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Abstract

Background: Phylogenetic analysis of DNA from modern and ancient samples allows the reconstruction of
important demographic and evolutionary processes. A critical component of these analyses is the estimation of
evolutionary rates, which can be calibrated using information about the ages of the samples. However, the
reliability of these rate estimates can be negatively affected by among-lineage rate variation and non-random
sampling. Using a simulation study, we compared the performance of three phylogenetic methods for inferring
evolutionary rates from time-structured data sets: regression of root-to-tip distances, least-squares dating, and
Bayesian inference. We also applied these three methods to time-structured mitogenomic data sets from six
vertebrate species.

Results: Our results from 12 simulation scenarios show that the three methods produce reliable estimates when
the substitution rate is high, rate variation is low, and samples of similar ages are not all grouped together in the
tree (i.e., low phylo-temporal clustering). The interaction of these factors is particularly important for least-squares
dating and Bayesian estimation of evolutionary rates. The three estimation methods produced consistent estimates
of rates across most of the six mitogenomic data sets, with sequence data from horses being an exception.

Conclusions: We recommend that phylogenetic studies of ancient DNA sequences should use multiple methods
of inference and test for the presence of temporal signal, among-lineage rate variation, and phylo-temporal clustering
in the data.
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Background
Estimating the rate of molecular evolution is a key step
in inferring evolutionary timescales and population dy-
namics from genetic data. In turn, these estimates can
provide useful insights into various biological and popu-
lation processes [1]. Evolutionary rates can be inferred
using phylogenetic methods based on molecular clocks,
provided that they can be calibrated using independent
information about time. When genetic data sets are
time-structured, with samples having been drawn at dis-
tinct points in time, the ages of the DNA sequences
themselves can be used for calibration [2, 3].

Time-structured sequence data are common in studies
of rapidly evolving genomes, such as those of pathogens
[4]. They can also be obtained by sequencing DNA from
ancient samples of animals, plants, and fungi [5]. In
these cases, the sample ages can be inferred by radio-
metric dating or stratigraphic correlation. When relying
on the tip dates for calibration, an important condition
is that the population must be ‘measurably evolving’ [6],
whereby the sampling window is wide enough to capture
an appreciable amount of genetic change. Importantly,
this depends on the evolutionary rate, which varies
across genes and species [7, 8]. Assembling data sets
with sufficient temporal structure can be difficult to
achieve for slowly evolving organisms such as verte-
brates [9, 10].
There are several methods for estimating substitution

rates from time-structured sequence data [10]. The
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simplest approach is based on linear regression of root-
to-tip (RTT) distances, taken from an estimated phylo-
gram, against the ages of the corresponding sequences
[11, 12]. RTT regression is based on the expectation
that, from the time of the most recent common ancestor,
ancient sequences have accumulated less genetic change
than their younger counterparts. Assuming that molecu-
lar evolution has been clocklike, the slope of the regres-
sion line provides an estimate of the substitution rate. A
key drawback of this method is that the data points are
not phylogenetically independent, because some of the
branches in the tree contribute to multiple root-to-tip
measurements [6, 11].
Least-squares dating is another computationally effi-

cient method for inferring rates from time-structured
data [13]. It assumes a strict clock and fits a curve to the
data using a normal approximation of the Langley-Fitch
algorithm [14]. This approximation is somewhat robust
to departures from rate homogeneity among lineages.
Least-squares dating and RTT regression both require a
fixed tree topology and cannot directly take into account
or report phylogenetic uncertainty. These two methods
are commonly used in analyses of rapidly evolving path-
ogens, but have rarely been applied in studies of ancient
DNA from eukaryotes.
Bayesian phylogenetic methods can be used for joint

