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Abstract

Background: Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil
bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of
activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and
antimicrobial activities.

Results: In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites
production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains
representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7 % of the
genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase,
phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in
genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan
polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene
clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the
interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis
strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the
biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities.

Conclusions: Overall our results indicated that Collimonas genomes harbour many genes encoding for novel
enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and
revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.
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Background
The genus Collimonas comprises soil bacteria with the
ability to grow at the expense of living fungal hyphae
under nutrient-limited conditions [1–3]. Since the first
description of Collimonas, more mycophagous bacteria
have been detected [4], but Collimonas species are still
highly interesting in view of the interactions between
bacteria and fungi in soil and the associated ecosystem

functions including suppression of pathogens and the
production of novel bioactive compounds.
Collimonas belongs to the family Oxalobacteraceae,

class Betaproteobacteria. The first Collimonas isolates
were obtained within the framework of a project search-
ing for a naturally occurring biocontrol agent of fungi
pathogenic to marram grass (Ammophilia arenaria) and
were determined as being dominant among the cultiv-
able chitinolytic bacteria in the acidic Dutch dune soils
[3]. Three species have been described so far: C. fungi-
vorans, C. pratensis and C. arenae [5]. All three species
display the ability to feed on fungi (mycophagy), to de-
grade chitin and to dissolve minerals (weathering) [2].
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However, Collimonas strains differ in important eco-
logical traits such as colony morphology, the ability to
oxidize various carbon sources, in their antibacterial, an-
tifungal and antioomycetal activities [6, 7]. A compara-
tive genomic approach would help to reveal the genetic
basis of these ecological differences. Applying a com-
parative genomic hybridization approach [7] showed that
a gene cluster involved in the production of an antifun-
gal polyyne was only found in the genome of a few Colli-
monas strains. The study of Mela et al. [7] was biased in
the sense that the hybridization assay used allowed only
to screen for absence/presence of genes in other strains
as compared to C. fungivorans strain Ter 331, the only
strain for which the complete genome was sequenced at
that time. To reveal the real plasticity of Collimonas
strains more genome sequences are needed. This will
demonstrate constant and variable genetic elements, and
hence determine the adaptations of Collimonas species
and traits important for inter-specific microbial interac-
tions in the soil. To date, only two genome sequences of
Collimonas are publicly available [7, 8]. Here we report
on full genome sequences of five Collimonas strains
across the three recognized species and performed com-
parative genome analysis including the recently pub-
lished C. fungivorans Ter331 genome [7]. Gene clusters
with potential relevance for interactions of the Collimo-
nas species with fungi and other microorganisms were
further investigated by gene knock-out mutations and/or
enzymatic characterization.

Results and discussion
Genomic features
A genome sequence analysis was performed for strains
Ter6, Ter91, Ter291, Ter10 and Ter282, using a com-
bined strategy of Illumina Hiseq and PacBio sequencing.

A summary of the general genomic features (size, GC
content, predicted number of coding sequences, and
number of rRNAs) of each Collimonas strain is pre-
sented in Table 1. Considerable variation in genome size
and differences in plasmid content was observed. The
six genomes vary in size by approximately one megabase
(ranging from 4.7–5.7 Mb) with the number of coding
sequences (CDSs) ranging from 4436 to 5424, indicating
substantial strain-to-strain variation. The genomes of C.
fungivorans and C. pratensis are larger and have higher
GC content than the two strains of C. arenae. Only
strain C. fungivorans Ter331 has a plasmid, described in
detail by Mela et al. [9]. Despite the absence of a plas-
mid, C. pratensis Ter91 has the largest genome size
(5.7 kb) and highest number of encoding genes (5424),
which is likely due to the large number of horizontally
acquired genes as indicated by the number of genomic
islands (see below).

Phylogenetic analysis
A phylogenetic tree based on 233 protein-coding genes
(Fig. 1a) revealed that C. fungivorans and C. pratensis
are more closely related to each other than to C. arenae.
Similar clustering was observed based on phylogenetic
trees generated with whole genome fragments (200 bp
fragment sizes) (Fig. 1b) and 16S rRNA (Additional file
1: Figure S1) where each strain falls into its respective
species clade.

Core and pan-genome analysis
A core genome containing 2339 predicted orthologous
groups was identified for the six Collimonas strains
based on the all-vs-all BLASTp search (Fig. 2a). This
core genome represents 43.1 to 52.7 % of the predicted
ORF’s of each strain (Fig. 2a), illustrating a large degree

