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Evolving in the highlands: the case
of the Neotropical Lerma live-bearing
Poeciliopsis infans (Woolman, 1894)
(Cyprinodontiformes: Poeciliidae) in
Central Mexico
Rosa Gabriela Beltrán-López1,2 , Omar Domínguez-Domínguez3,4* , Rodolfo Pérez-Rodríguez3,4 , Kyle Piller5

and Ignacio Doadrio6

Abstract

Background: Volcanic and tectonic activities in conjunction with Quaternary climate are the main events that
shaped the geographical distribution of genetic variation of many lineages. Poeciliopsis infans is the only poeciliid
species that was able to colonize the temperate highlands of central Mexico. We inferred the phylogenetic
relationships, biogeographic history, and historical demography in the widespread Neotropical species P. infans and
correlated this with geological events and the Quaternary glacial-interglacial climate in the highlands of central
Mexico, using the mitochondrial genes Cytochrome b and Cytochrome oxidase I and two nuclear loci, Rhodopsin
and ribosomal protein S7.

Results: Populations of P. infans were recovered in two well-differentiated clades. The maximum genetic distances
between the two clades were 3.3% for cytb, and 1.9% for coxI. The divergence of the two clades occurred ca. 2.83
Myr. Ancestral area reconstruction revealed a complex biogeographical history for P. infans. The Bayesian Skyline
Plot showed a demographic decline, although more visible for clade A, and more recently showed a population
expansion in the last 0.025 Myr. Finally, the habitat suitability modelling showed that during the LIG, clade B had
more areas with high probabilities of presence in comparison to clade A, whereas for the LGM, clade A showed
more areas with high probabilities of presence in comparisons to clade B.

Conclusions: Poeciliopsis infans has had a complex evolutionary and biogeographic history, which, as in other
co-distributed freshwater fishes, seems to be linked to the volcanic and tectonic activities during the Pliocene or
early Pleistocene. Populations of P. infans distributed in lowlands showed a higher level of genetic diversity than
populations distributed in highlands, which could be linked to more stable and higher temperatures in lowland
areas. The fluctuations in population size through time are in agreement with the continuous fluctuations of the
climate of central Mexico.
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Background
Volcanic and tectonic activities since the Miocene have
had a substantial influence on the diversification of
many New World taxa [1, 2]. Paleoclimatic events since
the Pliocene, mainly from the Quaternary to the present;
also have influenced the distribution of many organisms
by changing the climates in boreal, temperate and
tropical zones. Geologic and quaternary climatic events
together are the main factors that have shaped the
geographical distribution of genetic variation at the
species, population, and community levels in several
taxa, including fishes [3–11].
The beta diversity of freshwater fishes worldwide, in-

cluding 80% of all freshwater species described, demon-
strates that geographical isolation of drainage basins,
combined with Quaternary climate changes, provides a
parsimonious explanation for present-day patterns of
spatial turnover in the global freshwater fish fauna [12].
Under this context, the geographical location, complex
topography, geological dynamism including extensive
volcanism since the Miocene and the climatic history of
central Mexico, changed during the Quaternary [8, 13],
have shaped a biogeographically complex area, charac-
terized by ecological components that have allowed for
the coexistence of taxa of Neotropical and Nearctic
origins, as well as endemic groups [14, 15].
The biogeographic limits of this area have been largely

discussed, and even differ depending on the taxa analyzed
[14, 16–18]. In general terms, central Mexico is a high
plateau bounded by the Sierra Madre Oriental to the east
and by the Sierra Madre Occidental to the west and
crossed by the Trans Mexican Volcanic Belt (TMVB) from
west to east, with elevations up to 1400–1800 MASL [18],
a region also called the Mesa Central by some authors
[19]. The region is characterized by a temperate climate,
thus allowing for the establishment of fish species, mainly
of Neartic origin. The climatic changes during the quater-
nary have influenced the geographical distribution of
genetic lineages of terrestrial organisms in space and time,
as is the case of snakes [7], lizards [8, 20, 21], birds [9],
small mammals [22–24], and plants [2].
The dynamic geological processes that have occurred

since the Miocene have promoted the genesis and
destruction of aquatic ecosystems [25] and have been
considered as the primary forces that have influenced
the biogeography and the complex evolution of several
taxa of freshwater organisms [26–32]. However, most of
the research has focused on understanding the complex
evolutionary history of freshwater fishes of Nearctic ori-
gin such as Goodeids [28, 29, 33, 34], Cyprinids [30],
Catostomids [35], and a combination of taxa [36]. Only
one group of species in the TMVB that are of Neotrop-
ical origin, genus Poeciliopsis, has been previously inves-
tigated in this manner [26].

The small live-bearing topminnow Poeciliopsis infans
(Woolman, 1894) is a member of the family Poeciliidae,
which has more than 220 species of tropical preferences
[37]. Poeciliopsis infans is the only Neotropical fish
species that has colonized the temperate highlands of
the TMVB, including the Lerma-Santiago Basin, headwa-
ters of the Ameca, Armeria, Coahuayana, Balsas and
Panuco Basins, as well as endorheic lakes in the region
(Fig. 1) [38]. Poeciliopsis infans is co-distributed with
fishes of Nearctic origin of the families Goodeidae,
Catostomidae, Ictaluridae and Cyprinidae [38].
Accordingly, since the members of the Poeciliidae are

a group of Neotropical origin, most of them are adapted
to tropical habitats. Furthermore, since P. infans is the
only poeciliid species living in the temperate highlands
of central Mexico, an area dominated by fish species of
Neartic origin, we expect that the evolutionary history of
P. infans could be explained by recent volcanic and
tectonic activities. However, since P. infans is a species
evolving in the marginal and temperate areas adjacent to
the distribution of all of the other species Poeciliopsis, it
may not follow the same patterns as other co-distributed
species in the region.
We extensively sampled throughout the distribution of

P. infans (Teleostomi: Poeciliidae), and gathered mtDNA
and nDNA sequences to infer phylogeographic variation,
historical biogeography, and historical demography of
the widespread P. infans. These data will allow us to
examine the influence of geological history and Quater-
nary glacial-interglacial climatic events, in space and
time, in the evolutionary history of Neotropical species
evolving in a predominant Nearctic area.

Methods
Sample collection
Two hundred fifty-six specimens of P. infans from
throughout the range were collected (Fig. 1 and Table 1)
using electrofishing equipment and trawl nets. Tissue
samples (fin clips) were preserved in 95% ethanol for
DNA extraction, and a maximum of five specimens per
site were preserved in 5% formalin. Despite intensive
collection efforts, samples were not obtained from some
biogeographic regions. Fish and tissue samples were
deposited in the fish collection of the Universidad
Michoacana de San Nicolas de Hidalgo, Mexico (SEMAR-
NAT registration number MICH-PEC-227-07-09; for
voucher numbers see Additional file 1).

DNA extraction, PCR amplification and sequencing
Total genomic DNA was isolated with the Qiagen
BioSprint Dneasy Tissue and Blood Kit (Qiagen, Valencia,
CA, USA) following the manufacturer’s protocol. Two
hundred fifty-six individuals were amplified for Cytochrome
b (cytb: 1083 bp) and 249 individuals for Cytochrome
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Oxidase Subunit I (coxI: 631 bp), for 1771 bp of mito-
chondrial sequence data. The first intron, a fragment of
second intron, and the second exon of the gene coding for
the S7 ribosomal protein (S7: 859 bp), and the gene coding
for the Rhodopsin protein (RHO: 845 bp) were amplified
for 1704 bp of nuclear sequence data from 201 individuals.
For this subset, individuals were chosen in order to repre-
sent all biogeographic regions and all the variation shown
in mitochondrial dataset. In addition, five sequences of
cytb were obtained from GenBank with the following
accession numbers: AF412134 of Lerma River, AF412135
of Ameca River, AF412136 of Chapala Lake, AF412137 of
Santiago River and AF412138 of Panuco River.
Each fragment was individually amplified using the