estimation of substitution rates and the tree [15], allow-
ing the estimate of the rate to be marginalized over the
uncertainty in the tree topology and other model pa-
rameters. These methods have a number of advantages:
they can account for phylogenetic uncertainty, allow
the error in sequence ages to be specified [16, 17], and
enable the joint estimation of other evolutionary and
demographic parameters of interest [15, 18]. Moreover,
the use of relaxed-clock models allows rate variation
across branches to be taken into account [19]. In
studies of ancient DNA, Bayesian phylogenetic
methods also allow post-mortem decay to be
modelled, as either an age-dependent [20] or age-
independent process [21].
Analyses of ancient DNA data have typically yielded very

high rate estimates compared with those obtained using
fossil-based calibrations at internal nodes [9, 22–24],
partly because they capture short-term evolutionary
dynamics that involve features such as incomplete purify-
ing selection [25]. However, rate estimates from time-
structured sequence data are subject to several potential
sources of error [10]. Biases can be caused by tree imbal-
ance [26], closely related samples having the same age
(phylo-temporal clustering) [27, 28], the presence of
strong population structure [29], and rate variation among
lineages [30]. The relative impacts of these factors and
their behaviour across commonly used methods of infer-
ence remain poorly understood.

In a recent study of 81 data sets from viruses, rela-
tively congruent estimates of substitution rates were ob-
tained using RTT regression, least-squares dating, and
Bayesian phylogenetic analysis [31]. High among-lineage
rate variation was the only feature of the data to be sig-
nificantly associated with incongruence across the rate
estimates from different methods. However, phylo-
temporal clustering also tended to be greater in data sets
that yielded different rate estimates across the three esti-
mation methods [31].
Ancient DNA sequences from eukaryotes present dif-

ferent analytical challenges compared with serial samples
from viruses [6]. For instance, ancient DNA sequences
are often difficult to obtain, so that they are typically
sampled from a limited number of time points. In stud-
ies of extant species, ancient DNA sequences are usually
outweighed by sequence data from modern samples. In
addition, substitution rates are generally lower in eukary-
otes than in bacteria and viruses [4], and the sampling
window of the sequences often represents only a small
fraction of the time to their most recent common ances-
tor [32]. Collectively, these characteristics mean that an-
cient DNA data sets from eukaryotes are more likely to
lack sufficient temporal structure for reliable inference
of substitution rates [9]. The impacts of these features of
ancient DNA data potentially vary across different
methods of rate estimation.
In this study, we use simulations to examine two po-

tential sources of error in rate estimates from ancient
DNA data: complex patterns of rate heterogeneity
among lineages, and sampling schemes with phylo-
temporal clustering. We investigate the impacts of these
factors on rate estimates made using RTT regression,
least-squares dating, and Bayesian phylogenetic analysis.
We also compare the rate estimates from these three
methods in analyses of time-structured mitogenomic
data sets from six vertebrate species.

Methods
Simulations
We simulated genealogies of 100 tips in BEAST 2 [33],
by sampling from a constant-size coalescent prior condi-
tioned on the ages of the tips. In all cases, the age of the
root was fixed to 500,000 years and half of the tips cor-
responded to present-day samples. The ages of the other
50 tips were randomly distributed between the present
and 50,000 years ago (i.e. 10% of the age of the root).
These conditions were chosen to resemble those of
typical ancient mitogenomic data sets from vertebrates
[34, 35] (Additional file 1: Figure S1). Trees had two
different degrees of phylo-temporal clustering, with 100
replicates each: high clustering was simulated by mak-
ing all present-day samples form a monophyletic
group, whereas low clustering was simulated by only
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making half of the present-day samples form a mono-
phyletic group.
Using the simulated genealogies and the program