Table 1 Collimonas strains and their genomic features

Feature Collimonas fungivorans Collimonas pratensis Collimonas arenae

Ter331 Ter6 Ter91 Ter291 Ter10 Ter282

Source Inner coastal dune soil in Terschelling, the Netherlands

Chromosome size (Mb) 5.2 5.6 5.7 5.6 4.7 4.7

Plasmid size 40 kb NA NA NA NA NA

G + C % 59.6 % 59 % 58.8 % 59 % 56.8 % 56.8 %

Protein-encoding sequences (CDSs) 4910 5233 5424 5228 4436 4473

CDSs on plasmid 44 NA NA NA NA NA

Hypothetical proteins 1091 1209 1292 1214 1101 991

Average CDS length (nt) 927 923 904 917 834 899

Coding (%) 87.8 % 86.2 % 85.6 % 85.8 % 78.4 % 85.4 %

rRNA 9 9 9 9 9 9

tRNA 52 52 52 51 52 53

contigs 1 1 1 1 1 1

NA not applicable, refers to strains in which no plasmids are naturally present
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of genomic diversity between these strains. Each of the six
genomes includes 125 to 835 orthologous groups that are
unique (Fig. 2a). Species core orthologous clusters and
strain-specific unique clusters within the three Collimonas
species were examined, respectively (Fig. 2b-d). In the three
species, 5868, 5810 and 4546 orthologous clusters were
identified and of these, 3859, 4194 and 3829 orthologs were
present as the species core genome for C. fungivorans, C.
pratensis, C. arenae, respectively (Fig. 2b-d). A core-pan
genome evolution plot summarizing the variability in each
possible combination of Collimonas species shows that the
number of unique (singleton) gene clusters is stable. The
variable gene clusters are increasing and the core gene clus-
ters are decreasing (Fig. 2e). In order to determine the dif-
ferences in functions encoded by the core and variable
genome of each strain, the proportion of proteins in each
COG (Clusters of Orthologous Groups) was plotted versus
the COG function. The relative abundance of almost all the
COG categories was higher in the core genome of the six
strains than in the variable genome. This was not the case
for COG categories N (Cell motility), U (Intracellular traf-
ficking, secretion, and vesicular transport) and proteins that
cannot be assigned in COG categories (data not shown)
where the proteins were more abundant in variable ge-
nomes for C. fungivorans and C. arenae (Fig. 3a). This is
most probably due to the fact that a flagellar and
chemotaxis-related gene cluster is only present in these two
species but not in C. pratensis (Additional file 2: Table S1).
This finding is consistent with the observed reduced swim-
ming motility of C. pratensis Ter91 and Ter291 as com-
pared to the other four strains (Fig. 3b).
Whole genome alignments of the six strains were per-

formed to obtain information on the nucleotide level syn-
teny (Additional file 1: Figure S2). These alignments
revealed a very high level of synteny when genomes of
strains from the same species were compared (Additional
file 1: Figure S2A-C), but many rearrangements and inver-
sions were observed between the genomes of all strains
(Additional file 1: Figure S2D).

Genomic islands (GIs), bacteriophages and CRISPRs
Genomic islands (GIs) are mobile genetic elements ac-
quired by horizontal transfer, which carry multiple genes
that are typically involved in pathogenesis or symbiosis.
The Collimonas genomes carry 7 to 47 GIs ranging from
4.0 kb to 64 kb in size (Fig. 3c). All together, the six Col-
limonas genomes have 139 genomic islands. The large

numbers of GIs indicate a complex history of gene re-
combination and horizontal transfer between bacterial
relatives. The genomes of all strains contain one to five
possible phages, each ranging in size from 7.0 to 59.9 kb.
In total, the six genomes have 18 phages with some of
the phages falling into the GIs (Fig. 3c). CRISPRs (Clus-
tered Regularly Interspaced Short Palindromic Repeats)
are DNA loci that are involved in prokaryotic immunity
to phage infection. Putative CRISPRs were identified
using the CRISPRsFinder program [10]. Two confirmed
CRISPRs were present only in C. fungivorans Ter6 gen-
ome. For the other five genomes, no or only question-
able CRISPRs were found (data not shown).

Secretion systems
In Gram-negative bacteria, type II secretion systems
(T2SSs) are the most ubiquitous secretion systems used
by bacteria to export many extracellular enzymes. T2SSs
are conserved and known as a two-step process: proteins
are translocated across the inner membrane by the Sec
or Tat pathway, and then transported from the peri-
plasm to the exterior by an outer membrane secretin
[11]. SecABDEFY, yajC, yidC, ftsY, and ffh and tatABC
encoding genes for Sec and Tat pathways respectively
were found to be present in all Collimonas genomes
(Additional file 1: Figure S3A; Additional file 2: Table
S2). The outer membrane secretion unit of the T2SS in the
Collimonas genomes resembles the Gsp system which con-
tains one gene cluster gspD-N, responsible for secretion of
protease, lipase, and phospholipase C in Burkholderia [12]
(Additional file 1: Figure S3A; Additional file 2: Table S2).
A newly described subtype of T2SS, tad locus (tight adher-
ence) [13] was identified in all six genomes. The tad locus
encodes the machinery required for the assembly of adhe-
sive Flp (fimbrial low-molecule-weight protein) pili and is
necessary for bacterial adhesion to surfaces, biofilm forma-
tion, and pathogenesis as shown for Aggregatibacter actino-
mycetemcomitans [14], Haemophilus [15], Pseudomonas
[16], Yersinia etc. [13]. For the mycophagous behavior of
Collimonas, the adhesion to fungal hyphae might be of
prime importance [17] and the presence of the T2SS tad
locus in all strains indicates that it may be an essential trait
for the mycophagy lifestyle of this species.
Type III secretion systems (T3SSs) are used by various

Gram-negative bacteria to inject effector proteins into
host cells, promoting either mutual benefit or pathogen-
esis [18, 19] and have been described as important for

(See figure on previous page.)
Fig. 1 Whole genome phylogeny of the six Collimonas genomes. a Neighbor-joining tree based on concatenated sequences for 233 protein encoding
genes. Pseudomonas protegens Pf-5 and Burkholderia phytofirmans PsJN were used as outgroup. Bootstrap values are shown on branches. b Phylogenetic
tree based on a fragmented alignment using BLASTN made with settings 200/100. A dendrogram was produced in SplitsTree 4.13.1 (using neighbor
joining method) made from a Nexus file exported from Gegenees. Burkholderia, Janthinobacterium and Herbaspirillum were set as outgroups. Bootstrap
values are of all the branches are 100, for clarity reason, not shown in the figure
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bacterial interaction with fungi [20]. Three Collimonas
strains Ter331, Ter6 and Ter91 carry hrp-hrc1 family
gene clusters of T3SS and a second T3SS (Additional file
1: Figure S3A; Additional file 2: Table S2). The T3SSs
play crucial role in the virulence of plant and human
pathogens [21]. However, their functions in non-
pathogenic bacteria are still poorly understood; there are
indications that mutation of T3SSs in a plant-growth
promoting bacteria P. fluorescens SBW25 resulted in a
significant reduction in the potential of the bacterium to
colonize the root tips of sugar beet seedlings [22]. They
might also be involved in bacterial-fungal interactions,
facilitating bacteria migration along fungal hyphae [20].
For Collimonas, the T3SSs may be important to inject
membrane disturbing compounds into the fungal host to
get access to nutrients inside the fungal hyphae [2].
Type VI secretion systems (T6SSs) are conserved and

prevalent in Gram-negative bacteria. They are known to
be involved in competition, predation and inter-specific
bacterial interactions [23–25]. In this study, we identified
a cluster of genes encoding T6SS only in C. fungivorans
and C. pratensis strains, but not in the C. arenae species.
This may indicate that horizontal gene transfer events or
evolutionary genes loss have occurred. Furthermore, in
C. fungivorans Ter331, part of the T6SS is located on a
genomic island.
Further functional studies are needed to determine the

exact role of these secretion systems for Collimonas
lifestyle and in particular for the attack of fungi.