Polymerase Chain Reaction (PCR) in volumes of 12.5 μl,
containing 4.25 μl ultrapure water, 0.5 μl of each 0.2 μM

primer, 6.25 μl Dream Taq Green PCR Master Mix 2×
(Thermo Scientific), and 1 μl (ca. 10–100 ng) of DNA
template. The specific PCR protocols of each gene are
provided in Additional file 2. The recovered PCR
products were purified using ExoSAP-IT (USB Corp.)
and submitted to Macrogen Inc. (The Netherlands) for
sequencing. Nucleotide sequences were edited and
aligned in Mega v.6.06 [39], and the chromatographs
were examined by eye. For the nuclear gene (RHO), the
heterozygous genotypes were phased using DNAsp v.5.
10 [40] with the algorithm provided by PHASE v.2.0
[41]. Whenever sequences of S7 showed heterozygous
positions defined by indels, a manual reconstruction of
the two-allele phases was performed following the
procedure described by [42]. The obtained sequences
were deposited in GenBank under the follow access

Fig. 1 Sampling locations and the biogeographical regions where Poeciliopsis infans is distributed. The colors of the biogeographical regions
corresponded with the colors used in the phylogenetic analyses. The codes of the biogeographical regions are as follows: (Mag) Magdalena Lake;
(Etz) Etzatlan-San Marcos region; (Ver) Verde River; (Ame) Ameca River; (Ato) Atotonilco Lake as the number 1; (Sma) San Marcos Lake as the
number 2; (Say) Sayula Lake as the number 3; (Zap) Zapotlan Lake as the number 4, these four lakes belong to Sayula region; (San) Grande de
Santiago River; (Tam) Tamazula River; (Pat) Patzcuaro Lake; (Cha) Chapala Lake; (Bal) Balsas River; (Cot) Cotija Lake; (Lle) Lower Lerma Basin; (Mle)
Middle Lerma Basin; (Zac) Zacapu region; and, (Cui) Cuitzeo Lake. The meters above see level (MASL) are indicated with level curves
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Table 1 Samples localities and sequence information

Site Locality Basin Biogeographic region Sequences number
Cytb/coxI/S7/RHO

GPS Coordinates

1 Los Venados Magdalena Magdalena 5/5/3/4 20° 54′ 5.5′´ N, 104° 4′ 44.8′´ W

2 Laguna Magdalena Magdalena 11/8/10/6 20° 54′ 14.2′´ N, 104° 1′ 11.6′´ W

3 Presa San Ignacio Ameca Ameca 7/6/3/6 20° 30′ 40.6′´ N, 104° 2′ 12.4′´ W

4 Chapulimita Ameca Ameca 2/2/2/2 20° 40′ 48.9′´ N, 103° 54′ 29.3′´ W

5 Salida presa Tecuan Ameca Ameca 7/6/5/5 20° 20′ 5.2′´ N, 103° 45′ 20.2′´ W

6 Manantial Los Veneros Ameca Ameca 2/2/2/2 20° 40′ 9.7′´ N, 103° 52′ 25.3′´ W

7 Tala, Río Salado Ameca Ameca 3/3/2/3 20° 41′ 12.1′´ N, 103° 41′ 36.3′´ W

8 Amatlán de cañas Ameca Ameca 6/5/6/5 20° 42′ 13.7′´ N, 104° 18′ 34.4′´ W

9 Teuchitlán Cocula-La Vega Ameca 10/6/6/4 20° 40′ 46.8′´ N, 103° 50′ 59.2′´ W

10 San Juanito de Escobedo Laguna Colorada Ameca 5/3/5/1 20° 45′ 37.3′´ N, 103° 59′ 39.6′´ W

11 S. M. San Julian Verde Verde 3/3/2/2 21° 0′ 31.7′´ N, 102° 17′ 47.9′´ W

12 San Nicolás Verde Verde 11/13/5/9 21° 17′ 45.4′´ N, 102° 32′ 59.7′´ W

13 Arroyo La Estancia Verde Verde 2/2/1/2 21° 24′ 36.3′´ N, 102° 44′ 15′´ W

14 Río Colorado Verde Verde 4/4/0/4 21° 5′ 6.1′´ N, 102° 52′ 10.8′´ W

15 Río Xoconostle-San Juan Laja Middle Lerma 3/3/3/3 20° 56′ 31.5′´ N, 100° 58′ 38′´ W

16 Manantial Andrés-Figueroa San Marcos Sayula 8/9/7/4 21° 17′ 45.4′´ N, 102° 32′ 59.7′´ W

17 Manantial San Marcos San Marcos Sayula 5/5/5/5 20° 20′ 0.4′´ N, 103° 34′ 57.6′´ W

18 Canal Presa Buena Vista Atotonilco-Sayula Sayula 6/7/6/3 20° 24′ 28′´ N, 103° 39′ 59.7′´ W

19 Villa corona Atotonilco-Sayula Sayula 3/3/3/3 20° 24′ 28.4′´ N, 103° 39′ 59.5′´ W

20 Manantial Cuyacapán Sayula Sayula 15/17/9/11 19° 57′ 16.6′´ N, 103° 30′ 51.7′´ W

21 Laguna de Zapotlán Zapotlan Sayula 2/2/1/0 19° 44′ 44.9′´ N, 103° 28′ 22.4′´ W

22 Río Las Puentes Chapala Chapala 6/7/7/4 20° 3′ 22.4′´ N, 102° 46′ 2.1′´ W

23 Cojumatlán Chapala Chapala 3/2/0/1 20° 9′ 45.7′´ N, 102° 52′ 4.6′´ W

24 Los Negritos Chapala Chapala 5/3/5/2 20° 3′ 36.3′´ N, 102° 36′ 46.1′´ W

25 Presa Nueva Chapala Chapala 5/5/5/4 19° 57′ 46.2′´ N, 102° 34′ 42.4′´ W

26 Manantial La Mintzita Cuitzeo Cuitzeo 6/6/5/3 19° 34′ 40′´ N, 101° 16′ 28.7′´ W

27 Ojo de Agua San Cristóbal Cuitzeo Cuitzeo 9/10/7/6 19° 53′ 37.4′´ N, 101° 19′ 0.5′´ W

28 Embarcadero Principal Patzcuaro Patzcuaro 6/7/5/1 19° 32′ 42.6′´ N, 101° 37′ 2.5′´ W

29 Urandén Patzcuaro Patzcuaro 8/7/6/4 19° 32′ 47.4′´ N, 101° 38′ 28.2′´ W

30 Presa Melchor Ocampo Angulo-Lerma Zacapu 7/7/6/2 20° 5′ 36.5′´ N, 101° 43′ 57.4′´ W

31 La Zarcita Angulo-Lerma Zacapu 9/10/9/4 19° 49′ 19′´ N, 101° 47′ 51′´ W

32 Laguna de Zacapu Angulo-Lerma Zacapu 5/5/5/1 19° 49′ 20.9′´ N, 101° 47′ 15.8′´ W

33 Atenquique Tuxpan Tamazula 1/1/0/1 19° 31′ 46.3′´ N, 103° 25′ 56.3′´ W

34 Puente en Jacona Río Duero Lower Lerma 5/5/5/4 19° 58′ 14′´ N, 102° 17′ 46.2′´ W

35 Presa La Luz Río Duero Lower Lerma 8/8/7/5 19° 56′ 13′´ N, 102° 17′ 56.9′´ W

36 Quitupan Tepalcatepec Balsas 5/5/5/3 19° 55′ 34.8′´ N, 102° 52′ 54.7′´ W

37 Presa San Juanico Cotija Cotija 11/9/11/6 19° 49′ 57.4′´ N, 102° 38′ 25.8′´ W

38 San Sebastián Etzatlan-San Marcos Etzatlan-San Marcos 2/2/2/1 20° 49′ 25′´ N, 104° 7′ 10.8′´ W

39 Presa Palo Verde Etzatlan-San Marcos Etzatlan-San Marcos 13/12/10/12 20° 46′ 9.6′´ N, 104° 6′ 48.2′´ W

40 Cuescomatitlán Lago de Cajititlán Grande de Santiago 5/5/5/2 20° 25′ 48.4′´ N, 103° 21′ 37′´ W

41 Jalpa Juchipila Juchipila 2/2/2/1 21° 39′ 6.5′´ N, 102° 57′ 57.8′´ W

42 San Antonio Santiago-Chapala Grande de Santiago 2/2/2/2 20° 40′ 27.2′´ N, 102° 33′ 19.4′´ W

43 Presa de Garabato Santiago-Chapala Grande de Santiago 6/6/4/5 20° 37′ 28.4′´ N, 102° 41′ 15.6′´ W

44 Río Tinajeros Santiago-Chapala Grande de Santiago 7/8/1/1 20° 40′ 20.7′´ N, 103° 4′ 41.9′´ W
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number: for cytb (MG028009 to MG028278), for coxI
(MG028279 to MG028543), for RHO (MG100617 to
MG100824) and for S7 (MG366191 to MG366482),
(see Additional file 1).