NELSI [36], we varied the mean substitution rate and
the degree of among-lineage rate variation. Simulations
were performed using two substitution rates that span
the range of rates in most molecular dating studies of
ancient mitogenomes [23, 37]: a high rate of 10− 7 subs/
site/year and low rate of 10− 8 subs/site/year. For each of
the two rate schemes, we simulated three scenarios of
among-lineage rate variation under a white-noise model
[38], with variance along each branch of 0.1% (low), 1%
(medium), and 10% (high) of the expected number of
substitutions. Sequence evolution was simulated accord-
ing to the HKY + Γ substitution model using the R pack-
age phangorn [39] for each of the 100 tree replicates in
the 12 different scenarios. All sequences had lengths of
15,000 nucleotides, to reflect the approximate size of
vertebrate mitogenomes. Our trees and sequence align-
ments are available for download from Github (github.
com/kjuntong/aDNA_Rates_BMCEvoBio).
For the 100 data sets in each simulation treatment, we

used three methods to estimate the substitution rate.
The first was RTT regression in TempEst 1.5 [11]. The
second method was least-squares fitting in LSD 0.3 [13],
with the ages of the samples used to constrain the least-
squares fitting algorithm. These two methods require an
estimated tree with branch lengths in substitutions per
site; we inferred the topology and branch lengths using
maximum likelihood and the HKY + Γ substitution
model in RAxML v8.2.4 [40]. In each case, a rapid boot-
strapping analysis with 100 replicates was followed by a
search for the best-scoring tree. The bootstrap replicates
were only used to provide starting points when search-
ing for the best-scoring tree, but not to measure node
support for the inferred trees.
The third method that we used to analyse the data was

Bayesian phylogenetic inference in BEAST 1.8.3 [41].
We used an uncorrelated lognormal relaxed clock [19],
constant-size coalescent tree prior, and HKY + Γ substi-
tution model. As an uninformative prior on the mean

substitution rate, we used the conditional reference prior
described by Ferreira and Suchard [42]. Posterior distri-
butions of parameters were estimated by Markov chain
Monte Carlo (MCMC) sampling. Samples were drawn
every 5000 steps over a total of 50 million steps, with
the first 10% of samples discarded as burn-in. We con-
sidered that sampling was sufficient when the effective
sample size of every parameter exceeded 200, as esti-
mated using LogAnalyser in the BEAST package. Where
required, we ran additional MCMC analyses to achieve
sufficient sampling.
To examine the differences in the accuracy of rate esti-

mates for data sets generated under the various simulation
treatments, we calculated the standardized error in rate
estimates for each simulation as the difference between
the estimated and true rates, divided by the true rate. We
used one-sample Wilcoxon tests to evaluate whether the
distribution of standardized errors from each scenario of
simulation and estimation was different from zero.
Standardized errors were also compared between scenar-
ios using a Kruskal-Wallis one-way analysis of variance,
and post-hoc pairwise Mann-Whitney-Wilcoxon tests.

Mitochondrial genomes
We obtained a range of time-structured mitogenomic
data sets from previous studies and from GenBank
(Table 1). These included complete sequences of mito-
chondrial genomes from the Adélie penguin (Pygoscelis
adeliae) [23], brown bear (Ursus arctos) [43], domestic
dog (Canis familiaris) [44], horse (Equus caballus)
[45–47], modern human (Homo sapiens) [48], and
woolly mammoth (Mammuthus primigenius) [49]. The
sampling windows of these data sets ranged from
7134 to 122,500 years and the number of sequences
in each data set ranged from 20 to 237 (Table 1). We
partitioned each data set into five subsets: first codon
positions of protein-coding genes, second codon posi-
tions, third codon positions, control region, and
rRNA genes. Our mitogenomic data sets, including
the subsets of the data, are available on Github
(github.com/kjuntong/aDNA_Rates_BMCEvoBio).