Signal transduction systems
Signal transduction systems play important roles for
many bacteria enabling them to detect and respond to
changes and stresses in the environment [26]. Each Col-
limonas genome encodes 267 to 365 one-component
systems (1CSs) which are the majority of signal trans-
duction systems in prokaryotes [27] and 90 to 109 two
component system (TCSs) (Additional file 2: Table S3).
Additionally, 9 to 29 genes involved in chemotaxis sys-
tems were found. Extracytoplasmic function (ECF) sigma
factors which comprise the largest group among the σ70
family [27] were also found in all Collimonas genomes
with numbers ranging from 9 to 11. Higher numbers of

signal transduction system were predicted in C. fungivor-
ans and C. pratensis as compared to C. arenae. The
overall high number of genes related to signal transduc-
tion systems (8–9 % of predicted sequences in the six
Collimonas genomes) suggest that Collimonas possess
the ability to sense environmental signals and cues im-
portant for their growth, survival and interactions in the
heterogeneous and complex soil environment. This is in
consistent with the previous report that soil bacteria
contain higher number of signal transduction systems as
compared to bacteria from a stable environment [28].
Our genomic analysis revealed that all six Collimonas

genomes contain two QS genes: one autoinducer gene
and one luxR-type transcriptional regulator. They show
40 % homology to the CepIR system from Burkholderia
(Additional file 2: Table S4) which is known to regulate
protease, lipases, chitinases and some other exoenzymes
production [29, 30]. Quorum sensing assay performed
with the indicator strain C. violaceum CV026 revealed
clear short chain AHL production in C. fungivorans
Te331, Ter6 and C. pratensis Ter91, Ter291 strains, but
no or trace amounts in C. arenae Ter10 and Ter282
strains (Additional file 1: Figure S3B). In all strains, AHL
production was detected when A. tumefaciens NT1 was
used as QS bioreporter (Additional file 1: Figure S3C).

Secondary metabolome of Collimonas strains
Bacteria often produce a set of secondary metabolites
with antimicrobial properties important for competition
and survival in competitive environments. In Collimo-
nas, the secondary metabolites are thought to play an
important role enabling mycophagous growth, namely
by disturbing the fungal membrane integrity [2]. Al-
though Collimonas was suggested to represent a valuable
resource for the discovery of novel molecules and en-
zymes [2], to date only two antimicrobial compounds
were described for this genus, namely violacein and col-
limomycin [31, 32]. Violacein was identified in the Colli-
monas CT strain isolated from an aquatic environment
and revealed antibacterial activity against Micrococcus
luteus [31]. However, in the six Collimonas genomes
here, no genes encoding violacein were identified.

(See figure on previous page.)
Fig. 2 The pan-core genome of Collimonas strains. The venn diagrams illustrate the number of shared and unique genes based on clusters of
orthologs. a Venn diagram showing numbers of species-specific genes commonly found in each genome of each species, (non-overlapping of
each oval) and Collimonas core orthologous gene number (in the centre). The total number of protein coding genes within each genome is listed
below the strain name. b Venn diagram showing numbers of unique orthologues genes in C. fungivorans strains. c Venn diagram showing numbers of
unique orthologues genes in C. pratensis strains. d Venn diagram showing numbers of unique orthologues genes in C. arenae strains.
e Core- and pan-genome as function of the number of genomes taken from the six Collimonas genomes in this study. The number of shared
and strain specific gene clusters between strains depends on which combinations of strains (x-axis). Specific singleton gene clusters (blue bars)
occur only in one strain, variable gene clusters (green bars) occur in more than one but not all strains and core gene clusters (red bars) occur
in all strains of a given combination. Error bars represent the standard deviation in the core- (left error bar), variable- (middle error bar) and
singleton- (right error bars) gene clusters
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Collimomycin is a polyacetylenic compound with al-
ternating triple and single carbon-carbon bonds [32]
which is produced by C. fungivorans Ter331 and was

shown to have strong antifungal activities [32]. The cor-
responding biosynthesis cluster K, is only partially
present in C. fungivorans Ter6, and completely absent in
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Fig. 3 Distribution of orthologous genes based on COG category in each Collimonas strain. a The percentage of orthologous genes assigned by
COG category in the core genome (black bars) and the variable genome (white bars). b Swimming motility of Collimonas strains Ter331, Ter6,
Ter91, Ter291, Ter10 and Ter282 on soft (0.3 % [wt/vol]) agar plates. c Comparative genome content of the six Collimonas strains. From the outside to
the inside circles: Chromosomes of all six strains (red: C. fungivorans, blue: C. pratensis, green: C. arenae). Phages/phage-like regions: black bars. Genomic
islands: dark blue bars. Genes in the forward (dark grey) direction, genes in the reverse (light grey) direction, G + C content (dark grey and light grey),
GC skew (dark grey: negative values, light grey: positive values). Universal and unique gene clusters are indicated with colored bars (orange: Ornibactin,
yellow: Phytoene, red: T3pks-nrps (Ter6), light blue: 2-aa NRPS-1 (Ter6), purple: 2-aa NRPS-2 (Ter291), light green: Nrps-t1pks (HSAF, Ter91)). Shared secondary
metabolite gene clusters are indicated with colored lines (deep pink: Collimomycin, dark red: NLP, dark green: Tripropeptin A)
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the other four genomes (Fig. 3c, Additional file 2: Table
S5). Moreover, the part of the collimomycin gene cluster
that is present only in C. fungivorans Ter331 is located
in a genomic island suggesting that its presence is due
to a horizontal gene transfer event.