Phylogenetic analyses and haplotype networks
Recombination of the nuclear genes (RHO, P = 1.0; S7,
P = 0.23) was tested using the PHI test in Splitstree v.4.
13 [43]. DNA sequences of each of the four genes (cytb,
coxI, S7 and RHO) were collapsed to haplotypes using
the web-based program ALTER [44].
The phylogenetic analyses were conducted with each

gene separately, with concatenated datasets for mito-
chondrial genes, for concatenated nuclear genes, and for
the four genes combined. The phylogenetic analyses with
concatenated genes were performed with the available
sequences of the nuclear genes (201 specimens), the se-
quences of mitochondrial genes were adjusted to these
number, which were representative of all biogeographic
regions and account the variability found in mitochon-
drial genes.
The performance of the phylogenies with the four

concatenated genes vs. mitochondrial genes concatenated
and vs. nuclear genes concatenated were assessed using
Bayes Factors (BF). Bayes Factors were calculated from
the estimated harmonic means of likelihood using the
sump command in MrBayes. Decisions were made based
on the 2ln BF criterion, with BF > or = 10 considered as
strong evidence for rejecting the null hypothesis [45].
Model selection based on Akaike information

criterion (AIC) and optimal partition settings were
performed using PartitionFinder v.1.1.0 [46], and
recovered the best partition by assigning substitution
models for each gene. The parameters of each model
are provided in Additional file 3.
Gene trees were constructed with Maximum Likeli-

hood implemented in RAxMLGUI v.1.3.1 [47, 48], using
the substitution model implemented for each gene. The
GTR +G + I [48] substitution model was used for the
concatenated genes matrix and 10,000 bootstrap repli-
cates with the algorithm ML + rapid bootstrap. The
relative stability of clades was evaluated by 1000 non-
parametric bootstrap replicates [49].
Bayesian Inference was implemented in MrBayes v.3.2.1

[50], with the substitution models for each gene obtained
in PartitionFinder. Analyses were run for 10 million gener-
ations, with two independent runs implementing four
Markov Chain Monte Carlo (MCMC) processes and
sampling every 500 generations. We evaluated the chains
for convergence with the log-likelihood (-InL) values of
the two independent runs using Tracer v.1.5 [51], and
discarded 10% as burn-in to construct the consensus tree.
Poeciliopsis prolifica was used as outgroup, based on the
results of a previous study [26].

In order to determine the geographic distribution of
haplotypes for all populations of P. infans for nuclear
genes, we reconstructed two independent TCS haplotype
networks (a phylogenetic network estimation using
statistical parsimony) for RHO and S7 sequences using
PopArt v.1.7 (http://popart.otago.ac.nz).

Divergence time estimation and genetic distances
The program BEAST v.1.8.1 [52] was used to estimate
the most recent common ancestor for clades within P.
infans. This analysis was carried out with a subset of 145
sequences that include all different haplotypes for all
genes. Because the lack of fossil data for Poeciliopsis, the
molecular clock was calibrated using the mutation rate
of cytb in teleosts of 0.76–2.2%/million years [53–55].
Since the mutation rate is not available for the other
genes, they were included in the analysis without calibra-
tion information.
The model parameters were unlinked across cytb, coxI,

S7 and RHO genes and substitution models were set ac-
cording to the selected model for each gene by Partition-
Finder v. 1.1.0 [46]. We applied a lognormal relaxed
clock (Uncorrelated) model on branch length [56]. We
selected the tree prior Coalescent: Extended Bayesian
Skyline Plot [57], and estimated a starting tree using the
random method. A MCMC analysis with 50 million of
generations was conducted, and sampled every 1000
generations. We assessed whether parameter values had
reached effective sample size and convergence in Tracer
v.1.5. [51]. Finally, the maximum clade credibility tree
was built, discarding the first 10% of the trees as burn-
in, using Tree Annotator v.1.8.1. [52].
Uncorrected genetic distances were calculated among

the recovered groups in the phylogenetic trees for each
mitochondrial gene (cytb, coxI), and between all individ-
uals for S7 and RHO in Mega v.6.06 [39]. A bootstrapping
process was performed with 1000 repetitions.

Genetic diversity and population structure
For each gene (cytb, coxI, S7 and RHO), the number of
haplotypes (H), polymorphic sites (S), nucleotide (π) and
haplotype (h) diversities were obtained to estimate
genetic diversity levels in all populations of P. infans. To
examine genetic differentiation at different hierarchical
levels, as well as geographical patterns of population
subdivision, an analysis of molecular variance (AMOVA)
was conducted. The AMOVAs were implemented for
the four separate genes and groupings according to: 1)
inferred clades in phylogenetic analyses, 2) according to
the biogeographic regions sensu [28] and, a third
analysis was performed without a priori groupings. The
analyses were conducted using 10,000 permutations to
assess significance values. All genetic diversity analyses
and AMOVAs were performed in Arlequin v.3.5.1 [58].

Beltrán-López et al. BMC Evolutionary Biology  (2018) 18:56 Page 5 of 21

http://popart.otago.ac.nz


Ancestral area reconstruction
The ancestral area reconstruction for P. infans was
estimated using the statistical Dispersal-Vicariance (S-
DIVA) method [59], and the Dispersal-Extinction-
Cladogenesis (DEC) model [60, 61] as implemented in
RASP v.3.2 software [62]. These methods use statistical
approaches to reconstruct biogeographic history, and
allowed us to compare both results. The ultrametric and
dichotomous tree obtained for cytb in BEAST was used
as the tree topology on which ancestral areas were
mapped. For both analyses, the maximum number of
areas was limited to two. For these analyses, the distri-
butional area of P. infans was divided into 15 biogeo-
graphic regions: (Mag) Magdalena Lake; (Etz) Etzatlán-
San Marcos region; (Ver) Verde River; (Ame) Ameca
River; (San) Grande de Santiago River; (Tam) Tamazula
River; (Pat) Patzcuaro Lake; (Cha) Chapala Lake; (Bal)
Balsas River; (Cot) Cotija Lake; (Lle) Lower Lerma River;
(Mle) Middle Lerma River; (Zac) Zacapu Lake and (Cui)
Cuitzeo Lake, and, within Sayula region are considered
the follow Lakes: (Ato) Atotonilco, (Sma) San Marcos,
(Say) Sayula and (Zap) Zapotlan [28, 29].

Historical demography
The population size fluctuations through time were
tested with a Coalescent Bayesian Skyline Plot (BSP)
analysis [63] as implemented in BEAST v.1.8.1 [52]. This
analysis only was implemented with sequences of cytb
due the higher number of available sequences. The
substitution rate was the same as the divergence time
analysis and the substitution model was set according to
the select model by PartitionFinder v. 1.1.0 [46].
An uncorrelated relaxed clock model was set a priori,

and 70 million generations were run, sampled every
1000 generations. Convergence was assessed with Tracer
v.1.5 [51]. The first 10% of the states were discarded as
burn-in.

Poeciliopsis infans Distribution modelling
To evaluate the concordance between the historical
demography obtained in BSP analyses and the potential
distribution of P. infans in the past, we carried out a spe-
cies distribution modelling analyses at different temporal
scales [64]. The estimations of the current and past
population distribution were inferred with MaxEnt v.3.3.
1 [65]. Geographical coordinates of 162 sites registered
in the database of the Colección de Peces de la Universi-
dad Michoacana de San Nicolás de Hidalgo were used as
presence data (see Additional file 4). For the environ-
mental data, we used 19 bioclimatic variables down-
loaded from WORLDCLIM database [66], http://www.
worldclim.org, at a resolution of 30 arc-seconds for Last
Inter Glacial (LIG) and 2.5 min for Last Glacial
Maximum (LGM). The WORLDCLIM variables

represent biologically meaningful summaries of precipi-
tation and temperature in the present (1950–2000), and
for the past, the Community Climate System Model
(CCSM) for the LGM: 0.025 Myr, and the LIG: 0.15–0.
10 Myr periods. To construct the models, we employed
a logistic output [65], and the default settings. The value
of the regularization multiplier was tested for 0.5, 1.0, 1.
5 and 2.0, but the highest AUC value was for a
regularization multiplier of one, and this value was used
in all analyses. The model was run with 100 subsample
replicates estimating mean habitat suitability values (S).
To evaluate if the performance of all distribution models

was better than one, a random model was assessed using
75% of the presence data to run the model and the
remaining 25% for statistical testing. In addition, the area
under the receiver operating characteristic curve (AUC)
was estimated to assess the accuracy of the models. A
jackknife test of variables of importance was conducted to
evaluate the relative importance of each climate variable
[67]. Variables contributing the least to the model or those
highly correlated [68] were removed for each model. The
correlation of variables was evaluated through the
response curves, which reflect the dependencies induced
by correlations between the selected variable and other
variables.

