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Effect of genotype imputation on genome-enabled
prediction of complex traits: an empirical study
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Abstract

Background: Genotype imputation is an important tool for whole-genome prediction as it allows cost reduction of
individual genotyping. However, benefits of genotype imputation have been evaluated mostly for linear additive
genetic models. In this study we investigated the impact of employing imputed genotypes when using more
elaborated models of phenotype prediction. Our hypothesis was that such models would be able to track genetic
signals using the observed genotypes only, with no additional information to be gained from imputed genotypes.

Results: For the present study, an outbred mice population containing 1,904 individuals and genotypes for 1,809
pre-selected markers was used. The effect of imputation was evaluated for a linear model (the Bayesian LASSO - BL)
and for semi and non-parametric models (Reproducing Kernel Hilbert spaces regressions – RKHS, and Bayesian
Regularized Artificial Neural Networks – BRANN, respectively). The RKHS method had the best predictive accuracy.
Genotype imputation had a similar impact on the effectiveness of BL and RKHS. BRANN predictions were, apparently,
more sensitive to imputation errors. In scenarios where the masking rates were 75% and 50%, the genotype imputation
was not beneficial. However, genotype imputation incorporated information about important markers and improved
predictive ability, especially for body mass index (BMI), when genotype information was sparse (90% masking), and for
body weight (BW) when the reference sample for imputation was weakly related to the target population.

Conclusions: In conclusion, genotype imputation is not always helpful for phenotype prediction, and so it should be
considered in a case-by-case basis. In summary, factors that can affect the usefulness of genotype imputation for
prediction of yet-to-be observed traits are: the imputation accuracy itself, the structure of the population, the genetic
architecture of the target trait and also the model used for phenotype prediction.
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Background
Genome-enabled prediction of quantitative traits is a topic
of current interest in genetic improvement of agricultural
animal and plant species, as well as in preventive and per-
sonalized medicine in humans. In agriculture, it has been
applied to prediction of genetic merit for breeding pur-
poses [1] and to management decisions based on pre-
dicted phenotypes [2,3]. In human medicine, it has been
applied for example to prediction of risk to disease [4,5].
The original idea was proposed by Meuwissen et al. [6]
and involves the use of prediction models including thou-
sands of Single Nucleotide Polymorphisms (SNPs) fitted
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simultaneously as predictor variables, generally using
shrinkage-based estimation techniques (e.g. [7]). The im-
plementation of such models involves two steps. First, a
group of individuals having both phenotypic and geno-
typic information (generally referred to as reference
sample) is used to train the model. Cross-validation
techniques can be used to compare different models.
Secondly, the trained model is applied to a group of in-
dividuals with genotypic information only (the target
sample), for prediction of their genetic merit or of their
yet-to-be-observed phenotypes.
A commonly used technique in this field is genotype

imputation. Genotype imputation can be employed to fill
in missing data from the laboratory or allow merging
data sets generated from different SNP chips. Genotype
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imputation has been proposed also to impute from ge-
notypes scored with low-density chips to higher dens-
ities, as a way to reduce genotyping costs [3,8,9]. Other
authors have proposed to use cosegregation information
from chips built with evenly spaced low-density SNPs or
SNPs selected by their estimated effects to track signals
of high density SNP alleles [10]. Weigel et al. [11]
showed that a low-density panel containing selected
SNPs can retain most of the prediction ability of high-
density panels. Furthermore, in a later study, Weigel
et al. [3] also showed that imputed genotypes can pro-
vide similar levels of predictive ability to those derived
from high density genotypes in scenarios where a suit-
able reference population is available.
The benefit of imputing genotypes essentially depends

on its imputation accuracy [3], which, in turn, depends
on a number of factors including population structure
[3,12], and genetic architecture of the target trait [13].
Many studies have shown that currently available imput-
ation methods and software give a satisfactory level of
accuracy of uncovering unknown genotypes [8,14-16].
Hence, imputation may provide a suitable alternative for
reducing genotyping costs, and it has been suggested for
commercial applications such as the pre-screening of
young bulls and heifers in dairy cattle [3]. Moreover,
VanRaden et al. [17] reported that the reliability of gen-
omic predictions can be improved at a lower cost by com-
bining information from chips containing varied marker
densities, to increase both the number of markers and ani-
mals included in genome-based evaluation.
So far, all studies conducted to evaluate the effect of