Exoenzymes
Exoenzymes are extracellular enzymes produced inside
the cell, and subsequently released outside the cell to
perform extracellular digestion. Exoenzymes may be of
importance for Collimonas nutrient acquisition, micro-
bial interactions, mycophagy and weathering.

Chitinases Chitin is a major component of fungal cell
walls and is a homopolymer of N-acetyl-D-glucosamine
(GlcNAc). Chitinases are able to hydrolyze the 1,4-beta-
linkages of chitin [33]. Two loci A and B of chitinase
biosynthesis and transport were already found in the
genome of C. fungivorans Ter331 [34]. We observed that
the other five Collimonas genomes also contain a
complete set of genes in these two loci (Additional file 2:
Table S6). This is in line with previous observations
based on comparative genomic hybridization study [7]
and indicates that acquisition of these genes occurred
before Collimonas speciation. Phenotypic evaluation of
chitinase production of these strains was confirmed by
halo formation on water-agar plates containing colloidal
chitin [1]. Bacterial chitinase activity has often been re-
ported to be linked to antifungal properties [35–38]. In-
deed, when adding chitinase inhibitor allosamidin, the
growth of Collimonas on fungi was decreased, suggest-
ing potential contribution to its mycophagous ability
[39]. However, mutants in the chitinase loci of C. fungi-
vorans Ter331 showed no difference during in vitro an-
tagonism tests [34]. This suggests that chitinases might
not contribute solely to the antifungal activities of Colli-
monas. The antifugal activities might be coupled with
the production of other secondary metabolites.

Phospholipases Phospholipases are a group of enzymes
that catalyze the cleavage of phospholipids. Two major
phospholipase activities can be defined by the site of cleav-
age, namely in the hydrophobic diacylglycerol moiety
(PLA) or in the polar head group of the amphipathic
phospholipid (PLC and PLD) (Schmmiel and Miller,
1999). In general, 11 to 15 phospholipases from four dif-
ferent groups: phospholipase A1, phospholipase C,
phospholipase D and patatin phospholipase were detected
in the six Collimonas genomes (Fig. 4a; Additional file 2:
Table S7). Phospholipases are considered virulence factors
for pathogenic bacterial species which cause tissue de-
struction, lung infections, hemolysis etc. [40]. Given the
cleavage properties of phospholipids we speculate that
they might be involved in nutrient acquisition via fungal

membrane disturbing activities as well as in defense
against competitors.

Peptidases In the six Collimonas genomes, 176 to 212
peptidases were predicted and nine families of proteo-
lytic enzymes were identified (Fig. 4b). Among them,
serine and metallo peptidases are the two dominant fam-
ilies. The Collimonas strains in our study were tested
positive for exoprotease production (Fig. 4c). Serine pro-
teases are one of the most abundant groups of proteo-
lytic enzymes found in all living organisms [41] and in
prokaryotes, serine proteases are involved in several bio-
logical processes associated with cell signaling, defense
response and development [42–44]. Furthermore, serine
protease can be involved in regulating the biosynthesis
of lipopeptides, which can play a role in the suppression
of other microbes [45].

Iron acquisition
Siderophores are low molecular weight, high-affinity
iron chelating compounds produced by microorganisms
under iron limited conditions and function in
solubilization, transport and storage of iron [46, 47]. Sid-
erophore production can act as an antagonistic mechan-
ism by scavenging limited iron from the soil
environment, thereby reducing the amount of available
iron for other organisms. Our analysis revealed that all
six strains encode biosynthesis clusters which resemble
ornibactin (Fig. 4e), a siderophore synthesis cluster of
Burkholderia cenocepacia [48]. Siderophore production
was confirmed for all the six Collimonas strains, albeit
with different production efficiency (Fig. 4d).
Next to siderophore production, other mechanisms

of iron acquisition were reported. For example, re-
cently, a novel alternative siderophore-independent
iron uptake system was identified in Burkholderia,
named ftrbccABCD locus. This ftrABCD operon was
identified in all six Collimonas genomes (Fig. 4f ), in-
dicating that there are more strategies for iron uptake
besides ornibactin production. Moreover, we found
genes coding for the production of bacterioferritin, a
type of iron-storage protein [49]. The gene is often
adjacent to genes encoding a small [2Fe-2S]-ferre-
doxin Bfd. Downstream of the bfd gene is the tonB-
exbB-exbD cluster which encodes a system to trans-
duce cellular energy to outer-membrane receptors for
siderophores and haemin [50]. The bacterioferritin en-
coding gene bfr and adjacent genes bfd and tonB-
exbB-exbD cluster were found in the six Collimonas
genomes (Fig. 4g). Furthermore, a fecIR operon was
also found in all six genomes (Fig. 4h). It is known
that the transcription of genes for ferric-citrate trans-
port in E. coli requires FecI, and FecR, a cytoplasmic
membrane protein encoded by the second gene in the
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Fur-repressed fecIR operon which transmits an exter-
nal iron signal to the cytoplasmic FecI protein [51]. A
haem uptake system similar to that of Burkholderia
cenocepacia J2315 was found in the genomes of C.
fungivorans Ter6 and C. pratensis Ter91, encoded by
the hmu operon [52]. This operon is comprised of
five genes (Fig. 4i) and was suggested to be Fur-
mediated. Furthermore, fungi are known to produce
haem [53], and, therefore, it is plausible that
Collimonas are able to use the fungal haem as source
of iron.