Results
Phylogenetic relationships and haplotype networks
The ambiguously aligned positions that showed the
sequences of the S7 gene are see in Additional file 5.
The BF comparison indicated that the analyses using the
four concatenated genes provided a better explanation of
the data than the mitochondrial genes concatenated or
nuclear genes concatenated (BF of four genes
concatenated vs mitochondrial genes concatenated = 1.
87 and BF of four concatenated genes vs nuclear genes
concatenated = 2.2).
The phylogenetic results for both analyses (Maximum

likelihood and Bayesian Inference) recovered two well
differentiated and well supported clades for each mito-
chondrial gene (cytb: 1083 bp and coxI: 631 bp) (Add-
itional files 6 and 7), for the concatenated mitochondrial
genes (cytb, coxI: 1771 bp) (Additional file 8), and for all
concatenated genes (cytb, coxI, S7 and RHO: 3475 bp;
Fig. 2).
In general terms, clade A clustered populations of the

biogeographic regions of lowlands of TMVB, while; clade
B clustered populations of the biogeographic regions of
the highlands of the TMVB. However, one sample from
Ameca, Magdalena and Sayula regions respectively were
grouped in clade B. (Figs. 1 and 2).
Clade A clustered individuals of seven biogeographic re-

gions is better in three sub-clades: sub-clade A1 included
individuals from the Etzatlan-San Marcos region,
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Magdalena Lake and few individuals of Verde River; sub-
clade A2 clustered individuals of the Ameca, Verde, and
Grande de Santiago Rivers and the Atotonilco Lake of the
Sayula region; while the sub-clade A3 clustered individuals
of the Sayula, San Marcos and Zapotlan Lakes within the
Sayula region, as well as samples from the Ameca River
basin and Tuxpan River of the Tamazula biogeographic re-
gion. These three sub-clades were well supported in the

Bayesian inference analysis, but the bootstrap support for
sub-clade A1 was low (87%) (Fig. 2).
The second clade, clade B, clustered individuals of the

Middle and Lower Lerma, Grande de Santiago and
Balsas Rivers, as well as Cuitzeo, Patzcuaro, Chapala,
Cotija and Zacapu Lakes. Also, three samples corre-
sponding to regions that were clustered in clade A were
recovered in clade B and corresponded to Magdalena

0.003

4600-Magdalena
4600B-Magdalena

9431B-Magdalena

9435-Magdalena
11698-Magdalena

11699B-Magdalena

11920B-Etzatlan

11920-Etzatlan
28171-Etzatlan
28173B-Etzatlan
28175-Etzatlan
28175B-Etzatlan

32485-Etzatlan

32493-Etzatlan
32492-Etzatlan

32495B-Etzatlan
32577-Etzatlan

4674B-Verde
4654-Ameca

28089B-Ameca
31541-Ameca

4654B-Ameca
5049-Ameca
5049B-Ameca

5051-Ameca

5052Ameca
5052B-Ameca
5070-Atotonilco

5054-Ameca
11984-Ameca

42910-Ameca
8360B-Atotonilco
8364-Atotonilco

8366-Atotonilco
8366B-Atotonilco

28109-Atotonilco

9920-Ameca

11841-Ameca
11980B-Ameca

11979-Ameca

4655B-Ameca
4655-Ameca

4632B-Ameca

28110B-Atotonilco
10287-Patzcuaro

23906-Patzcuaro
23906B-Patzcuaro

17981-Chapala
17981B-Chapala

26806-Patzcuaro
17982-Chapala
28193-Chapala
28193B-Chapala

28266-Chapala
28266B-Chapala

18747-Balsas
28134B-Cotija

36319B-Santiago

28110-Atotonilco

4632-Ameca

10571B-Sayula
10573B-Sayula

10578B-Sayula

10565B-Sayula
10565-Sayula

10566-Sayula
10566B-Sayula

10568-Sayula
10568B-Sayula

10570-Sayula

10578-Sayula
5026-San Marcos

18964B-San Marcos
18964-San Marcos

28115-San Marcos
28116B-San Marcos
28118-San Marcos

9959-Magdalena

5026B-San Marcos

10573-Sayula

11979B-Ameca

31543B-Ameca
31543-Ameca

31541-Ameca
11982B-Ameca

11982-Ameca

9920B-Ameca

31542-Ameca

28109B-Atotonilco
36324B-Santiago

36322-Santiago
36322B-Santiago

36320-Santiago

36320B-Santiago

5094B-Santiago

36290B-Santiago

36291-Santiago
36291B-Santiago

36323B-Santiago
17965-Lower Lerma
17976-Lower Lerma

17964-Lower Lerma
17964B-Lower Lerma

17977-Lower Lerma
39563-Lower Lerma
39563B-Lower Lerma

4948-Middle Lerma

4949-Middle Lerma

12810-Middle Lerma

10164-Cuitzeo
10154B-Cuitzeo
10154-Cuitzeo

10365-Cuitzeo
10364-Cuitzeo

10431-Zacapu
10431B-Zacapu

25106-Zacapu

4948B-Middle Lerma

36323-Santiago

36290-Santiago

35456-Verde
35457-Verde
35457B-Verde
36260-Verde

36261B-Verde
36261-Verde

36314B-Santiago
36314-Santiago

8364B-Atotonilco

11985-Ameca
11985B-Ameca

5070B-Atotonilco

5051B-Ameca

28089-Ameca
11980-Ameca

32491-Etzatlan

9429B-Magdalena
9429-Magdalena

42668-P. prolifica
42668B-P. prolifica
42669-P. prolifica

42669B-P. prolifica

42671-P. prolifica
42670B-P. prolifica
42667B-P. prolifica

1
100

97

87

91

94

88

1

0.99

1

1

1

1

0.96

1

0.97

1

0.99

1

1 A1

A2

Mag
Etz
Ver

Ame
Ato
San
Verde

Clade A

Clade B

A3

B

Ame
Say
Sma
Zap
Tam

Mag
Ame
Ato

Mle
Zac
Lle
Cui

Pat
Cha
Bal
Cot
San
Lle

ca. 2.83 Myr
95% HPD 1.25-4.41 Myr

ca. 0.95 Myr
95% HPD 0.39-1.5 Myr

ca. 0.72 Myr
95% HPD 0.27-1.18 Myr

ca. 0.26 Myr
95% HPD 0.07-0.46 Myr

Fig. 2 The Bayesian inference tree of Poeciliopsis infans from concatenated sequences of two mitochondrial (cytb, coxI) and two nuclear genes
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and Atotonilco Lakes, and the Ameca River (Fig. 2). The
phylogeny based on each nuclear gene and with both
concatenated nuclear genes failed to recover resolved
relationships (Additional files 9, 10 and 11).
For the haplotype networks based on the nuclear

genes, two haplogroups (A and B) were recovered and
these are highly congruent with the concatenated gene
phylogeny. There are, however, shared haplotypes be-
tween them, with RHO network sharing the most haplo-
types between groups. The first haplogroup (A), grouped
individuals of Ameca, Grande de Santiago, Sayula, Mag-
dalena, Verde and Etzatlan-San Marcos regions, for S7,
one individual of the Chapala region was found in this
haplogroup. The second haplogroup (B) for both nuclear
genes, grouped individuals of the Lower and Middle
Lerma, Grande de Santiago, Balsas, Zacapu, Cuitzeo,
Patzcuaro, Cotija and Chapala regions. Some individuals
of the Sayula region were grouped in the haplogroup B
for both genes (see Additional file 12).