Table 1 Six time-structured mitogenomic data sets analysed in this study

Species Scientific name Tips (modern + ancient) Length (nt) Age range
(years before present)

Outgroupa Main sourcesb

Adélie penguin Pygoscelis adeliae 13 + 7 14,198 0–44,000 Pygoscelis antarctica [23]

Brown/polar bear Ursus arctos & U. maritimus 31 + 1 14,609 0–122,500 Ursus americanus [43]

Dog Canis familiaris 120 + 18 14,596 0–36,000 Canis latrans [44]

Horse Equus caballus 147 + 20 14,910 0–42,577 Equus asinus [45–47]

Modern human Homo sapiens 200 + 37 14,893 0–7134 Homo neanderthalensis [48]

Woolly mammoth Mammuthus primigenius 0 + 65 14,951 12,210–46,455 Elephas maximus [49]
aGenBank accession numbers for outgroup sequences are given in the sequence data files
bMain publications from which the sequence data were obtained
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For each mitogenomic data set, we estimated the sub-
stitution rate with the same three methods that were
compared in our simulation study. In all analyses, the
sampling times of the sequences were used for calibra-
tion; no age constraints were applied to internal nodes
in the tree. To infer phylograms for TempEst and LSD,
we used maximum likelihood in RAxML with an HKY
+ Γ model of nucleotide substitution for each data sub-
set. In each case, a rapid bootstrapping analysis with 100
replicates was followed by a search for the best-scoring
tree. Outgroup sequences were included in order to
allow the position of the root to be estimated in the phy-
lograms (Table 1), but were pruned from the tree for
subsequent analyses of substitution rates.
We performed Bayesian phylogenetic analysis of each

data set using BEAST 1.8.3. A separate HKY + Γ model
of nucleotide substitution was assigned to each subset of
the mitogenome data. We used a continuous-time
Markov chain reference prior for the substitution rate
[42], with each subset of the data allowed a distinct rela-
tive rate. Posterior distributions of parameters were esti-
mated by sampling every 5000 steps over a total of 50
million MCMC steps. We ran each analysis in duplicate
to check for convergence, and the samples from the two
runs were combined after discarding the first 10% of
samples as burn-in. Sampling was considered to be suffi-
cient when the effective sample size of each parameter
exceeded 200.
In order to compare the fit of different coalescent tree

priors (constant-size and skyride [50]) and clock models
(strict clock and uncorrelated lognormal relaxed clock
[19]), we computed marginal likelihoods using stepping-
stone sampling [51]. The combination of tree prior and
clock model that yielded the highest marginal likelihood
was considered to be the best fitting. However, we pre-
ferred the simpler tree prior or clock model when its
marginal likelihood was within 1 log unit of the more
parameter-rich alternative. This is consistent with the
guidelines offered by Kass and Raftery [52], who pro-
posed that a difference of 1 log unit in marginal likeli-
hoods is required to constitute positive evidence for one
model over another.
We checked each data set for temporal structure using

a date-randomization test [53]. In this test, the sample
ages are randomly reassigned to the sequences and the
analysis of the data is repeated. This is done a number
of times in order to generate a set of rate estimates from
date-randomized data sets. To evaluate the temporal
structure in the data, we considered two criteria that
have been proposed for the date-randomization test,
CR1 and CR2 [27]. Under CR1, the rate estimate from
the original data set should not be included within the
95% credibility intervals of the rate estimates from the
date-randomized replicates. Under the stricter criterion

CR2, the 95% credibility interval of the rate estimate
from the original data set should not overlap with the
95% credibility intervals of the rate estimates from the
date-randomized replicates. Our results are based on 20
date-randomized replicates of the original data.
For each data set, we evaluated the degree of phylo-

temporal clustering by correlating the distances between
tips in the tree with the ages of those tips [31]. For each
pair of tips, we measured distance as the number of
nodes separating them, and took the difference in their
sampling times. We then calculated the Pearson’s correl-
ation coefficient (ρ) for the entire data set. We calculated
a P-value by generating a null distribution of ρ by ran-
domizing the sampling times in the trees 1000 times. A
significant association between sampling times and
phylogenetic distance is indicated by P < 0.05.