NRPS and PKS-NRPS genes encoding metabolites

Lipopeptides Lipopeptides (LPs) are compounds com-
posed of a lipid tail with a linear or cyclic oligopeptide [54].
They exhibit surfactant, antimicrobial, anti-predation, and
cytotoxic properties [55, 56]. LPs are synthesized in bac-
teria by large nonribosomal peptide synthetases (NRPSs)
via a thiotemplate process. The structural diversity of the
LPs is due to differences in the length, composition of the
fatty acid tail, and the number, type and configuration of
the amino acids in the peptide moiety. Via in silico analysis,
we identified gene clusters for LP biosynthesis of tripro-
peptin A in the genomes of C. fungivorans Ter331 and
Ter6 (Fig. 5a). Although the structure of tripropeptin A
has been known for more than a decade [57, 58], genetic
analysis of its biosynthesis was only recently reported [59].
Our study revealed that three NRPS genes trpA, trpB, trpC
are organized in a single-operon (Fig. 5a). The trpA gene,
encodes an NRPS with the first five modules, and trpB,
trpC encode one and two modular NRPS, respectively. The
wild type C. fungivorans Ter331 and Ter6 possess antibac-
terial activity against Staphylococcus aureus but the other
four strains from C. pratensis and C. arenae (Fig. 5b) do
not. The site-directed ΔtrpA mutant of C. fungivorans
Ter331 lacks this antagonism (Fig. 5b) indicating that tri-
propeptin A is indeed involved in antibacterial activity
which is a unique trait for C. fungivorans strains.
Another 16.9 kb NRPS gene was found in C. fungivorans

Ter331, Ter6 and C. pratensis Ter91, Ter291 strains
(Figs. 3c and 5c). This gene is composed of five amino
acids. There are no hits to known lipopeptides indicating
a new lipopeptide. Collimonas strains are well known for

their ability to suppress a range of fungi and oomycetes [3,
32, 60, 61]. However, our study revealed that the six Colli-
monas strains differed in the in vitro suppression against
fungal and oomycetal pathogens (Fig. 5d; Additional file 2:
Table S8). When the gene encoding the new lipopeptide
was knocked out in C. fungivorans Ter331 by site-directed
mutagenesis, reduced suppression was observed (Fig. 5d).
This indicates that the new lipopeptide contributes to
antimicrobial activity against both fungal and oomycetal
pathogens. For the C. arenae species, no genes coding for
the production of the new lipopeptide were found in the
genome, but the strains showed suppressing activities
against fungal and oomycetal pathogens (Additional file 2:
Table S8). This indicates that apart from new lipopeptides,
there may be other factor(s) involved in antimicrobial ac-
tivity or that the suppression activity is due to synergistic
effects rather than to a single compound. Thus, the differ-
ent types of lipopeptide produced by the different Colli-
monas strains may partly explain the variability in the
fungal inhibition behavior of these strains. The variability
is also reflected in the unknown orphan gene clusters de-
scribed below.

Unknown orphan NRPS and PKS-NRPS hybrid gene
clusters Within the genomes, four orphan gene clusters
were identified. Two different 2-amino acids (2-aa) NRPS
genes were found in Ter6 and Ter291 respectively
(Additional file 2: Table S9; Additional file 1: Figure S4B,
C). Next to this, a 54.5 kb unknown T3PKS-NRPS gene
cluster was discovered in the genome of Ter6 (Additional
file 1: Figure S4A). Another 10.6 kb NRPS-T1PKS gene
cluster in Ter91 (Additional file 1: Figure S4D) resembles
clusters encoding the Heat-stable antifungal factor (HSAF),
also referred to as dihydromaltophilin, produced by Lyso-
bacter species [62, 63]. HSAF exhibits inhibitory activities
against a wide range of fungal species by disrupting the po-
larized growth or the biosynthesis of a distinct group of
sphingolipids of fungi [62, 63].

Terpenes
Terpenes are a diverse family of primary and secondary
metabolites which were mostly studied in plants and
fungi [64]. Many terpenes of plant origin are known to
be active against a wide variety of microorganisms,

(See figure on previous page.)
Fig. 4 a Identification of phospholilpases in the six Collimonas genomes with PFAM signatures of the different phospholipase groups. b Identification
of peptidases in the six Collimonas genomes as inferred from MEROPS 9.12 database. c Extracellular protease activity of Collimonas strains Ter331, Ter6,
Ter91, Ter291, Ter10 and Ter282. A halo indicates extracellular protease production. d Siderophore production of Collimonas strains Ter331, Ter6, Ter91,
Ter291, Ter10 and Ter282 plated on a CAS plate. An orange halo indicates of siderophore production. Gene clusters involved in iron acquisition in
Collimonas strains. Five loci are presented: (e) Ornibactin locus. Underneath the genes are the module and domain organization of orbI and orbJ. The
domains are as follows: C, condensation; A, adenylation; T, thiolation; and E, Epimerization. Underneath the domains are the amino acids
that are incorporated into the peptide moiety. The number associated with the amino acid refers to the position of the amino acid in
the peptide chain. f ftrbccABCD locus. g bfr (bacterioferritin) encoding gene and adjacent genes bfd and tonB-exbB-exbD cluster. h fecIR
operon. i hmu operon (or bhu Burkholderia haem uptake operon)
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including Gram-positive, Gram-negative bacteria and
fungi [65], but to date there are only few reports on anti-
microbial activity of terpenes from microbial origin [66,
67]. In a previous study, four monoterpenes (γ-terpi-
nene, 1S-α-pinene, β-pinene and β-myrcene) were de-
tected in the headspace of C. pratensis strains Ter91
[68]. Here, these monoterpenes were tested individually
and as a mixture for their antimicrobial activity. The β-
pinene exhibited inhibition against Staphylococcus aur-
eus and Rhizoctonia solani and the mixture of all mono-
terpenes revealed inhibition against these two pathogens
and also to E. coli (Fig. 6a).
Biosynthesis of terpenes is mediated by terpene cyclases,

and starts from polyprenyl pyrophosphate precursors. The
precursor accepted by the cyclase determines which class
of terpenes it produces: the C10 precursor geranyl pyro-
phosphate (GPP) will lead to formation of monoterpenes,
while C15 precursorfarnesyl pyrophosphate (FPP) will lead
to sesquiterpenes, and the C20 precursor geranylgeranyl
pyrophosphate (GGPP) will lead to di-terpenes, or to phy-
toene (C40). In particular mono- and sesquiterpene
synthases can occur in many cyclization patterns, leading
to a huge diversity of molecules.
The genomes of the six Collimonas strains were