Divergence time estimation and genetic distances
The first isolation event in P. infans, separating clades A
and B, was estimated to have occurred near the middle
Pliocene and middle Pleistocene ca. 2.83 Myr (95%
HPD: 1.25–4.41 Myr). The first separation event of the
three sub-clades within clade A was estimated to have
occurred during the Pleistocene period ca. 0.95 Myr
(95% HPD: 0.39–1.5 Myr), whereas the rest of the
isolation events were calculated in less of a million of
years (Figs. 2 and 3).
The uncorrected mean genetic distances (p-distance)

calculated between clade B and sub-clades A1, A2 and
A3 for the mitochondrial genes ranged from 0.8–3.3%
for cytb; and 0.7–1.9% for coxI (Table 2). The minimum
genetic distances found for cytb were between sub-clade
A1 and sub-clade A2 (0.8%), and the maximum dis-
tances were between sub-clade A3 and clade B (3.3%).
Based on coxI the minimum genetic distances were ob-
served between sub-clade A2 and sub-clade A3 (0.7%),
and the maximum were between sub-clade A1 and clade
B (1.9%). Between the three sub-clades of clade A the
genetic distances were 0.8–1.1% for cytb and 0.7–1.3%
for coxI (Table 2). For nuclear genes the genetic
distances between all individuals included both alleles
for each sequence, ranged between 0.0–0.5% for RHO
and between 0.0–0.6% for S7.

Genetic diversity and population structure
The highest haplotype diversity was found in Cuitzeo
(h = 0.81) for cytb and in the Verde River (h = 0.62) for
coxI, followed by the Ameca River Basin for both genes
(h = 0.75 for cytb and 0.42 for coxI), while, null haplo-
type diversity were found in the Patzcuaro, Cotija and
Balsas regions. Atotonilco Lake, within the Sayula region

and the Verde River exhibited the highest nucleotide
diversity for cytb and coxI (π = 0.006, π = 0.004) respect-
ively (Table 3).
For the nuclear genes, the highest haplotype diversity

was found in the Atotonilco (h = 0.97), and Ameca (h =
0.9) for S7, and the Middle Lerma (h = 0.73) for RHO.
Absence of haplotype diversity was found for the Middle
Lerma for S7 and Cuitzeo for RHO. The populations of
Atotonilco (π = 0.01) and the Middle Lerma (π = 0.001)
exhibited the highest nucleotide diversity for S7 and
RHO respectively (Table 4). When the AMOVA was per-
formed without groups a priori, the highest variation for
all genes were among populations (cytb: 91.17%, coxI: 96.
07%, S7: 69.5% and RHO: 60.64%) and not within popu-
lations. The AMOVA for all genes showed a high
percentage of variation when populations were grouped
according to the recovered clades and sub-clades from
the phylogenetic analyses (cytb: 92.24%, coxI: 91.03%, S7:
45.48% and RHO: 53.21%), but not when populations
were grouped according to the biogeographic regions
[18] (cytb: 31.31%, coxI: 27.09%, S7: -99.28% and
RHO: 53.21) (Tables 5 and 6).

Ancestral area reconstruction
Ancestral area reconstruction using DEC and S-DIVA
revealed a complex biogeographical history for P. infans,
with several events of dispersal and vicariance (Figs. 3
and 4). Vicariance was most common in ancient events
in comparison to dispersal events. For both analyses, the
ancestral areas estimated for P. infans were Zacapu Lake
and Ameca River, but with low probabilities (6.5% for
DEC; 16.7% for S-DIVA). The same explanation for both
analyses was found for the biogeographic history of the
northwest populations of P. infans clustered in phylo-
genetic clade A. The biogeographical route for this clade
included a dispersal event from the Ameca River toward
the Sayula and Etzatlan-San Marcos regions, followed by
a vicariant event that separated the populations of
Ameca River with respect to Etzatlan-San Marcos and
Sayula regions. A more recent dispersal event from the
Ameca to the Verde River was recovered (S-DIVA > 50%,
DEC > 27% of probabilities).
The biogeographical history of the southeastern clade

B differs slightly in both biogeographical methods. For
both methods, one dispersal event occurred from
Zacapu toward Cuitzeo, followed by a vicariant event
that separated these two regions. For DEC, dispersal
events occurred from Zacapu toward the Lower Lerma
and from here to Chapala, while there was also a recent
dispersal event from Cuitzeo to the Middle Lerma. The
S-DIVA differed with the DEC in that dispersal events
from Zacapu were toward Chapala and once both re-
gions were separated, a second dispersal event occurred
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from Chapala to the Lower Lerma (S-DIVA 100% and
DEC > 60%) (Figs. 3 and 4).

Historical demography
The BSP analyses for cytb for populations of clade A
showed a demographic decline for Magdalena Lake, San
Marcos, Sayula and Atotonilco Lakes (belonging to
Sayula region), Ameca, Grande de Santiago and
Etzatlan-San Marcos regions between 0.15 and 0.1 Myrs.
More recently, after a demographic decline, a population

expansion was detected in the last 0.025 Myr. For the
Verde River, a population reduction was detected follow-
ing a more recent population expansion. For this clade,
the regions Zapotlan and Tamazula were not included
due to the low number of individuals (Fig. 5).
For clade B, all analyzed groups revealed a demo-

graphic decline in the last 0.15–0.1 Myr, followed by
population expansion around ≤0.18 Myr, as found for
clade A. For this clade the Balsas, Cotija and Middle
Lerma basins were not included due the low number of
samples (Fig. 6).

Poeciliopsis infans Distribution modelling
The habitat suitability modelling for populations of P.
infans estimated for current (1965–1978) and past (LIG:
0.15–0.10 Myr, and LGM: 0.025–0.020 Myr) time pe-
riods, showed high precision and acceptable predictive
power with all models (AUC > 0.96) [69]. For the current
conditions, the two variables with the highest gain were
BIO3 Isothermality (BIO2/BIO7)*100 and BIO6 Min
temperature of coldest month. In the LIG model, the
two variables with the highest gain were BIO1 Annual
Mean Temperature and BIO16 Precipitation of Wettest
Quarter. For the LGM model, the two variables with the
highest gain were BIO4 Temperature seasonality (stand-
ard deviation*100), and BIO6 Min Temperature of coldest
month. The modelling of habitat suitability showed that in
the LGM, the habitat suitability for P. infans was better in

Table 2 Uncorrected genetic distances presented in proportion

cytb/coxI Clade A Clade B

Sub-clade Sub-clade Sub-clade

A1 A2 A3

Sub-clade A1 0.001/0.000 0.008 0.010 0.031

Sub-clade A2 0.013 0.001/0.001 0.011 0.031

Sub-clade A3 0.009 0.007 0.001/0.000 0.033

Clade B 0.019 0.016 0.016 0.002/0.002

Genetic distances within recovered clades and sub-clades of Poeciliopsis infans
based on cytb (to the left of the diagonal) and coxI (to the right of the
diagonal) and between recovered groups in phylogenetic analyses based on
cytb (above the diagonal) and coxI (below the diagonal) genes

Table 3 Genetic diversity for each biogeographic region of
Poeciliopsis infans based on mitochondrial DNA data
(cytb and coxI)

cytb – coxI

Biogeographic region N S H π h

Magdalena 15–12 1–0 2–1 0.000–0.000 0.133–0.000

Ameca 37–30 18–
5

9–3 0.001–0.001 0.752–0.427

Middle Lerma 3–3 3–0 3–1 0.001–0.000 1.000–0.000

San Marcos (Sayula) 13–14 3–1 4–2 0.000–0.000 0.525–0.362

Atotonilco (Sayula) 9–9 34–
0

2–1 0.006–0.000 0.220–0.000

Sayula (Sayula) 15–17 4–2 5–3 0.001–0.000 0.695–0.227

Cuitzeo 15–16 8–2 6–3 0.001–0.000 0.819–0.241

Patzcuaro 14–14 0–0 1–1 0.000–0.000 0.000–0.000

Zacapu 21–22 8–2 6–2 0.001–0.000 0.557–0.173

Etzatlan-San Marcos 19–16 7–0 7–1 0.000–0.000 0.608–0.000

Chapala 19–17 2–0 3–1 0.000–0.000 0.292–0.000

Balsas 5–5 0–0 1–1 0.000–0.000 0.000–0.000

Cotija 11–9 0–0 1–1 0.000–0.000 0.000–0.000

Verde 19–21 9–9 2–3 0.002–0.004 0.280–0.620

Grande de Santiago
(before SJ)

12–11 3–1 3–2 0.000–0.000 0.547–0.388

Grande de Santiago
(after SJ)

10–11 2–1 3–2 0.000–0.000 0.375–0.250

Lower Lerma 13–13 3–4 2–3 0.000–0.001 0.282–0.410

N, sample size, S, polymorphic sites, H, number of haplotypes, π, nucleotide
diversity h, haplotype diversity. SJ = Salto de Juanacatlan

