres-
sion of host defence components to enable successful
colonization. This correlation in expression patterns of
defence components with host susceptibility is consist-
ent with observations made on infections of susceptible
and resistant potato lines carrying the resistance gene
RB (Rpi-blbl) with P. infestans [50]. Although the P.
infestans infection induced the same suites of genes, the
temporal regulation patterns of these genes significantly
diverged, depending on the susceptibility of the host
plant. In that case, the suite of affected genes included
two specific hypersensitive response-associated genes
that were expressed only in the + RB line [50]. Further-
more, when M. oryzae was used to inoculate susceptible
and resistant rice varieties, after 24 hours the early in-
crease in expression of defence components clearly
differed between the two hosts, with very few defence
response genes detectable in the susceptible host [51].
The inclusion of further time-points would determine
whether this is also consistent with coordinated tem-
poral expression of defence response genes linked to
host susceptibility to M. oryzae.

Plants rely on complex surveillance systems to per-
ceive pathogens. For instance, receptors on the plant cell
surface can detect pathogen-derived molecules as signa-
tures of imminent invasion, as in the case of the wheat
receptor TaCERK1/TaCEBiP and the fungal molecule
chitin [52]. In addition, plant chitinases, which are part
of the plant defence response during infection, degrade
fungal chitin and release chitin oligomers [53]. In wheat,
specific chitinase activity is induced in compatible and
incompatible interactions with PST [54]. In accordance,
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we detected an increase in expression of wheat chitinase
genes during infection (Clusters III and I). However,
following the rise in chitinase gene expression during
PST infection in our study, we observed a strong induc-
tion of TaCERK1/TaCEBIiP receptors at 1 dpi in both
susceptible and resistant wheat varieties. Furthermore,
by 2 dpi many genes for components of the ROS signal
transduction pathway downstream of the TaCERK1/
TaCEBIP receptors were upregulated irrespective of the
host wheat variety. The proteins involved in ROS signal
transduction include HOP, RAC1, and the components
of the molecular chaperone complex RAR1/SGT1/HSP
90. Previous studies showed that many of the corre-
sponding genes (HOPB, HSP90.1, HSP90.2, and RARI)
were upregulated in barley at 5, 10, and 14 dpi when the
susceptible variety Morex was infected with the PST iso-
late CY32 [55]. Notably in our study, we observed that
the boost in transcript levels of these defence compo-
nents was subsequently suppressed from 3 dpi onwards
in the susceptible host. In the resistant host, the expres-
sion of these defence components was also suppressed
at 3 dpi, but the suppression was rapidly alleviated and
their expression levels steadily increased after 3 dpi.

Overall, at 1 dpi both resistant and susceptible wheat
varieties likely perceived the fungus through the
TaCERK/TaCEBIiP receptors and triggered the signaling
pathway required for ROS accumulation. However, even
though the expression of the corresponding transcripts
after 2 dpi was detectable in the susceptible variety, only
the high levels achieved in the resistant variety appear
sufficient to provide an effective immune response. This
could be due to a minimum expression threshold re-
quired to adequately stabilize the host immune receptors
[56]. In accordance, the steady-state levels of the barley
MLA1 and MLAG6 resistance proteins, which are effect-
ive against the powdery mildew fungus Blumeria grami-
nis, correlate with their requirement for RAR1, revealing
that triggering an effective resistance response requires a
threshold level of RAR1 [57].

To investigate this further, we characterised the ex-
pression pattern of wheat immune receptors. We used
the NLR-protein parser tool [37] and similarity searches
to identify transcripts that likely encode intracellular
immune receptors among the transcripts that could not
be mapped to the wheat reference genome. We discov-
ered a peak in immune receptor gene expression at 2
dpi, compared to the other time points during infec-
tion. However, the susceptible host showed a subse-
quent sharp drop in immune receptor expression levels
at 3 dpi, which was not observed in the resistant host
where immune receptor gene expression continued to
increase. This likely reflects active suppression or
modulation of upstream signaling resulting in sup-
pression of immune receptor expression by PST to
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inhibit the immune response and promote prolifera-
tion of the pathogen.