genotype imputation on whole-genome prediction have
assumed a linear relationship between phenotype and
genotype, aimed at capturing additive genetic effects
only. However, complex traits are known to be affected
by complex gene effects and interactions [18]. For this
reason, interest in non- and semi-parametric methods
for prediction of complex traits using genomic informa-
tion has been increasing. Such methods include Repro-
ducing Kernel Hilbert Spaces (RKHS) regressions on
markers [19-21] radial basis functions [22,23], and artifi-
cial neural networks [24,25]. Gianola et al. [24] argued
that these non-parametric regressions can capture com-
plex interactions and nonlinearities, which is not pos-
sible with Bayesian linear regressions commonly used in
genomic prediction.
Recently, Heslot et al. [26] evaluated the prediction ac-

curacy of several models including Bayesian regression
methods and machine learning techniques. Their results
indicated a slight superiority of non-linear models for
phenotype prediction in plants. As another example,
Okut et al. [25] used Bayesian Regularized Neural Net-
works (BRANN) to predict body mass index (BMI) in
mice using information on 798 SNPs, and obtained an
overall correlation between observed and predicted data
that varied between 0.25 and 0.3. Similar results were
obtained by de los Campos et al. [27] using a Bayesian
LASSO approach but using a panel that was 13 times
larger, comprising 10,946 SNPs. Perez-Rodriguez et al.
[28] compared linear and nonlinear models for genome-
enabled prediction in wheat and showed that nonlinear
models in general performed better. However, the author
found that in this case the BRANN did not outper-
formed the BL. Lastly, Howard et al. [29] indicated a
clear superiority of RKHS when predicting epistatic
traits using simulation.
The objective of our study was to investigate the effect

of genotype imputation in the context of whole-genome
prediction of complex traits in mice using parametric,
semi-parametric and non-parametric models applied to
different sizes of subsets of SNPs. Our underlying hy-
pothesis was that more elaborated prediction models, such
as those capable to accommodate non-additive genetic ef-
fects, would not benefit significantly from genotype im-
putation for prediction of yet-to-be-observed phenotypes.

Results
Results indicated a good accuracy of imputation of un-
known genotypes for all scenarios (Table 1). The lowest
imputation accuracy (0.75) was for the scenario with ap-
proximately 90% of the genotypes masked and the refer-
ence panel was not related to the imputing set. Although
Beagle software does not use pedigree information, a
higher genetic relatedness among individuals in the refer-
ence panel and in the set containing missing genotypes
can enhance imputation accuracy. The explanation is that
similarity of linkage disequilibrium (LD) patterns between
the set to be imputed and the reference panel serves as a
basis for imputing the unknown genotypes. The most
common error found was the switch between heterozy-
gotes and homozygotes for the allele at higher frequency
(about 65%).
Correlations between predicted and observed pheno-

types in the testing set are shown in Tables 2 and 3 for
body weight (BW) and body mass index (BMI), respect-
ively. The distribution of individuals into training and
testing sets affected the predictive ability of all models
considered. A higher genetic relatedness between these
two sets provided better prediction accuracy for BW. On
the other hand, for BMI, the average correlation between
predicted and observed phenotypes was higher for the
across families layout. Therefore, information from closely
related individuals for SNP effect estimation was beneficial
for prediction of new phenotypes, at least for BW.
As expected, the predictive ability for BW was higher

than for BMI, since the latter has a lower heritability.
Differences on results for each trait are also probably
due to differences between their underlying genetic



Table 1 Overall imputation accuracy and error distribution for 90, 75 and 50% of masked genotypes

90% 75% 50%

Across families Within families Across families Within families Across families Within families

Accuracy 0.75 0.79 0.91 0.94 0.97 0.98

0*<−>1* errora 0.16 0.17 0.22 0.25 0.26 0.20

1<−>2* errorb 0.50 0.54 0.61 0.63 0.62 0.65

0<−>2 errorc 0.09 0.08 0.08 0.06 0.09 0.13
aError due to change from 0 to 1 genotype code or vice versa.
bError due to change from 1 to 2 genotype code or vice versa.
cError due to change from 0 to 2 genotype code or vice versa.
*Genotypes are coded as 0, 1 and 2 as the number of copies of the more frequent allele.
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architectures. As discussed by Legarra et al. [30], in this
data set there is some confounding between family and
cage effects since most animals allocated to the same
cage were full sibs, so it is possible that the additive
genetic effect is understated. For the present study
however, it is reasonable to assume that this issue
would impact the predictive ability of the different
models considered in a similar way.
In general, the method with the best prediction results

was RKHS using kernel averaging, and the worst was
BRANN, probably due to overfitting. BRANN showed
high correlation (above 0.9) between predicted and mea-
sured phenotype for the training sets (results not shown).
Table 2, which describes results for BW, shows that im-
putation seemed to be beneficial for phenotype prediction
Table 2 Correlations between predicted and observed
body weight for all masking rates and family layouts