screened for gene clusters possibly involved in terpene
biosynthesis. All strains carry genes related to phytoene
biosynthesis (Additional file 2: Table S9). Only C. praten-
sis strains Ter91 and Ter291 harbored an additional
cluster comprising terpene synthases genes (Fig. 3c;
CPter91_2617 and CPter291_2730). Terpene cyclases
are widely distributed in bacteria, but mostly charac-
terised in Streptomyces species [69, 70]. To date only
one terpene cyclase from Proteobacteria has been func-
tionally characterised, the 2-methylenebornane synthase
from Pseudomonas fluorescens Pf0-1 [71]. CPter91_2617
and CPter291_2730 both encode a 330-amino acid pro-
tein that differs only in 2 amino acid residues (Additional
file 1: Figure S5). When compared to other functionally

characterized terpene cyclases, the Collimonas protein se-
quences showed maximally 23 % aa-identity to any previ-
ously characterized bacterial terpene cyclase (Fig. 6b).
The product specificity of mono- and sesquiterpene cy-

clases cannot be predicted from their primary sequence.
For biochemical characterization, CPter91_2617 and
CPter291-2730 genes were expressed in E. coli, partially
purified and tested in vitro using FPP, GPP or GGPP as
substrates. When the produced terpenes were analyzed by
GC-MS, both Collimonas enzymes converted FPP to a
mix of sesquiterpenes and sesquiterpene alcohols. The
major peak was putatively identified as germacrene D-4-ol
by comparison of the mass spectrum to the NIST 2014
spectral library, and several minor sesquiterpene peaks, in-
cluding δ-cadinene (Fig. 6c). When GPP was applied as a
substrate, the production of two monoterpenes identified
as β-pinene and β-linalool was observed (Additional file 1:
Figure S6A). A small amount of product could be ob-
served upon the incubation of GGPP as substrate, which
was putatively identified as 13-epimanool (Additional file
1: Figure S6B). Thus we characterized CPter91_2617 and
CPter291_2730 as mixed mono-, sesqui- and diterpene cy-
clases, with major product germacrene D-4-ol. The ses-
quiterpene products suggest that they are functionally
related to plant and fungal cadinene/cadinol and germa-
crene D-4-ol synthases, although sequence homology to
these enzymes is low [72, 73]. One of the monoterpene
products of CPter91_2617 and CPter291_2730, β-pinene,
was also observed in the headspace of C. pratensis and
showed antibacterial activity, suggesting a role of the Col-
limonas terpene cyclases in antimicrobial activity. Vola-
tiles terpenes may have synergistic antimicrobial effects in
combination with antibiotics. For example a synergistic
effect of terpenes and penicillin on multiresistant strains
S. aureus and E. coli was reported [74]. Beside antimicro-
bial activity the production of terpenes by Collimonas may
point to another important ecological role, namely chem-
ical communication. Since terpenes volatilize easily and

(See figure on previous page.)
Fig. 5 Biosynthetic gene cluster and antibacterial activity associated with tripropeptin A production by the Collimonas stains. a Organization of
the gene cluster and predicted amino acid composition of the Tripropeptin A in C. fungivorans Ter331 and Ter6 genomes. Underneath the genes
are the module and domain organization of trpA, trpB and trpC. The domains are as follows: C, condensation; A, adenylation; T, thiolation; and TE,
thioesterification. Underneath the domains are the amino acids that are incorporated into the LP peptide moiety. The number associated with
the amino acid refers to the position of the amino acid in the LP peptide chain. The black triangle indicates the position of the Gm cassette
insertion in the trpA gene. b Antibacterial activity associated with tripropeptin A production. Strains Ter331, Ter6, Δ13E12 mutant (deficient in
collimomycin biosynthesis), ΔNLP mutant (deficient in the new lipopeptide biosynthesis) and ΔNLP13E12 mutant (deficient in both-new lipopeptide
and collimomycin biosynthesis) exhibited inhibition against Staphylococcus aureus via overlay assay. ΔtrpA mutant of C. fungivorans Ter331 (deficient in
tripropeptin A biosynthesis)- loss in the inhibition activity. Biosynthetic gene cluster and antifungal/oomycetal activities associated with new lipopeptide
production by the Collimonas stains. c Organization of the gene cluster and predicted amino acid composition of the new lipopeptide in C. fungivorans
Ter331, Ter6 and C. pratensis Ter91, Ter291 genomes. Underneath the genes are the module and domain organization of NLP. The domains are as follows:
C, condensation; A, adenylation; T, thiolation; and TE, thioesterification. Underneath the domains are the amino acids that are incorporated into the LP
peptide moiety. The number associated with the amino acid refers to the position of the amino acid in the LP peptide chain. The black triangle indicates
the position of the Gm cassette insertion in the nlp gene. d Antifungal/oomycetal activities associated with new lipopeptide production. Strain Ter331
which has new lipopeptide biosynthetic clusters exhibited inhibition against Fusarium culmorum, Rhizoctonia solani and Saprolegnia parasitica. Mutant
ΔNLP of Ter331 deficient in new lipopeptide biosynthesis abolished the inhibition activities. CK is control grew without bacteria
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can be produced by all kingdoms of life including plant,
fungi and bacteria, we assume that terpenes may play a
significant role for Collimonas long-distance inter-
kingdom interactions and communication.