Results
Simulations
The three methods of rate estimation, RTT regression,
least-squares fitting, and Bayesian estimation, produced
more accurate rate estimates for sequence data produced
by simulation using a high rate than using a low rate
(Fig. 1; Additional file 2: Table S1). The point estimates
from each of the six high-rate treatments across all three
methods had relatively narrow ranges in most cases
(Additional file 3: Figure S2). However, RTT regression
using TempEst produced rate estimates with a large
spread when there was high rate variation among line-
ages. The Bayesian median estimates of rates had a small
spread for sequence data that had been produced with a
high rate, but these estimates tended to have an upward
bias when there was high rate variation among lineages
and high phylo-temporal clustering (Fig. 1; Additional
file 2: Table S1).
For sequence data that have evolved with a low rate,

RTT regression produced estimates that were accurate
but had a large spread under all of the conditions exam-
ined (Fig. 1; Additional file 2: Table S2). Least-squares
fitting systematically underestimated the rate but these
estimates had a relatively small spread (Fig. 1), although
not as small as seen in the estimates from data that had
evolved with a high rate (Additional file 2: Table S3).
The Bayesian rate estimates had a small spread when
phylo-temporal clustering was low (Additional file 2:
Table S4). However, this method produced overestimates
of the rate, with the posterior medians often being more
than 100% greater than the true rate, when low rate was
combined with high phylo-temporal clustering (Fig. 2;
Additional file 2: Table S1). RTT regression appeared to
be the most robust to the interaction of these unfavour-
able factors (i.e. phylo-temporal clustering, low rate, and
high rate variation among lineages), with the greatest
similarity in outcomes across our simulation scenarios
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(Kruskal-Wallis χ2 = 13.7, d.f. = 11, P = 0.25). In contrast,
rate estimates were different across simulation scenarios
when obtained using LSD (Kruskal-Wallis χ2 = 357.21, d.f.
= 11, P < 0.001) and BEAST (Kruskal-Wallis χ2 = 462.26,
d.f. = 11, P < 0.001).
The data sets that yielded erroneous rate estimates

when analysed using Bayesian inference tended to have
phylograms in which internal branches represented a
large proportion of the total tree length (high ‘stemmi-
ness’ [54]; Fig. 2; Additional file 4: Figure S3;
Additional file 5: Figure S4; Additional file 6: Figure S5;
Additional file 7: Figure S6). Since these trees have
shorter terminal branches, the sum of their branch
lengths is smaller than those of trees with low

stemminess, leading to data sets with less information
from which to estimate the rate. We found a positive
correlation between phylogenetic stemminess and the
spread of median posterior rate estimates in conditions
of high rate variation and high clustering (P < 0.001;
Additional file 7: Figure S6).

Mitochondrial genomes
Our analyses of mitogenomic data sets from six vertebrate
species produced rate estimates that were largely congru-
ent with one another even when the data showed evidence
of among-lineage rate variation (Table 2; Fig. 3). The horse
mitogenomes presented an exception to this, with RTT
regression producing a much lower rate estimate than the
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other two methods. The samples in this data set
showed strong phylo-temporal clustering (P < 0.001), as
did the dog mitogenome sequences. Almost all of the
data sets passed both of the criteria considered for the
date-randomization test for temporal structure, with
the exception of the mitogenomes from the Adélie pen-
guin (Table 2).

Our rate estimates from the mitogenomes of Adélie
penguin were 3.54 × 10− 8 subs/site/year (RTT regression),
4.10 × 10− 8 subs/site/year (least-squares dating), and
3.37 × 10− 8 subs/site/year (95% credibility interval 1.16–5.
86 × 10− 8 subs/site/year; BEAST). These are mutually
consistent but are higher than the Bayesian estimate of 1.
8–2.4 × 10− 8 subs/site/year reported previously [23]. The
original study assumed a relaxed clock, whereas we used a
strict-clock model as selected by comparison of marginal
likelihoods (Table 2, Additional file 2: Table S5). The dis-
crepancy between rate estimates is potentially explained
by the lack of temporal structure in the data set, as indi-
cated by the failure of the data to meet either criterion of
the date-randomization test (Table 2).
The results from our analyses of the mitogenomes