90% genotype masking rate

Model* Across families Within families

1809 1809ia 201 1809 1809ia 201

BL 0.347 0.259 0.169 0.500 0.330 0.407

RKHS 0.347 0.312 0.210 0.527 0.417 0.499

BRANN 0.330 0.217 0.144 0.490 0.274 0.392

75% genotype masking rate

Model* Across families Within families

1809 1809ib 453 1809 1809ib 453

BL 0.343 0.291 0.262 0.499 0.447 0.430

RKHS 0.348 0.317 0.293 0.528 0.506 0.501

BRANN 0.320 0.241 0.255 0.492 0.414 0.428

50% genotype masking rate

Model* Across families Within families

1809 1809ic 905 1809 1809ic 905

BL 0.342 0.324 0.271 0.499 0.496 0.477

RKHS 0.343 0.345 0.306 0.530 0.530 0.520

BRANN 0.320 0.281 0.252 0.492 0.478 0.461
aImputed from 201 SNPs.
bImputed from 453 SNPs.
cImputed from 905 SNPs.
*BL: Bayesian LASSO; RKHS: Reproducing Kernel Hilbert Spaces (RKHS) and;
BRANN: Bayesian Regularized Neural Networks.
when relatedness between reference and target samples
was poorer, especially for BL and RKHS. Table 3, in
contrast, shows a markedly noticeable benefit of im-
putation when the number of markers available in the
testing set was low (201 SNPs) for the within-family
layout when predicting BMI. Regarding the methods,
imputation seemed to have similar impact on efficiency
of BL and RKHS, whereas for BRANN it resulted in
less robust predictions due to imputation error. In sce-
narios with good imputation accuracy and masking
rates of 75% and 50%, the genotype imputation did not
bring great benefit, as seen in Tables 2 and 3. However,
when genotype information was sparse (90% masking
rate – 201 observed genotypes) imputation could bring
Table 3 Correlations between predicted and observed
body mass index for all genotype masking rates and
family layouts

90% genotype masking rate

Model* Across families Within families

1809 1809ia 201 1809 1809ia 201

BL 0.227 0.193 0.191 0.199 0.164 −0.047

RKHS 0.238 0.195 0.199 0.208 0.132 −0.054

BRANN 0.112 0.092 0.147 0.163 0.041 0.054

75% genotype masking rate

Model* Across families Within families

1809 1809ib 453 1809 1809ib 453

BL 0.228 0.219 0.199 0.200 0.196 0.184

RKHS 0.238 0.226 0.211 0.208 0.204 0.200

BRANN 0.118 0.115 0.145 0.172 0.154 0.170

50% genotype masking rate

Model* Across families Within families

1809 1809ic 905 1809 1809ic 905

BL 0.227 0.231 0.225 0.199 0.197 0.189

RKHS 0.238 0.238 0.236 0.207 0.206 0.202

BRANN 0.118 0.131 0.149 0.172 0.168 0.149
aImputed from 201 SNPs.
bImputed from 453 SNPs.
cImputed from 905 SNPs.
*BL: Bayesian LASSO; RKHS: Reproducing Kernel Hilbert Spaces (RKHS) and;
BRANN: Bayesian Regularized Neural Networks.



Table 5 Prediction mean squared errors for body mass
index analysis by family layouts and genotype masking
rates

90% genotype masking rate

Model* Across families Within families

1809 1809ia 201 1809 1809ia 201

BL 0.002 0.002 0.002 0.002 0.002 0.002

RKHS 0.002 0.002 0.002 0.002 0.002 0.002

BRANN 0.013 0.014 0.010 0.042 0.036 0.024

75% genotype masking rate

Model* Across families Within families

1809 1809ib 453 1809 1809ib 453

BL 0.002 0.002 0.002 0.002 0.002 0.002

RKHS 0.002 0.002 0.002 0.002 0.002 0.002

BRANN 0.021 0.023 0.015 0.044 0.045 0.041

50% genotype masking rate

Model* Across families Within families

1809 1809ic 905 1809 1809ic 905

BL 0.002 0.002 0.002 0.002 0.002 0.002

RKHS 0.002 0.002 0.002 0.002 0.002 0.002

BRANN 0.021 0.023 0.016 0.040 0.040 0.047
aImputed from 201 SNPs.
bImputed from 453 SNPs.
cImputed from 905 SNPs.
*BL: Bayesian LASSO; RKHS: Reproducing Kernel Hilbert Spaces (RKHS) and;
BRANN: Bayesian Regularized Neural Networks.
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information about important markers to improve
phenotypic prediction.
The results for predicted mean squared error (PMSE)

are summarized in Tables 4 and 5 for BW and BMI, re-
spectively. For BW, the lowest values of PMSE were
found for predictions made within families with the full
data set (1,809 SNPs). This agrees with the results ob-
tained for predictive correlation described earlier. In
general, higher masking rates resulted in a higher
PMSE for BW and data containing imputed genotypes
provided a better goodness of fit compared to the data
with no genotype imputation when markers were
masked. With BMI, however, the PMSE showed no
changes according to genotype masking rates or geno-
type imputation for BL and RKHS models. Overall,
BRANN had the highest PMSE values, in agreement
with the results using correlation between observed
and predicted phenotypes.