Conclusions
The comparative analysis of six completely sequenced
Collimonas genomes representing three species revealed
a high degree of genomic diversity between strains with
a core genome representing 43.1 to 52.7 % of the gen-
ome of all strains (Summarized in Fig. 3c). Although the

genomes were largely syntenic, genome rearrangements
were observed both between and within the species indi-
cating high genomic plasticity. All Collimonas genomes
carry large numbers of Genomic Islands pointing to a
complex history of gene recombination and horizontal
transfer between bacterial relatives. Type two secretion
systems were present in all genomes suggesting that it
may be important trait for the mycophagous lifestyle of
Collimonas.
Genomic analysis of secondary metabolism of Colli-

monas revealed that genes encoding for exoenzymes

A

C

B

Fig. 6 a Antimicrobial activities of pure β-pinene and 4-VOCs (mix of β-pinene, α-pinene, myrcene and terpinene in 1:1:1:1 ratio) against Staphylococcus
aureus, Escherichia coli and Rhizoctonia solani. CK is control without terpenes. 5 mm sterilized white filter papers were placed in the centre or on the bottom
of the petri dishes for antibacterial and antifungal assays respectively. 2 μl of each VOC was added accordingly to the white filter papers. b Phylogenetic
tree of characterized bacterial terpene cyclase proteins. The protein name indicates the bacterial species and the major terpene produced by these terpene
cyclases. Sequences included are listed in Additional file 2: Table S13. c Ter91 terpene synthase with FPP. TIC 100 %= 1.76E5. Major sesquiterpene product
at RT 15.17, identified as Germacrene D-4-ol by comparison of mass spectra to NIST14 spectral library
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such as chitinase, peptidase, phospholipase are well
conserved but that there is a high variability of genes
encoding for the production of other secondary
metabolites such as collimomycin, lipopeptides, (PKS-
)NRPS, and terpenes. Genes encoding the production
of the polyacetylenic compound collimomycin and
lipopeptide tripropeptin A are present only in C. fun-
givorans while the gene clusters encoding the produc-
tion of a putative new lipopeptide is present in both
C. fungivorans and C. pratensis, but not C. arenae.
Moreover, several unknown orphan (PKS-)NRPS gene
clusters are present in the genome of C. fungivorans
and C. pratensis.
Mutational and phenotypical analyses indicated that

tripropeptin A and the designated new lipopeptide have
antibacterial and antifungal (oomycetal) activities, re-
spectively. The biochemical characterization of the ter-
pene synthases genes revealed that Collimonas are able
to produce a set of sesquiterpenes and/or monoterpens
that are considered to be mainly of plant origin. The in
vitro assay of pure terpene compounds indicated their con-
tributions to both antibacterial and antifungal activities.
Overall, our exploration of Collimonas genomes re-

vealed that this bacterial group represents a valuable re-
source for the discovery of novel secondary metabolites
and enzymes. The results gained here will be certainly
helpful for designing future experimental studies that
will lead to comprehensive understanding of the unique
ecology of Collimonas species.

Methods
Strains and growth conditions
All bacterial strains used in this study are listed in
Table 1 and Additional file 2: Table S10. Collimonas
strains were cultured in 0.1 Tryptic Soy Broth (0.1 TSB)
(5 g/L NaCl, 1 g/L KH2PO4, 3 g/L TSB, 20 gL − 1 CMN-
Boom Agar, pH = 6.7) or King’s B medium (20 g/L prote-
ose peptone, 1.5 g/L MgSO4, 1.2 g/L KH2PO4, 10 g/L
glycerol, 15 g/L agar). Escherichia coli strain DH5α was
used as a host for the plasmids used for site-directed
mutagenesis. E. coli strains were grown on Luria-Bertani
(LB) plates (10 g/L NaCl, 10 g/L Bacto™ Tryptone, 5 g/L
Bacto™ Yeast extract, 20 g/L Merck Agar) or in LB broth
amended with the appropriate antibiotics.

Genomic DNA isolation
Genomic DNA from each Collimonas strain was ex-
tracted from overnight grown cells using QIAamp® DNA
Mini Kit and Qiagen® MagAttract® HMW kit and used
for Illumina and PacBio RS II sequencing respectively.

Genome sequencing
Illumina paired-end sequences were obtained for C. are-
nae Ter10, C. arenae Ter282, C. pratensis Ter91, C.

pratensis Ter291 and C. fungivorans Ter6 from Base-
Clear B.V. on the Illumina HiSeq2000 platform (2 x
51 bp paired-end reads, except strain Ter91 which was
sequenced at 2 x 100 bp paired-end reads) and assem-
bled using the Ray [75] assembler version 2.3.1 (Add-
itional file 2: Table S11).
PacBio RS II sequences were obtained from 5 SMRT

cells, one for each strain. Sequences were filtered using
SMRT Analysis server v2.2.0 with default settings. The
RS_HGAP Assembly.3 (HGAP3) [76] protocol was used
to assemble the filtered reads, the RS_AH_Scaffolding
protocol was used if the initial assembly yielded more
than one contig, followed by a final Quiver correction
using the RS_Resequencing protocol (See Additional file
2: Table S12).
The singular contigs were checked using a custom

script and overlapping ends trimmed. The final circular
contig for each chromosome was rearranged to start at
the dnaA gene in the forward direction. There was no
evidence of plasmids in the sequence data.
All Collimonas sequences including the previously

published genome of Ter331 were annotated using the
IGS annotation pipeline [77]. The IGS annotation of
Ter331 is attached as a Additional file 3: The accession
numbers of the other five genomes after submission to
NCBI are Ter6 (CP013232); Ter91 (CP013234); Ter291
(CP013236); Ter10 (CP013233) and Ter282 (CP013235).

Bioinformatic analysis
Core, pan and variable genome analysis
Protein coding genes from the six Collimonas strains were
clustered together with the protein coding genes of Bur-
kholderia phytofirmans PsJN (NC_010681.1, NC_010676.1)
and Pseudomonas protegens Pf-5 (NC_004129.6) using cd-
hit [78] with word length 3 (−n 3), global identity (−G 1)
and a minimal alignment coverage of 60 % for the shortest
protein (−aS 0.6). Cd-hit clusters were parsed into an
absence-presence matrix from which the core, pan and
variable genomes were parsed using custom scripts. COG
annotations were determined using kognitor [79]. Core and
pan evolution plot is generated based on [80]. At each
number of strains (n) out of strain set (s), s!/n!*(s-n)! combi-
nations are possible. The median number of specific, vari-
able and core genes for all combinations are plotted as a
function of n. Clusters containing one gene per strain were
selected from the core cluster set of the Collimonas, Bur-
kholderia and Pseudomonas strains were aligned with
MAFFTand combined in one pseudoalignment. Redundant
colums were removed and maximum likelihood phylogen-
etic trees were calculated with RAxML [81].
The annotation of the previously-published genome of