Table 4 Genetic diversity for each biogeographic region of
Poeciliopsis infans based on nuclear DNA data (S7 and RHO)

S7 – RHO
Biogeographic region N S H π h

Magdalena 24–18 10–6 6–5 0.002–0.000 0.713–0.405

Ameca 50–54 29–2 22–3 0.004–0.000 0.956–0.265

Middle Lerma 6–6 0–2 1–3 0.000–0.001 0.000–0.733

San Marcos (Sayula) 24–20 1–1 2–2 0.000–0.000 0.159–0.505

Atotonilco-Sayula
(Sayula)

18–10 39–2 14–2 0.010–0.000 0.973–0.200

Sayula (Sayula) 20–22 7–2 6–3 0.002–0.000 0.790–0.177

Cuitzeo 24–18 2–0 3–1 0.000–0.000 0.358–0.000

Patzcuaro 22–10 1–1 2–2 0.000–0.000 0.173–0.466

Zacapu 40–14 4–2 5–2 0.000–0.000 0.315–0.142

Etzatlan-San Marcos 32–30 10–3 14–3 0.001–0.000 0.774–0.131

Chapala 34–26 8–2 8–3 0.001–0.000 0.711–0.280

Balsas 10–6 4–1 4–2 0.001–0.000 0.644–0.333

Cotija 22–18 2–1 3–2 0.000–0.000 0.450–0.529

Verde 14–32 11–1 6–2 0.004–0.000 0.822–0.000

Grande de Santiago 32–26 15–3 16–4 0.002–0.001 0.834–0.600

Lower Lerma 26–18 15–2 5–3 0.001–0.000 0.461–0.307

N, sample size (included the two alleles of each sequence), S, polymorphic
sites, H, number of haplotypes, π, nucleotide diversity h, haplotype diversity
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the lowlands, whereas for the LIG, the habitat suitability
increased in the highlands (Fig. 7).

Discussion
Biogeographic and evolutionary history of P. infans
The recovery of two well-differentiated clades within P.
infans (Fig 2 and Additional file 8) indicates a long his-
tory of isolation, with subsequent genetic differentiation,
which seems to be linked to the intense volcanic and
tectonic activity in central Mexico during the Pliocene
(Figs. 2 and 3). This pattern previously has been
reported, in which the genetic differentiation has been
linked with the past configuration of the rivers more
than the current hydrology of this region of central
Mexico, as is the case for the goodeid, Zoogoneticus quit-
zeoensis (Bean, 1898), and for species of the cyprinid
genus Algansea [30, 33].
Populations of P. infans are largely differentiated by

the isolation of watersheds as have occurred in other
freshwater fishes with low dispersal ability; however,
some geographical features within a river or basin have

been shown to be sufficient to differentiate populations
of P. infans [26].
We recovered the samples from the Rio Grande de

Santiago Basin grouped in the two main clades for
phylogenetic analyses and in the two haplogroups for
haplotype networks (A, B). This pattern, in which
the samples from the Santiago River were grouped
in two clades, previously was found in another study
[26]. Specimens from the Rio Grande de Santiago
Basin sampled upstream of the falls, el Salto de
Juanacatlan, belong to clade B, whereas populations
sampled downstream of the falls were grouped
within clade A, suggesting that the Salto de Juanaca-
tlan formation, a waterfall 20 m high, has been an
important and ancient barrier promoting differenti-
ation between populations. This geologic feature
previously has been shown to represent a barrier for
fish faunal interchange between the Santiago and
Chapala Lake [26, 38].
Ancestral area reconstructions recovered very low

marginal probabilities for biogeographical routes from

Table 5 Analyses of molecular variance (AMOVA) of the mitochondrial data for select groups of Poeciliopsis infans at different
hierarchical arrangements

Testing assumptions Source of variation % of variance Fixation index P- value

Cytb

Grouped according to recovered clades and sub-clades Among groups 92.24 ΦCT: 0.92 < 0.0001

Among populations within groups 3.82 ΦSC: 0.49 < 0.0001

Within populations 3.94 ΦST: 0.96 < 0.0001

Total 100

Biogeographic regions Among groups 31.31 ΦCT: 0.31 ns

Among populations within groups 63.5 ΦSC: 0.94 < 0.0001

Within populations 5.19 ΦST: 0.94 < 0.0001

Total 100

Without grouping a priori Among populations 91.17 ΦST: 0.91 < 0.0001

Within populations 8.83

Total 100

CoxI

Grouped according to recovered clades and sub-clades Among groups 91.03 ΦCT: 0.91 < 0.0001

Among populations within groups 6.01 ΦSC: 0.66 < 0.0001

Within populations 2.96 ΦST: 0.97 < 0.0001

Total 100

Biogeographic regions Among groups 27.09 ΦCT: 0.27 ns

Among populations within groups 69.01 ΦSC: 0.94 < 0.0001

Within populations 3.9 ΦST: 0.96 < 0.0001

Total 100

Without grouping a priori Among populations 96.07 ΦST: 0.96 < 0.0001

Within populations 3.93

Total 100

ns = not significant
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the ancestral areas of all populations of P. infans
(DEC = 0.01; S-DIVA = 0.08; Figs. 3 and 4). Therefore,
both ancestral area reconstructions were unable to re-
solve the state of the node separating clade A from
clade B, but were able to reconstruct the ancestral
areas and biogeographical routes within each clade.
Despite these low marginal probabilities, the most

plausible event that separated the Ameca River and
Lake Zacapu of its ancestral area of distribution was
a vicariant event. Our date estimation for the diversifica-
tion of the two main clades (A and B) was ca. 2.83 Myr
(1.25–4.41 Myr), between the middle Pliocene and the
early Pleistocene periods (Figs. 3 and 4).
The geological activity during the middle Pliocene and

early Pleistocene in central Mexico promoted the clado-
genesis of clade A from clade B. This deep divergence of
the two clades is coincident with the interruption of the
ancient connection of the upper Ameca River with
drainages in central Mexico by tectonic and volcanic
activity at ca. 3–1 Myr [70], (Fig. 3). As a result, this dis-
persal route could have been blocked at the end of the

Pliocene and during the Pleistocene. This occurred when
the hydrological systems that shaped the complex
Chapala-Lerma Paleosystem (Ameca River, Magdalena,
Chapala, Lerma River and the lakes distributed along the
Colima graben) became isolated due to volcanic and
tectonic activity in the triple junction area, the Ameca
and San Marcos faults at ca. 3.5–1.5 Myr (Fig. 3) [71].
The isolation of the region where clade A is distributed

during the Pliocene, has also been reported in other fresh-
water species including the cyprinids Yuriria amatlana
Domínguez-Domínguez et al., 2007 and Algansea amecae
Pérez-Rodríguez et al., 2009, as well as the goodeid
Allotoca goslinei Smith & Miller, 1987 [29, 30, 72, 73]. In
addition, other freshwater organisms shown a similar
pattern, as Cambarellus chapalanus (Faxon, 1898),
which has two divergent genetic groups, one distrib-
uted in Chapala Lake and the other in the Ameca
River Basin separated at ca. 2.6 Myr [32]. A similar
pattern was mentioned before for Poeciliopsis [26],
who suggested that the ancestors of the strictly northern
clade of Poeciliopsis must have been distributed across the

Table 6 Analyses of molecular variance (AMOVA) of the nuclear data for select groups of Poeciliopsis infans at different hierarchical
arrangements

Testing assumptions Source of variation % of variance Fixation index P- value

S7

Grouped according to recovered clades and sub-clades Among groups 45.48 ΦCT: 0.45 < 0.0001

Among populations within groups 28.26 ΦSC: 0.51 < 0.0001

Within populations 26.26 ΦST: 0.73 < 0.0001

Total 100

Biogeographic regions Among groups -99.28 ΦCT:-0.99 ns

Among populations within groups 166.42 ΦSC:0.83 < 0.0001

Within populations 32.86 ΦST:0.67 < 0.0001

Total 100

Without grouping a priori Among populations 69.5 ΦST: 0.69 < 0.0001

Within populations 30.5

Total 100

RHO

Grouped according to recovered clades and sub-clades Among groups 53.21 ΦCT: 0.53 < 0.0001

Among populations within groups 12.42 ΦSC: 0.26 < 0.0001

Within populations 34.37 ΦST: 0.65 < 0.0001

Total 100

Biogeographic regions Among groups 15.86 ΦCT: 0.15 ns

Among populations within groups 44.92 ΦSC: 0.53 < 0.0001

Within populations 39.22 ΦST: 0.60 < 0.0001

Total 100

Without grouping a priori Among populations 60.64 ΦST: 0.60 < 0.0001

Within populations 39.36

Total 100

ns = not significant
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region presently occupied by our clade B, which includes
Zacapu.
The discrepancies between the mitochondrial and

nuclear genes are related to the mixture of some individ-
uals of haplogroup A with haplogroup B. In this case,
considering the high genetic distances with mitochon-
drial genes, the divergence times, and the results from
the AMOVAs, we suggested that it could be the result of
retention of ancestral polymorphisms, as has been
shown for other freshwater fishes of central Mexico [74].