Discussion
Recently, some studies have investigated the predictive
ability of models using subsets of SNPs, with and with-
out imputation [8,31,32]. In general, predictive ability
improved with imputed genotypes, such that many re-
searchers recommend this strategy to decrease costs on
genomic selection programs. However, most studies
with genotype imputation in whole-genome predictions
Table 4 Prediction mean squared errors for body weight
analysis by family layouts and genotype masking rates

90% genotype masking rate

Model* Across families Within families

1809 1809ia 201 1809 1809ia 201

BL 5.03 5.32 5.67 4.18 4.99 4.71

RKHS 4.92 5.20 5.36 4.15 4.75 4.66

BRANN 5.36 5.52 5.54 5.26 5.40 5.52

75% genotype masking rate

Model* Across families Within families

1809 1809ib 453 1809 1809ib 453

BL 5.05 5.25 5.44 4.18 4.45 4.52

RKHS 4.92 5.04 5.11 4.13 4.23 4.21

BRANN 5.38 5.44 5.44 5.26 5.32 5.33

50% genotype masking rate

Model* Across families Within families

1809 1809ic 905 1809 1809ic 905

BL 5.06 5.12 5.49 4.18 4.19 4.32

RKHS 4.94 4.94 5.01 4.06 4.08 4.12

BRANN 5.20 5.24 5.44 5.26 5.27 5.28
aImputed from 201 SNPs.
bImputed from 453 SNPs.
cImputed from 905 SNPs.
*BL: Bayesian LASSO; RKHS: Reproducing Kernel Hilbert Spaces (RKHS) and;
BRANN: Bayesian Regularized Neural Networks.
considered only linear models, such as ridge regression,
Bayesian LASSO or GBLUP approaches [3,8,12] specif-
ically suited to model additive genetic signals but not
tailored to capture non-additive genetic effects such as
dominance and epistasis. The goal of our study was to
explore if more elaborated models, such as semi-
parametric and non-parametric methods, could track
genetic signals from low-density chips without the need
of imputing to higher density chips.
The results obtained indicated that imputation of the

missing genotypes was not always advantageous for
phenotypic prediction. The benefit of imputing geno-
types depended on the degree of relatedness between
reference and target samples, genetic architecture of the
trait, number of markers available in the original panel,
and the method used to predict marker effects.
Weigel et al. [3] investigated the effect of imputation

from a low-density chip to a 50K chip on the accuracy
of direct genomic values in Jersey cattle using BL. They
found that genotype imputation improved predictive
ability in scenarios where imputation accuracy was high;
otherwise, a reduced panel containing the original num-
ber of SNPs was preferred. In the same context, Mulder
et al. [8] showed that due to the magnitude of imput-
ation errors, the noise added by imputation can be
greater than its benefit when predicting breeding values.
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Hence, only those SNPs with high imputation accuracy
would have a positive effect on the reliability of direct
genomic value predictions. In the present study, results
also suggested that if imputation accuracy was low, the
model containing only observed marker genotypes gave
a better prediction than the imputed set. The correlation
between predicted and measured BW within families
using either a full data set containing 1,809 genotyped
SNPs, or the full data set containing 90% imputed geno-
types, or a reduced panel of marker genotypes (201
SNPs) was respectively 0.52, 0.42 and 0.50 using RKHS.
This indicates that imputation brought no additional in-
formation to the model.
For scenarios with different masking rates the imputed

testing set gave, on average, a 4% higher correlation. For
BMI, the reduced testing sets (201, 453 or 905 SNPs)
provided 89% of the predictive ability of their respective
complete imputed testing sets and 78% of the predictive
ability of the complete testing sets, averaged across all
scenarios tested. So, in general, the results indicated that
imputation can be useful for phenotypic prediction.
When comparing correlations for across and within

families cross-validation strategies, genotype imputation
seemed to be more effective in improving prediction ac-
curacy in cases where there was a weaker genetic rela-
tionship among individuals in the reference and testing
data sets. Other studies regarding the role of within and
across-family information [30] also indicate the need of
genotyping and phenotyping closely related individuals,
in order to improve predictive ability. As such, this in-
formation is an important issue for designing genome-
assisted breeding programs.
Regarding the models considered, it was expected