Ter331 was updated and manually curated as part of this
study. Synteny analyses were performed using Progressive
MAUVE [82]. Phylogenetic analyses on the whole genome

Song et al. BMC Genomics  (2015) 16:1103 Page 14 of 17



was performed using Gegenees [83], and 16S rDNA
analysis was performed using MEGA6 [84–87]. Whole
genome peptidases prediction was conducted by
MEROPS [88]. Phospholipases were predicted by
searching on the basis of the profile HMM using
PFAM domains of phospholipase A1 (PF02253), phospho-
lipase A2 (PF09056), phospholipase C (PF05506) and
phospholipase D (PF00614). Secondary metabolite pro-
duction clusters were examined using the antiSMASH
program [89, 90]. The amino acid composition of products
from NRPS sequences were predicted using NRPSpredic-
tor 2 [91]. Genomic islands were identified using Island-
Viewer [92, 93] and phages elements and features were
identified using PHAST [94]. CRISPRs were identified
based on CRISPRfinder [10]. Whole genome analysis for
type VI secretion system was conducted with SecRet6 [95]
and circular genome diagrams were visualized using
Circos [96].

Availability of supporting data
Further methodological details are provided in the
Additional file 4: Materials and Methods.

Additional files

Additional file 1: Figure S1. Phylogenetic tree based on 16S rDNA
depicting the relationships of sequenced strains of Collimonas.
Underneath the genes are the module and domain organization of PKS
or NRPS genes. The domains are as follows: C, condensation; A,
adenylation; T, thiolation; E, Epimerization; TE, thioesterification; CAL,
Co-enzyme A ligase domain; KS, Ketosynthase domain; AT, Acyltransferase
domain; ER, Enoylreductase domain; KR, Ketoreductase domain; DH,
Dehydratase domain; and ACP, Acyl-carrier protein domain. Underneath
the domains are the amino acids that are incorporated into the peptide
moiety. The number associated with the amino acid refers to the position
of the amino acid in the peptide chain. Figure S2. Synteny of the six
Collimonas genomes. Pairwise alignments of genomes were generated
using Mauve (A) C. fungivorans (B) C. pratensis (C) C. arenae and (D) The
three species together. Colored outlined blocks surround the regions of
the genomic sequence that aligned to another genome. The colored bars
inside the blocks are related to the level of sequence similarities. The
analysis showed that the highest number of rearrangements was evident
between all the three species. Figure S3. (A) Conserved gene clusters for
type II (T2SSa/T2SSb), III (T3SSa/T3SSb) and VI (T6SS) secretion systems
identified in Collimonas strains. Quorum sensing assays of the Collimonas
strains. Quorum sensing activity of Collimonas strains Ter331, Ter6, Ter91,
Ter291, Ter10 and Ter282 with indicator strain (B) C. violaceum CV026 and
(C) A. tumefaciens NT1 (outer colonies). A purple (C. violaceum CV026) or
blue (A. tumefaciens NT1) pigment produced by the indicator strains is
indicative of quorum sensing activity of the tested strains. Figure S4.
Organization of the orphan gene clusters and predicted amino acid
compositions. Figure S5. Amino acid alignment of Collimonas terpene
synthases CPter91_2617 and CPter291_2730 with previously characterised
bacterial terpene synthases. The Collimonas terpene synthases were
aligned with the Streptomyces exfoliatus pentalenene synthase
(Se_pentalenene), S. coelicolor geosmin synthase (Sc_geosmin, 336
amino acids of the N-terminus), Streptosporangium roseum epi-cubenol
synthase (Sr_epicubenol), S. avermitilis avermitilol synthase (Sa_avermitilol), S.
clavuligerus 1,8-cineole synthase (Scl_cineole) and Pseudomonas fluorescens 2-
methylenebornane synthase (Pf_methylenebornane). The characteristic
terpene synthase divalent metal-binding motifs, namely the acidic amino
acid-rich motif and the NSE triad, are boxed. Figure S6. GC-MS chromatograms

of Ter91 terpene cyclase incubated with different substrates, and mass spectra
of major products. The GC-MS chromatograms of Ter291 were identical to
Ter91 (data not shown). Empty vector chromatograms shows products from a
control enzyme extract (pACYC-duet-1). (A) Ter91 terpene synthase with GPP.
TIC 100 %= 1.19E4. Major monoterpene product at RT 6.79, identified as
Beta-pinene by authentic standard. (B) Ter91 terpene synthase with GGPP. TIC
100 % = 2.12E4. Major diterpene product at RT 20.24, identified as
13-epimanool comparison of mass spectra to the NIST8 library.
(PDF 570 kb)

Additional file 2: Table S1. Gene locus of the flagellar biosynthetic
gene cluster of the Collimonas strains. Table S2. Gene locus of the secretion
systems of the Collimonas strains. Table S3. Genomic distribution of signal
transduction proteins in six Collimonas genomes. Table S4. Presence of
quorum-sensing proteins in six Collimonas genomes. Table S5. Gene locus
of the collimomycin biosynthetic gene cluster of the Collimonas strains.
Table S6. Gene locus of the chitinase biosynthetic gene clusters of the
Collimonas strains. Table S7. Gene locus of the phopholipase genes of the
Collimonas strains. Table S8. Antimicrobial activities of the Collimonas
strains. Table S9. Genes encoding secondary metabolites and secretion
systems in Collimonas strains. Table S10. Strains and mutants used in this
study. Table S11. Summary of Illumina paired-end sequences assembly
data. Table S12. Summary of PacBio sequences assembly data. Table S13.
Sequences of characterized bacterial terpene synthases used in the
phylogenetic analysis. (XLSX 56 kb)

Additional file 3: The IGS annotation of Collimonas fungivorans
Ter331 genome. (GBF 10511 kb)

Additional file 4: Materials and Methods. Additional detailed
materials and methods. (DOCX 45 kb)
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