The role of vesicle transport in PST invasion

Among the differentially expressed genes in the PST
transcriptome, our study identified many homologs of
genes that encode proteins with fundamental roles in
vesicle trafficking, including SNARE proteins, GTPases,
clathrins, and the exocyst complex. Fungi use vesicular
transport for hyphal and septa growth [58] and likely
also for nutrient uptake and pathogenesis, although this
remains unclear. For instance, the P. sojae PsYKT6
SNARE protein is important in virulence [59], and the
U. maydis Yupl endosomal t-SNARE is crucial for spore
formation and germination [60]. Moreover, in the rice
blast fungus M. oryzae, the t-SNARE proteins and the
exocyst components define a distinct effector secretion
system located in the fungal biotrophic interfacial com-
plex [61]. This newly described secretion system seems
to work independently of the endoplasmic reticulum-
Golgi secretion pathway for apoplastic effectors [61].
The recent discovery, using endosome-defective strains
of U maydis, that endosome motility is essential and
required for virulence during early but not later plant
infection stages, could explain the two different modes
of expression of the vesicle trafficking complex that we
identified, one expressed at a very early stage (germinat-
ing spores) and the other at later stages (7 dpi and later).
The first mode may be a determinant of pathogenesis
and the second could have a role in nutrient uptake and
effector delivery.

Conclusions

Numerous studies have reported the suppression of ex-
pression of individual immune components during
pathogen invasion; here, we report sequential temporally
coordinated activation and suppression of a suite of
immune response regulators. This comprehensive study,
which included an array of time points throughout the
infection process, enabled us to document a peak in
expression of wheat cell surface immune receptors at 1
dpi, which was immediately followed by a peak in ex-
pression of highly connected core component of the
innate immune response (OsRacl and many associated
defence regulators) at 2 dpi. Finally, a peak of expression
in immune receptors was detected at 2 dpi. In all cases,
these peaks in expression were suppressed in the follow-
ing time point (either 2 or 3 dpi), a suppression that was
specifically and rapidly alleviated in the resistant inter-
action. The inclusion of an array of early time points in
our study enabled us to thoroughly document the oscilla-
tion in expression of these defence regulators, which was
not possible in previous studies. The distinct expression
levels and patterns of expression of these key defence
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components in compatible and incompatible interactions
provides novel insight into how pathogens may suppress
NLR expression and upstream signaling pathways to en-
able successful colonization in a susceptible host.

This study provides the framework for developing a bet-
ter understanding of how PST causes disease. It will now
be important to extend these results by examining a wider
range of PST-wheat interactions. For instance, how the
same host genotype responds to different PST isolates that
induce compatible or incompatible responses and how
isogenic wheat lines with NLR and adult-plant resistance
based mechanisms differ in this response are just two of
these questions. Likewise, as similar RNA-seq studies are
undertaken for other members of the Pucciniaceae family,
it will also be interesting to see if related pathosystems
show similar sequential temporally coordinated activation
and suppression of immune response regulators. Future
comparative studies could reveal conserved regulatory
elements that would be useful targets for inhibition to
limit pathogen colonization and improve the management
of rust diseases.

Methods

Plant material and PST inoculation

Hexaploid wheat (Triticum aestivum L.) winter cultivar
Vuka and an Avocet introgression line containing the
resistance gene YrS5 [62], were infected with Puccinia
striiformis f. sp. tritici (PST) isolate 87/66. Plants were
pre-germinated in Petri dishes, sown in pots (7 x 7 cm),
and placed in controlled-environment rooms under long-
day conditions (16 h light/8 h dark) and 19/14 °C cycle.
Plants were infected with urediniospores of PST at the
three-leaf stage, using 60 mg of spores from isolate 87/66
as inoculum. After infection, plants were kept in the dark
at 10 °C and high relative humidity for 24 h. Plants were
then moved back to the previous growth conditions. Plant
samples were taken from leaves at 0, 1, 2, 3, 5, 7, 9, and
11 days post-inoculation (dpi) for the susceptible variety
Vuka and 0, 1, 2, 3, and 5 dpi for the resistant Avocet-Yr5
line. Three biological replicates were prepared for each
time point. In addition, fresh spores of PST-87/66 were
germinated in the dark at 10 °C, 24 h, in petri dishes con-
taining distilled H,O and samples of germinating spores
were collected.