that the non-parametric methods would give smaller
differences between the complete set with imputed
markers and the reduced panel. However, our results
indicated that the effect of imputation was similar for
BL and RKHS predictions. An exception was the case
of BRANN, which was not able to cope with imputation
errors and tended to give worse predictions for the
complete testing set containing imputed markers. There-
fore, it seems that imputation accuracy is a fundamental
factor to be considered when using BRANN for predicting
phenotypes. The imputation from 905 markers to the full
panel (1,809 SNPs) tended to slightly improve prediction
using BRANN perhaps due to the low imputation errors
rates for these panels.
Another discussion, beyond the scope of this paper, is

on differences between chips containing either equally
spaced SNPs or SNPs pre-selected based on their esti-
mated effects for genome-enabled prediction (e.g., [33]).
The main advantage of the former is that it avoids the
need of trait-specific low-density SNP panels and, in
general, it has given reliability of genomic breeding
values similar to the latter [13]. Comparing the results
obtained with the available literature on genomic selec-
tion applied to this same data set, it was found that no
important differences in predictive ability were observed
when using the entire set of SNPs. For example, de los
Campos [27] used 10,946 SNPs with a BL model and ob-
served a rank correlation of 0.306 between phenotypic
observations and genomic predictions for BMI. Here, we
obtained almost 95% of this correlation using the same
method but with only 1,809 evenly spaced SNPs. In
addition, Okut et al. [25] reported a correlation between
predictions and observations in the testing set of 0.18
for BMI using BRANN and 798 pre-selected markers.
We obtained a correlation of 0.15 with the same model
and 905 evenly spaced markers, which suggests that
BRANN can work better using selected markers with
larger effects.
Similar results were observed in terms of PMSE. Ap-

parently, higher imputation errors caused higher values
of PMSE, making the results from models using the re-
duced SNP panel better than those containing imputed
marker genotypes.
The results of the present study can be generalized for

different scenarios, regardless the number of SNPs and/
or sample size of a particular study, based on the impact
of imputation accuracy on the predictive quality of gen-
omic models. Clearly, the predictive ability of a model
not only depends on how well genotypes are imputed
but also on the genetic architecture of the target trait
and the breeding program design. Therefore, the general
reasoning provided by the results of the present study is
that the use of genotype imputation should the evaluated
in a case-by-case basis. For example, the use of imputed
genotypes when employing the non-parametric method
(BRANN, in this case) is not recommended given that
this model tends to approximate the noise inserted by
imputation errors.

Conclusions
Genotype imputation did not always improve the
predictive ability of parametric and semi-parametric
models. For BW, genotype imputation improved pre-
dictive ability when there was a relatively low genetic
relatedness between the reference panel and the target
population set. For BMI, the use of genotype imput-
ation was more beneficial when the genotype set was
very sparse (201 SNPs), especially for BL and RKHS. In
other scenarios, imputation just slightly improved or
even deteriorated predictive ability; the latter happened
in cases in which the genotype imputation had low ac-
curacy. Lastly, BRANN seemed more sensitive to im-
putation errors; therefore the use of imputed genotypes
with this model should be carefully evaluated when
using neural networks.



Felipe et al. BMC Genetics  (2014) 15:149 Page 6 of 10
Methods
Data
A publicly available dataset on mice (http://mus.well.
ox.ac.uk/mouse/HS/) was used. This is a sample from
an outbred mice population that descended from eight
inbred strains created for fine-mapping QTL and high-
resolution whole-genome association analysis of quantita-
tive traits [34]. The data set contains genotypic informa-
tion from 1,904 fully pedigreed mice on 13,459 SNPs
coded as 0, 1 and 2 as the number of copies of the more
frequent allele. Traits such as weight, immunology, obesity
and behavior, to name a few, are also available for a pro-
portion of these animals. A full description of this mice
population is in [35] and [36]. This data have also been
utilized in genomic-enabled prediction studies using
Bayesian regression methods [2,27,30,37] and neural
networks [25].
In our analysis, only animals with both phenotypic

and genotypic information were considered. Loci with
a minor allele frequency lower than 0.05, a call rate
lower than 95% or not in Hardy-Weinberg equilibrium
(p<0.01) were discarded from the original dataset. The
two traits, BW at ten weeks of age, and body mass
index BMI were pre-corrected by fitting the following
linear mixed model:

y ¼ XθþWcþ Zuþ e;

where y is the vector of observations on one of the
measured phenotypes (BW or BMI); θ is an unknown
vector of fixed effects of age, gender, month and cage
density; c is a random vector of unknown cage effects;
u is a random vector of unknown additive genetic ef-
fects; X, W and Z are the incidence matrices of fixed,
random cage and additive genetic effects, respectively,
and e is a vector of residual effects assumed to follow a
multivariate normal distribution e eN 0; Iσ2