Biogeography within clade A
The biogeographic analyses showed a dispersal event
between Sayula and the Ameca basin, suggesting an
early connection more than a million years ago. This
connection was previously found for P. infans between

the Ameca River and Atotonilco Lake of the Sayula
region [26].
The isolation of the Ameca, Etzatlan-San Marcos,

Magdalena and Lakes of the Sayula region, could be due
to the formation of the current watersheds during the
Pleistocene epoch ca. 0.95 Myr (95% HPD: 0.39–1.5
Myr; Figs. 2 and 3), when the connections of the Ameca
River and Atotonilco-Sayula Lakes were disrupted by
Pleistocene volcanism and the intense tectonic activity
of the so called triple junction [71, 75]. This is also con-
gruent with the presence of Ameca splendens Miller &
Fitzsimons, 1971, in the Ameca River and Sayula re-
gions, with a divergence time between the two popula-
tions calculated in less than a million of years [29].
Other dispersal events from the Ameca to Etzatlan-

San Marcos and Magdalena regions were recovered. The
climatic changes during this pluvial-interpluvial period,
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beginning ca. 0.90 Myr [4, 76], could have promoted this
dispersal event when Magdalena Lake was considerably
larger and extended to Etzatlan-San Marcos area [77].
After that time, the Ameca was isolated from the
Etzatlan-San Marcos and Magdalena regions by a vicari-
ant event ca. 0.72 Myr (DEC = 0.209; S-DIVA = 1.0),
which could be associated with the reactivation of the
Plan de Barrancas fault during the Quaternary (ca. 1.0
Myr), and with the Amatlán de Cañas half graben
(Fig. 3) that was formed ca. 3.4 Myr [13, 70, 78].
Finally, a dispersal event from the Ameca River to the

Verde and Santiago Rivers also was found (ca. 0.14 Myr),
and this is supported by previous findings suggesting that
these populations have been connected until very recently
through stream capture of the Ameca and Verde Rivers,
which was facilitated by the volcanism in the Tepic-
Zacoalco graben [26, 79], (Fig. 3).
The biogeographic events that isolated the three

recovered sub-clades are supported by the AMOVA ana-
lysis, maximizing the ΦCT when samples were grouped
into four groups, included the three sub-clades within
clade A (Tables 5 and 6), but not when they were
grouped according to biogeographic regions as have

been proposed for other freshwater fishes, including
goodeids and cyprinids [33, 36].
Since goodeids, cyprinids, and P. infans have evolved

in spatiotemporal congruence, the differences found in
the evolutionary history of P. infans could be related to
the biogeographic origin of each group. Poeciliopsis
infans has a Neotropical origin, whereas goodeids and
cyprinids are of Neartic origin [18]. As a result, we
expect that Quaternary climate changes have influenced
genetic variation and the distributional patterns of P.
infans. Moreover, the genetic diversity was higher for
regions clustered in the clade A (lowlands) than for
regions grouped in clade B (highlands). This could
also be linked to more stable high temperatures in
lowland areas, which could also promote the diversifi-
cation of populations found for this lowland clade
(clade A). This pattern has been reported in plants
that shown that the habitat and environment changes
affect the genetic diversity [80–83], as is the case of
Caragana microphylla, a species distributed in two
different habitats that shown that populations from
the high temperature region had lower genetic diver-
sity than those from medium and low temperature
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regions [81]. The only exception of this pattern is the
Magdalena Lake population, which has the lowest
genetic diversity within this clade, a pattern that is
explained due to the history of instability of this
hydrological basin, with extreme and intermittent pe-
riods of flooding and drying [84], promoting recurrent
events of bottlenecks and loss of genetic diversity.
Also, other factors, in addition to the environment,

such as life-history traits, breeding systems, dispersal
mechanism, geographic variation, range and life span
and the histories of populations have affected genetic
variation between populations [81–83].

Biogeography within clade B
Our results are in accordance with the proposed connec-
tions and isolation between the Cuitzeo and Zacapu
regions, which has occurred several times during the
Pleistocene [85]. The connection between both regions
has been postulated to occur through the Chucandiro-
Huaniqueo paleo-river, a connection disrupted less than
1 Myr, due to the volcanism of the Tarasco corridor and
the activity of the Northeast-Southeast fault system ca.
0.7 to 0.5 Myr [86], (Fig. 3). This disruption has been

proposed as the cause of the isolation of different fish
species between Cuitzeo and Zacapu including the good-
eids Skiffia lermae (Meek, 1902), Goodea atripinnis
(Jordan, 1880), Alloophorus robustus (Bean, 1892) and
Hubbsina turneri (de Buen, 1940) [29, 85], and the cyp-
rinids Algansea tincella (Valenciennes, 1844) and Yuriria
alta (Jordan, 1880) [30, 72].
After the isolation of Zacapu and Cuitzeo, the DEC

and S-DIVA showed a dispersal event from Cuitzeo
towards the middle Lerma River, an event that is in ac-
cordance with recent isolation of this hydrological basin
with respect to Zacapu and Cuitzeo lakes. This event
was previously proposed for the goodeids Hubbsina
turneri [85], and Zoogoneticus quitzeoensis (Bean, 1898),
that are distributed in Cuitzeo, Zacapu, and the middle
Lerma [33], as well as Neotoca bilineata (Bean, 1887) for
which a low level of genetic differentiation (mtDNA)
was found for populations from Cuitzeo and the middle
Lerma [87].
Regarding the second biogeographic route for this

clade, which is different for the DEC and S-DIVA
analyses, the most plausible route is a dispersal event
from Zacapu toward the lower Lerma Basin, followed by
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Fig. 7 Species distribution modelling for: Current period, Last Inter Glacial (LIG: 0.15–0.10 Myr) and Last Glacial Maximum (LGM: 0.025–0.020 Myr),
the probability of presence of the species is in scale of colors
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a dispersal event toward Chapala Lake and the Santiago
River respectively, as is found in DEC. Zacapu is
currently connected with the lower Lerma through the
Angulo River, for which P. infans could have dispersed
toward Chapala Lake and the Santiago River via the
lower Lerma. This information is congruent with the
presence of Notropis calientis (Jordan & Snyder, 1899),
Yuriria alta, Algansea tincella, Xenotoca variata (Bean,
1887), Chapalichthys encaustus (Jordan & Snyder, 1899),
Allotoca dugesii (Bean, 1887) and Moxostoma austrinum
Bean, 1880, in the Middle Lerma, Lower Lerma and
Grande de Santiago basins, as well as in Chapala Lake
region [35, 36].

Human mediated dispersion
In general, we found biogeographic correspondence in
the distribution of clades, but incongruences were also
found for some populations and areas, as is the case of
Balsas, Cotija and Patzcuaro, populations that shown a
null genetic and haplotype diversities, with all sampled
individuals belong to the most common haplotype of
clade B.
These results have two possible explanations: 1) a

secondary dispersal and colonization event, which is
unlikely due to the historical isolation of all of those
drainages with respect to contiguous drainages [29, 88],
or 2) a founder effect due a dispersal event mediated by
humans. Human-based introductions represent the most
probable explanation according to the geographic distri-
bution of related haplotypes and the null genetic diver-
sity of Balsas, Cotija and Patzcuaro regions, since for
Patzcuaro this species has been reported as a human-
mediate introduction [89, 90] (Tables 3 and 4).
Several species in the family Poeciliidae have been in-

troduced for mosquito control worldwide and have
spread successfully to over 40 countries [91]. Other pos-
sible ways of introduction of poeciliids is the release of
the organisms by aquarists, through the use of this fish
as food source for commercial introduced fish, or acci-
dentally transported with commercially important fishes
stocked into water bodies, such a species of tilapia
(Oreochromis and Tilapia), which have been widely
introduced throughout Mexico [89, 92].