from brown bears and polar bears are noteworthy be-
cause this data set contains a single ancient DNA se-
quence. The data appear to have temporal structure
according to the date-randomization test (Table 2), con-
firming previous suggestions that a single ancient tip can
be adequate for calibration provided that it is sufficiently
old [32]. Our rate estimates are consistent with a previ-
ous estimate of 3.49 × 10− 8 subs/site/year from 95
samples of brown bears [55].

Discussion
Our study demonstrates that three different methods are
able to produce consistent estimates of substitution rates
from ancient DNA data sets. In contrast with a previous
study of virus data [31], we did not find that high
among-lineage rate variation led to higher variability in
rate estimates compared with our treatments involving
low and medium rate variation. An exception to this is
the Bayesian estimates from the sequence data from the
simulations with a low substitution rate and high
among-lineage variation, for which we recovered a much
wider spread of median posterior estimates than for the
other low-rate scenarios (Fig. 2). The discrepancy be-
tween our results and those from the previous study
might be due to virus sequences having a considerably
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Fig. 2 a Uncertainty in Bayesian estimates of substitution rates across 12
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Table 2 Results from analyses of six time-structured mitogenomic data sets

Species Clock
modela

Tree priora Phylo-temporal
clusteringb (P-value)

Date-randomization testc

CR1 CR2

Adélie penguin Strict Constant size 0.079 Fail Fail

Brown/polar bear Strict Constant size 0.168 Pass Pass

Dog Relaxed Constant size 0.006 Pass Pass

Horse Strict Constant size < 0.001 Pass Pass

Modern human Strict Skyride 0.166 Pass Pass

Woolly mammoth Relaxed Constant size 0.075 Pass Pass
aClock models and tree priors were compared using marginal likelihoods estimated by stepping-stone sampling. Marginal likelihoods are given in Additional file 2: Table S5
bP-values below 0.05 indicate that sequences with similar ages tend to be clustered together in the phylogenetic tree
cWe considered two criteria that have been proposed for the date-randomization test, CR1 and CR2 [27]. These criteria are described in the Methods. Our results
are based on 20 date-randomized replicates
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different mode and magnitude of among-lineage rate
heterogeneity compared with the simulation conditions
explored here.
We found that data sets with phylo-temporal cluster-

ing tended to yield more disparate rate estimates across
the three methods compared here, a result that is con-
sistent with that of a previous study of viruses [31]. This
form of clustering might reduce the number of effective
calibrations because it leads to fewer independent com-
parisons of genetic change and sampling times [28],
resulting in increased uncertainty in the rate estimate. In
Bayesian analyses, greater uncertainty can lead to sub-
stantial increases in the mean and median of the poster-
ior distribution of the rate [9]. These patterns are seen
in our rate estimates from the simulations with low
substitution rates, for which least-squares fitting and
Bayesian methods produced point estimates that had a
greater bias and greater spread in the presence of pro-
nounced phylo-temporal clustering. However, our inter-
pretation of the Bayesian rate estimates here focus on the
posterior medians as point values, whereas in practice the
95% credibility intervals should be taken into account.
Most of the mitogenome data sets showed some de-

gree of phylo-temporal clustering, although this pattern
was strongest in the sequences from dog and horse. In
practice, phylo-temporal clustering is likely to be a
prominent and unavoidable feature of ancient DNA data
sets. This is because many data sets include samples
from the same site or even the same stratum, and sam-
pling is likely to be very uneven across geographic re-
gions [34, 35]. Expanding the data set to include samples
from multiple sites and multiple age layers will not al-
ways be feasible, owing to constraints on time, resources,
and the availability of samples [34].