e

� �
, where σ2

e

is the residual variance. The random additive genetic and
cage effects were assumed independent from each other
and with distributions u eN 0;Aσ2

u

� �
and c eN 0; Iσ2

c

� �
,

respectively, where A is the additive genetic relationship
matrix, I is an identity matrix of appropriate order, and σ2u
and σ2c are additive genetic and cage components of vari-
ance, respectively. The target response variable after cor-

rection was y�¼y−X θ̂ −Wĉ , which presumably includes
all types of genetic effects (additive, dominance and
Table 6 Number and distribution of individuals by trait and c

Trait* Across families With

Training set Testing set Trai

BW 1,200 681 1,20

BMI 1,165 658 1,16
*BMI: body mass index; BW: body weight at ten weeks of age.
epistasis) as well as additional environmental effects not
accounted for by the mixed model employed. From now
on the pre-corrected phenotype y* will be simply referred
to as y.
After data cleaning, 10,348 SNPs remained from

which 1,809 equally spaced SNPs were selected and
regarded as full genotyped data due to computational
limitations on number of markers that can be fitted
when using Bayesian Regularized Neural Networks.
Then, subsets containing 905, 453 and 201 (50, 75 and
90% masking rates, respectively) equally spaced SNPs
were taken from the full genotype set. In total, 1,881
and 1,823 individuals were included in the analysis of
BW and BMI, respectively. For a cross-validation (CV)
model comparison, in each case, approximately 2/3 of
the individuals were designated as training set (refer-
ence sample) and 1/3 as testing set (target sample) (See
Table 6). Two CV scenarios were considered, denoted
as “across” and “within” families as also applied by [30].
In the across families approach, whole families were
randomly assigned to training and testing sets, whereas
in the within families approach, individuals from each
family were randomized to training and testing sets.
Subsequently, phenotypic predictions were performed
using the three methods (BL, RKHS and BRANN) for
both traits and for data sets containing either the full
genotype set or subsets (201, 453 or 905 SNPs), with or
without genotype imputation. Details on the imputation
approach and models considered are provided below.

Imputation
Testing sets containing 201, 453 and 905 SNPs were im-
puted to 1,809 SNPs using the Beagle software [38]. This
software is based on Hidden Markov Models that cluster
haplotypes at each locus. The clustering adapts to the
amount of information available so that the number of
clusters increases globally with sample size and locally
with increasing linkage disequilibrium levels [14]. The
training set, which contained 1,809 markers, was used as
a reference sample for imputation of SNPs in the testing
set. Imputation was carried out for both prediction sce-
narios (“across” and “within”) using only population
structure and ignoring pedigree information. To check
the global imputation accuracy, the imputed sets were
compared with the full data set to calculate the percent-
age of correctly imputed genotypes.
ross validation strategy employed

in families Total no. of individuals

ning set Testing set

0 681 1,881

1 662 1,823

http://mus.well.ox.ac.uk/mouse/HS/
http://mus.well.ox.ac.uk/mouse/HS/
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Bayesian LASSO
Tibshirani [39] proposed a regression method called
Least Angle Shrinkage Selection Operator (LASSO)
that combines feature subset selection and shrinkage
estimation. In this model, a penalty term proportional
to the norm of regression coefficients is added to the
optimization problem formula, allowing for variable se-
lection and shrinkage of coefficients simultaneously.
The optimization problem can be expressed as:

min
β

X
i

yi−xi
0βð Þ2 þ λ

X
j

βj

��� ���( )
;

where
X
i

yi−xi
0βð Þ2 is the residual sum of squares and

λ
X
j

βj

��� ��� is the penalization factor, with xi and β repre-

senting the incidence and parameter vectors, respect-
ively, and λ is a regularization parameter. A larger λ
means stronger shrinkage and some β’s are even zeroed
out.
A Bayesian version of the LASSO was proposed by [40],

who described a Gibbs sampling implementation. In this
Bayesian interpretation, the LASSO solution can be viewed
as a conditioned posterior mode in a Bayesian model with

Gaussian likelihood, p y β; σ2e
�� � ¼ Yn

i¼1
N yi xi

0β; σ2
e

�� ���
and

a conditional (given λ) prior on β that is a product of p in-
dependent, zero mean, double-exponential (DE) densities
[40]. The double-exponential (or Laplace) distribution has
a convenient hierarchical representation as a mixture of
scaled Gaussian densities (e.g., [41]), i.e.:

βj eDEðβjjλÞ ¼
λ

2
e−λ βjj j

¼
Z ∞

0

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

j

q e− β2j =2σ
2
jð Þ

264
375 λ2

2
e−λ

2=2σ2j

� 	
dσ2j :

Convenient priors for the parameters of the Bayesian
LASSO (BL) model have been suggested by [27] as:

p β; σ2ε ; τ
2; λ2jH� � ¼ p β σ2ε ; τ

2
�� �

pðσ2ε
� �

p
�
τ2jλ�p�λ2jα1; α2�

¼
"Yp
j¼1

Nðβjj0; τ2j σ2ε Þ
#
χ−2 σ2ε jd:f :; S

� �
x

"Yp
j¼1

exp
�
τ2j jλ

�#
G λ2 α1; α2Þj�

where H is a set of hyper-parameters. Here,

pðβjσ2ε ; τ2Þ ¼
Yp
j¼1

N βjj0; τ2j σ2ε
� 


is the product of p

normal densities with zero mean and variance τ2j σ
2
ε rela-

tive to each marker effect j. Further p σ2ε d:f :; SÞj�
is a
scaled inverted chi-square distribution χ−2 σ2
ε d:f :; SÞj�

with
d.f. degrees of freedom and scale parameter S; expðτ2j λÞj
is an exponential distribution, and p(λ2|α1, α2) is a Gamma
distribution with parameters α1 and α2. The parameter λ,
also called smoothing parameter, plays a central role in
the model as it controls the trade-off between goodness of
fit and model complexity [39]. As its value approaches 0,
the solution approximates a least squares solution; a large
value of λ induces a sharper prior on β and, consequently,
stronger shrinkage. Compared to Bayesian Ridge Regres-
sion, this model has the advantage of assigning a higher
density to markers with zero effects, which seems bio-
logically plausible [27].
The model was fitted to the training set in all scenarios

considered. Inferences were based on a Gibbs sampling
chain with 70,000 samples after a burn-in of 5,000. The
parameters of the prior distribution were Sε = d. f. ε = Su =
d. f. u = 1, and α1 =1.2 and α2 = 10− 5. The package BLR
[42] developed for the R software was used for the ana-
lysis. Fitted models were then used to predict phenotypes
in the testing set, and their predictive ability was assessed
by the correlation between measured and predicted phe-
notypes, and by the PMSE.

Reproducing Kernel Hilbert spaces regression
The RKHS theory was introduced by Aronszajn [43] and
has been applied in statistics and machine learning (e.g.,
Support Vector Machines) fields for many years; founda-
tions are provided in [44]. This semi-parametric approach
was proposed by Gianola et al. [19,45] for regressing phe-
notypes on genotypes. The RKHS method has the prop-
erty of having an infinite space of functions for searching
the dependency between input and target variables, and
the space is defined by the measure of distance used (in
this case the type of kernel), without any additional as-
sumptions on gene action or functional form. The method
can be seen as a combination of the classical additive gen-
etic model with an unknown function of markers, which
is inferred nonparametrically, and has the potential of cap-
turing complex interactions without explicitly modeling
them [45]. To map the relationship between inputs (geno-
types) and targets (phenotypes), a collection of functions
defined in a Hilbert space (say f ∈H) is used, from which

an element, f̂ , is chosen based on some criterion (e.g. pe-
nalized residual sum of squares or posterior density) [20].
The optimization problem for obtaining the estimates of
RKHS is:

f̂ ¼ argmin
f ∈H

l f ; yð Þ þ λ fk k2H
� �

;

where l(f, y) is a loss function representing a measure of

goodness of fit; fk k2H is the squared norm of f, related to
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model complexity, and λ controls the trade-off between
goodness of fit and model complexity.
According to the Moore-Aronszajn theorem [43], each

RKHS is associated to a unique positive definite kernel.
In RKHS, the markers are used to build a covariance or
similarity matrix that measures distances between geno-
types. Here, Cov(gi, gi `) ~K(xi, xi `), with xi and xi ` repre-
senting vectors containing genotypes for the ith and i’th
individuals, and K(.,.) is the Reproducing Kernel (RK) re-
lated to a positive definite function [20].
The Kernel matrix (K) employed here was a Gaussian

kernel, i.e. K xi;xi0ð Þ ¼ exp −h� dii
0

� �
, where h is a

bandwidth parameter and dii0 ¼
Xp

k¼1
xik−xi0kð Þ2 repre-

sents an element of the matrix of squared Euclidean dis-
tances among the individuals in the sample. The choice
of h is a model selection issue and must consider the ob-
served distribution of dii’. In this study we used “kernel
averaging” (multi-kernel fitting) as an automatic way of
choosing the kernel based on the sample median of dii’,
as described by [46]. Hence, h ¼ a� q−10:5 in which a was
−5, −1 and −1/5, and q0.5 is the sample median of dii’, for
the three kernels used for kernel averaging. In this
model, the genotypic values were the sum of three com-
ponents, g = f1 + f2 + f3 , with pðf 1; f 2; f 3jσ2α;1; σ2α;2; σ2α;3Þ ¼
Nðf 1j0;K1σ2α;1ÞNðf 2j0;K2σ2α;2Þ Nðf 3j0;K 3σ2α;3Þ. The vari-