RNA isolation, purification, and sequencing

RNA was extracted from 10 mg leaf material and germinat-
ing spores using the Qiagen RNeasy Mini kit according to
the manufacturer’s instructions (Qiagen, Manchester, UK).
DNA was removed using TURBO DNA-free Kit (Ambion,
Loughborough, UK). The quantity and quality of RNA ex-
tracted was assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies, UK). The cDNA libraries were pre-
pared using the Illumina TruSeq RNA Sample preparation
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Kit (llumina, US). Sequencing was carried out on the Illu-
mina HiSeq 2000 platform (100-bp, paired-end reads).

Alignment of reads to the reference genomes/
transcriptomes

Adapter and barcode trimming and quality filtering
were carried out using the FASTX-Toolkit [63]. For
the pathogen, reads were aligned to the PST-130
reference genome [17] using Tophat version 2.0.11
[64]. Since Tophat cannot handle reference genomes
larger than 4 Gb, for the host, predicted spliced
transcripts were extracted from the IWGSC refer-
ence genome to produce a reference transcriptome
that was used as a reference in the alignments using
Bowtie version 2.2.1 [64].

Transcriptome reconstruction and quantification

Novel transcripts and novel isoforms of transcripts from
the PST-130 annotation were identified using Cufflinks
version 2.2.1 in ‘reference annotation based transcript
assembly’ mode with sequence bias correction enabled
[65]. The inferred transcript abundances in fragments
per kilobase of transcript per million mapped reads
(FPKM) units were converted to transcripts per million
(TPM) units using the formula:

FPKM;,

}:FMUmg
g'eG

TMP;, = 10°

“« _»

Where “i” is the sample index and “g
in the gene-set “G”.

For the host we followed a similar pipeline, except
Cufflinks was set to strictly follow the reference annota-
tion. TPM values for all genes across experiments are
presented in Additional file 1: Tables S20-S21.

the gene index

Differential expression testing

The host and the pathogen transcriptomes were subjected
to differential expression analysis using the Cuffdiff tool in
the Cufflinks package [65], making all possible comparisons
between time points. For clustering and other downstream
analyses, a gene was declared differentially expressed if it
had a multiple testing corrected p-value < 0.05 for at least
one comparison.

Clustering of gene vectors

For the host and pathogen, genes identified as differen-
tially expressed were selected and the gene vectors nor-
malised to produce a matrix:
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The matrix was then clustered using the MiniBatchKMeans
algorithm implemented in Sci-kit Learn version 0.16.1 [34].

GO term and KEGG pathway enrichment

Genes were annotated with gene ontology (GO) terms
using the Interpro to GO mapping, then tested for
enrichment in given subsets using goatools 0.5.7
(https://github.com/tanghaibao/goatools) with a cor-
rected p-value threshold of 0.05.

KEGG orthology identifiers were assigned to both the
host and pathogen proteomes using GhostKoala and
pathways reconstructed using the KEGG web services. C
clusters were tested for overrepresentation by assuming
a model such that for a pathway K=(n_1, n_2, ... n_C),
where n_i=number of genes assigned to pathway K
from cluster i,

n; hypergeometric(k,N;, M)

Where “k” is the number of genes annotated with “K”,
“N;” is the number of genes in cluster “I” and “M” is the
total number of genes.

Identification of wheat orthologs in the defensome
pathway

The gene annotations for the various components of the
pathway were assigned based on BLAST sequence similarity
to rice orthologs and where available cloned sequences from
wheat and supported by protein functional domain annota-
tions. Where the previously identified sequence of a gene of
interest was spread across multiple IWGSC scaffolds, their
expression levels were averaged. The pairwise cosine similar-
ity matrix between the gene vectors was calculated and a
p value estimated by comparison to 10 million Monte Carlo
sample of pairwise similarities of points distributed
uniformly on a (D-1)-sphere, where D = 8. Data were visu-
alized with quadratic splines for smooth interpolation.