For each of the six mitogenome data sets, similar rate
estimates were obtained from the three methods that we
examined. The rate estimates for the horse mitogenomes
were a notable exception to this pattern; strong phylo-
temporal clustering in the data provides a possible ex-
planation for the large discrepancy in the rate estimate
from RTT regression. The lack of temporal signal in the
mitogenomes from Adélie penguin is notable, because a
mitochondrial D-loop data set from this species previ-
ously passed the date-randomization test despite having
a much narrower sampling window [9, 56]. This result
indicates that the spread of sampling times is not the
sole determinant of temporal signal in time-structured
data sets.
Our simulation study shows that different phylogenetic

methods can produce congruent rate estimates if the
substitution rate has been high and when there has been
low to moderate rate variation among lineages. However,
our results are consistent with those of previous studies
in showing that the median posterior rates from
Bayesian phylogenetic methods can be overestimates
under certain conditions [9]. Rate estimates tended to
have wider 95% credibility intervals when trees had high
stemminess, a condition that is more likely when sam-
ples are drawn from a contracting population or when
sequences are subject to purifying selection [57]. The in-
crease in uncertainty reflects the lower information con-
tent in data sets that have evolved under these
conditions. A potential solution is to widen the sampling
window by including older sequences, although this
might be difficult to achieve in practice [34]. We have
not investigated the impacts of including a larger pro-
portion of modern sequences, which can be done in
studies of extant species.
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Fig. 3 Estimates of substitution rates from time-structured mitogenomic data sets from six vertebrate species. Data were analysed using Bayesian
inference in BEAST, least-squares dating in LSD, and regression of root-to-tip distances in TempEst. Bayesian estimates are indicated by their median
and 95% credibility intervals. Regression of root-to-tip distances failed to yield a positive rate estimate from the mitogenomes from woolly mammoth,
so no rate estimate is shown for TempEst. Details of the six data sets are given in Table 1
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The RTT regression method yielded mixed results in
our simulation study, but it produced rate estimates com-
parable to those from least-squares fitting and Bayesian
inference for four of the six mitogenomic data sets. Thus,
despite its weaknesses, RTT regression can still be a useful
qualitative complement to other methods because it can
provide a rapid evaluation of the presence of a temporal
signal in the data [11]. It also appears to be more robust
to the confounding effects of low rate and phylo-temporal
clustering. Sequence data that yield no apparent relation-
ship between root-to-tip distance and sampling time
should be further examined using more complex methods
that allow rate variation among lineages.
The least-squares approach represents a valuable alterna-

tive to the more widely used methods of analysing ancient
DNA sequences, which have been dominated by Bayesian
methods [10]. As with RTT regression, least-squares fitting
assumes a strict clock and attempts to fit data to a curve
based on minimizing the statistical residual. Least-squares
fitting does not aim to capture the evolutionary process
that produces the sequence, but it is relatively robust to vi-
olations of the strict clock and can handle data with appre-
ciable levels of among-lineage rate variation [13]. The
method is particularly valuable for analyses of large data
sets, for which the computational demands of a Bayesian
phylogenetic analysis can be prohibitive [58].

Conclusions
Our study has shown that three methods of rate estima-
tion from time-structured data produce comparable esti-
mates of substitution rates under various evolutionary
conditions. These results are broadly consistent with
those from analyses of time-structured sequence data
from viruses [31] and from previous investigations of an-
cient DNA sequences [9, 22]. However, our analyses
have provided new insights into how the three methods
respond differently to the potentially confounding im-
pacts of among-lineage rate variation and phylo-
temporal clustering of sequences. This highlights the
value of using all three methods to analyse ancient DNA
data, and comparisons with the performance of other
rate-estimation methods will be valuable [59]. Increasing
the reliability of rate estimates will lead to a more accur-
ate understanding of demographic and evolutionary pro-
cesses on recent timescales.
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