ance parameters for these components were treated as
unknown and assigned identical and independent scaled
inverse chi-square prior distributions with degrees of
Figure 1 Artificial Neural Network architecture with two layers contai
layer. The xi,p are the inputs for each animal i, and p is the number of SNP

and j is the index for SNP; blk are the hidden layer biases, where k and l are
neuron bias.
freedom and scale parameters equal to df = 5 and S =
(var(y)/2 × (df − 2)), respectively. Posterior distribution
samples were obtained with a Gibbs sampler as de-
scribed by de los Campos et al. [20]. Inferences were
based on 50,000 samples after 5,000 samples of burn-in.
Bayesian regularized artificial neural networks
A Bayesian Regularized Artificial Neural Network (BRANN)
is a feed-forward network implemented with a max-
imum a posteriori approach in which the regularizer is
the logarithm of the density of a prior distribution [47].
This model assigns a probability distribution to the net-
work weights and biases, so that predictions are made
in a Bayesian framework and generalization is improved
over predictions made without Bayesian regularization.
Details are in [48].
A basic feed-forward network uses initial weights and

biases and transforms input information (in this case,
genotype codes) through each given connected neuron in
the hidden layer using an activation function. Information
is then sent to the neuron in the output layer using an-
other activation (transformation) function generating the
output or predicted value. Next, the results are backpropa-
gated (non-linear least-squares) in order to update weights
and biases using derivatives. Therefore, no assumptions
about the relationship between genotypes (input) and phe-
notypes (target) are made in this model. After training,
outputs are calculated as:
ning 5 neurons in the hidden layer and one neuron in the output
s; the wk,,j are the weights where k is the hidden layer neuron indicator

the indexes for neurons and layers, respectively, and b2 is the output



Felipe et al. BMC Genetics  (2014) 15:149 Page 9 of 10
ŷi ¼ gf
Xs

k¼1

wkf ð
XR
k¼1

wk;i xe i
þ blkÞ þ b2g;

where ŷi is the predicted phenotype for an individual
and xe i are the input genotypes; g and f are the activation

functions for output and hidden layers, respectively; wk

and wk,i are the weights from neurons of the hidden to
the output neuron, and from the input to the hidden
neurons, respectively, and b1k and b2 are the biases of the
two layers. Training is the process by which the weights
are modified in light of the data while the network at-
tempts to produce an optimal outcome [25]. After train-
ing, the network can then be used to predict unknown
phenotypes from individuals with genotype information.
In BRANN, in addition to the loss function given by

the sum of squared errors, a penalty to large weights is
also included in order to have a smoother mapping
(regularization). The objective function is:

f ¼ γEDðDjwe;MÞ þ αEwðwe MÞ;j

where EDðDjwe ;MÞ is the sum of squares of residuals in
which D is the data (input data and target variable), weare the weights and M is the architecture of the neural
network. Further, Ewðwe Mj Þ is known as weight decay
which is calculated as the sum of squares of weights of the
network, and α and γ are the regularization parameters
that control the trade-off between goodness of fit and
smoothing.
The posterior distribution of w given α, γ, D and M

is [49]:

P wð jD; α; γ;MÞ ¼ PðD w; γ;Mj ÞPðw α;Mj Þ
P D α; γ;MÞ;jð

where P(D|w, γ,M) is the likelihood function, P(w|α,M)
is the prior distribution on weights under the chosen
architecture, and P(D|α, γ,M) is the normalization
factor.
To assess overfitting, network architectures and num-

ber of epochs (iterations) were tested in a first step. A
network containing 5 neurons in the hidden layer with a
tangent sigmoid function and 1 neuron in the output
layer with a linear function was used after such tests
(Figure 1). The number of epochs was set to 30. Results
were the average of 20 repetitions of the analysis with
different randomly generated starting values. As an at-
tempt to improve generalization, use of early stopping
was tested for regularization, but Bayesian regularization
worked better. The software MATLAB [50] was used for
the analysis. The predictive ability was also assessed by
correlation between estimated and measured pheno-
types, and by PMSE, as it was for BL and RKHS.
Availability of supporting data
The data set supporting the results of this article is avail-
able in the http://gscan.well.ox.ac.uk/.
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