Vesicle trafficking

Genes were annotated based on protein functional do-
mains, then for each gene the homologs’ expression
patterns were clustered using Sci-kit Learn’s KMeans al-
gorithm, and the resulting representative cluster centres
organised by Scipy (0.13.0b1) hierarchical clustering.

Assessing unmapped reads

Reads from each time point that did not map to the PST-
130 and/or wheat reference genome were de novo assem-
bled using Trinity [22]. Sequence similarity searches of
unmapped reads from all time points were performed
against the National Center for Biotechnology
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Information non-redundant database using the
BLASTX algorithm with an E-value of 107*°. For NLR
prediction, all transcripts were first translated into
amino acid sequence in all three frames in both strands
with a customised Perl script. Then the new translated
sequences were run in Motif Alignment and Search
Tool (MAST) from The MEME suite with an E-val of
10000. The MAST output file was then used as an in-
put for the NLR-parser tool [37].

For PST, a total of 17,582 expressed transcripts with
significant ORFs were identified, belonging to 9,675
distinct genomic loci. The new PST proteome was
annotated using a combination of PROSITE, HAMAP,
Pfam, PRINTS, ProDom, SMART, TIGRFAM, PIRSF,
SUPERFAMILY, Gene3D, Phobius, SignalP, and PAN-
THER using the EBI Interproscan tool. Interpro map-
pings were used to identify proteins with corresponding
GO terms, KEGG entries, and EC numbers.

Additional files

Additional file 1: Contains supplementary Tables S1-S21. Microsoft
Excel Workbook containing twenty-one worksheets. Table S1: RNA-based
sequence alignments against wheat and PST-130 reference genomes,
using data from infection of wheat (Vuka) with PST 87/66. Table S2:
Depth of coverage when RNA-seq data aligned to previously published
PST-130 gene models. Table S3: Depth of coverage when RNA-seq data
aligned to PST gene models generated herein. Table S4: Comparison of
PST-130 gene models and those generated herein. Table S5: Wheat gene
annotations. Table S6: 4,307 wheat triplets mined from Ensembl Plants
Triticum aestivum portal. Table S7: 239 triplets identified as wheat core
eukaryotic genes. Table S8: Mean correlation of expression vectors and
mean relative difference comparing Cufflinks, RSEM, Salmon, and Kallisto.
Table S9: Gene expression analysis of susceptible wheat cultivar Vuka
infected with PST 87/66. Table S10: Gene expression analysis of a resistant
wheat line infected with PST 87/66. Table S11: Gene expression analysis of
PST on Vuka . Table S12: KEGG pathway memberships displaying significant
enrichment in each cluster for the 7 wheat clusters. Table $13: GO term
annotations displaying significant enrichment for the 7 wheat clusters.
Table S14: KEGG pathway memberships displaying significant enrichment
for the 8 PST clusters. Table $15: GO term annotations displaying significant
enrichment for the 8 PST clusters. Table $S16: RNA-based sequence
alignments against wheat and PST-130, using data from infection of wheat
(Avocet line containing Yr5) with PST 87/66. Table S17: Transcripts per
million (TPM) values for homologs of the defensome in a susceptible
and resistant interaction with PST 87/66. Table S18: TPM values for
PST vesicle trafficking components. Table $19: Summary of TPM values for
PST vesicle trafficking components. Table $20: TPM values for host genes
from a susceptible interaction with PST 87/66. Table $21: TPM values for
host genes from a resistant interaction with PST 87/66. (XLSX 35.6 mb)

Additional file 2: Annotation of updated PST gene models generated
herein. (TSV 21048 kb)

Additional file 3: Expression data (Transcripts per million (TPM) values) for
significantly differentially expressed genes was normalized and clustered into
sets of genes with qualitatively similar expression profiles using the mini batch
k-means algorithm, resulting in 7 clusters for wheat. (EPS 1612 kb)

Additional file 4: Expression data (TPM values) for significantly differentially
expressed genes was normalized and clustered into sets of genes
with qualitatively similar expression profiles using the mini batch
k-means algorithm, resulting in 8 clusters for PST. (EPS 18763 kb)

Additional file 5: Expression dynamics of all the genes in the predicted

defensome compared using Monte Carlo simulations drawn from the
null model of uniformly distributed gene vectors. (EPS 1858 kb)
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