Historical demography and distribution modeling
Fluctuations in population size shown by BSP in popula-
tions of both clades of P. infans agree with the continu-
ous fluctuations of the climate and water levels of
hydrological systems in central Mexico due to glacial
and interglacial cycles [93].
For clade A, the analysis of historical demography

showed a demographic decline at ca 0.15–0.1 Myr,
followed by a recent population expansion, estimated to
start around 0.025 Myr in most of the populations

analyzed (Fig. 5). These genetic based analyses are con-
gruent with the distribution modeling results, in which
drainages where clade A is distributed, show restricted
areas with high probabilities (≥0.77) to support popula-
tions of P. infans during the LIG (0.15–0.10 Myr), local-
ized mainly to a small area within the Ameca region
(Fig. 7). Whereas for the LGM (0.025–0.020 Myr), an in-
crease in the areas with high probabilities (≥0.77) to sup-
port populations of P. infans is observed, covering most
of the present day distribution of clade A populations.
This recent population expansion for almost all popula-
tions of clade A could explain why the genetic diversity
is highest in this clade rather than in the clade B. It is
well known that stable populations that persisted from
the LGM to the present harbor disproportionately large
amounts of unique genetic diversity [94].
The decline in the clade B population seems to starts

after 0.075 Myr, followed by a population expansion at
ca. ≤0.018 Myr in all the populations analyzed, however,
we take with caution the population expansion of some
biogeographic regions for both clades, because the size
increase is out of the HPD limits (Fig. 6).
These results are also congruent with the distribution

modeling results, since the distribution modeling during
LIG (0.15–0.10 Myr) also showed a high proportion of
areas where clade B is distributed with high probabilities
(≥0.77) to support populations of P. infans. Whereas for
the LGM (0.025–0.020 Myr), a decrease in the area with
high probability of presence (≥ 0.77) is observed for
areas were clade B is distributed. These results are ex-
pected for a species with tropical preferences inhabiting
highlands, where temperatures declines of 8.5 °C during
LGM have been postulated [95], followed by a expansion
of the distribution range when the last ice age ended
and an increase of the temperature and water level of
hydrological systems have been recorded [93]. It has
been shown that the climatic fluctuations were accom-
panied by a loss of genetic diversity and even extinction
of populations that were unable to adapt to these
changes and find suitable conditions [96], as could be
the case for P. infans that is restricted to basin drainages.
This is congruent with the distribution modeling of
clade B distributed in highlands of central Mexico, and
explains the low genetic diversity found in almost all
populations within this clade.
Finally, in the present day modeling that represents an

Inter-glacial period, it showed an extended distributional
area with a probability of presence ≥0.77 in the upper
parts of the distributional range for both clades A and B.
These results of population expansion in lower areas
during Glacial Maximum and in upper areas during
Inter Glacial periods are also congruent with the
Neotropical origin of P. infans, suggesting that areas
that maintain high temperatures are more suitable for
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P. infans. This is also congruent with reports suggesting
the displacement of plant communities as a response to
the climate cooling, resulting in the migration to low alti-
tudes [97], for which the climate change in glacial cycles
could be responsible of the modifications in the compos-
ition of the communities favoring more resistant species
to the new environmental conditions [93, 97].

Conservation implications
The regions occupied by P. infans have been heavily
impacted by habitat loss due to overexploitation, pollution,
habitat degradation, and the introduction of non-native
species [98–100]. The negative impacts of these anthropo-
genic activities on native freshwater fishes of central
Mexico are well known [33, 101–103]. These activities can
exacerbate the loss of genetic diversity, which is especially
harmful for a species with a long history of instability
due to the natural climatic fluctuations, as is the case
of P. infans. This is especially true for those popula-
tions distributed in clade B (Tables 3 and 4). For this
reason, the establishment of each recovered clade and
sub-clade as Operational Conservation Unit (OCU)
[104] is necessary in order to conserve the unique
genetic pool that each clade represents.

Conclusions
The results of this study indicate that P. infans has had a
long history of isolation and subsequent genetic differenti-
ation, which appears to be linked to the intense volcanic
and tectonic activity in central Mexico. The separation of
the two recovered clades appears to have been promoted
by the geological activity during the middle Pliocene, and
early Pleistocene in central Mexico, ca. 2.83 Myr. Poeci-
liopsis infans is a co-distributed species with other group
of fishes as goodeids and cyprinids, evolving in spatiotem-
poral congruence. The differences in the recovered
biogeographic patterns of P. infans is likely related to the
biogeographic origin of each group, since P. infans has
Neotropical origin, and goodeids and cyprinids are of
Neartic origin. Populations of P. infans distributed in low-
lands showed a higher level of genetic diversity than popu-
lations distributed in highlands, which could be linked to
more stable and higher temperatures in lowland areas.
Finally, fluctuations in population size are supported by
the continuous fluctuations of the climate and water levels
of hydrological systems in central Mexico due to glacial
and interglacial cycles.

Additional files

Additional file 1: Tissue voucher number, and access number of GenBank.
(DOC 416 kb)

Additional file 2: Primers, PCR conditions, and References. (DOC 35 kb)

Additional file 3: Models selected with Akaike information criterion and
the parameters of each gene. (DOC 32 kb)

Additional file 4: Geographical coordinates of the 162 sites registers in
Colección de Peces de la Universidad Michoacana de San Nicolás de
Hidalgo used as presence data for species distribution modelling.
(DOC 161 kb)

Additional file 5: Ambiguously Aligned Regions for S7. (DOC 49 kb)

Additional file 6: The Bayesian inference tree of P. infans from cytb
mitochondrial gene (1083 bp). Bayesian posterior probability (> 0.9; above
the branches) and maximum likelihood bootstrap values (> 80%; below
the branches) are indicated. (DOC 943 kb)

Additional file 7: The Bayesian inference tree of P. infans from coxI
mitochondrial gene (631 bp). Bayesian posterior probability (> 0.9; above
the branches) and maximum likelihood bootstrap values (> 80%; below
the branches) are indicated. (DOC 548 kb)

Additional file 8: The Bayesian inference tree of P. infans from
concatenated sequences of two mitochondrial genes (cytb, coxI;
1771 bp). Bayesian posterior probability (> 0.9; above the branches) and
maximum likelihood bootstrap values (> 80%; below the branches) are
indicated. (DOC 738 kb)

Additional file 9: The Bayesian inference tree of P. infans from RHO
nuclear gene (845 bp). Bayesian posterior probability (> 0.9; above the
branches) and maximum likelihood bootstrap values (> 80%; below the
branches) are indicated. (DOC 469 kb)

Additional file 10: The Bayesian inference tree of P. infans from S7
nuclear gene (859 bp). Bayesian posterior probability (> 0.9; above the
branches) and maximum likelihood bootstrap values (> 80%; below the
branches) are indicated. (DOC 715 kb)

Additional file 11: The Bayesian inference tree of P. infans from
concatenated sequences of two nuclear genes (S7 and RHO: 1704 bp).
Bayesian posterior probability (> 0.9) and maximum likelihood bootstrap
values (> 80%) are indicated. (DOC 2382 kb)

Additional file 12: Haplotype networks for nuclear genes, a) S7 gene, b)
RHO gene. The two recovered haplogroups are show with labels A and B.
(DOC 1189 kb)

Abbreviations
mtDNA: Mitochondrial Deoxyribonucleic Acid; nDNA: Nuclear
Deoxyribonucleic Acid;; SEMARNAT: Secretaria de Medio Ambiente y
Recursos Naturales

Acknowledgements
This work was conducted as part of the doctoral studies of R. G.
Beltrán-López, and she was supported with a scholarship from the
Consejo Nacional de Ciencia y Tecnología (CONACYT: scolarship number
329883). We thank Isaí Betancourt for his help with sampling, and to
Berenice García Andrade and Silvia Perea for their help in laboratory and
for their comments to improve this work. We thank three anonymous
reviewers for their comments that improved this manuscript.

Funding
Funding for this study was provided by the Ministerio de Economía y
Competitividad y FEDER, Spain (CGL2016–75262-P) to ID and PRODEM,
CIC-UMSNH, Chester Zoo garden and CONACYT sabbatical grant to ODD,
as well as funds from the U.S. National Science Foundation (DEB
1354930) to KRP. These funding body do not had a specific role in the
design of the study and collection, analyses, and interpretation of data
in writing the manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this published
article [and its additional files]. The datasets used and/or analyzed during the
current study are available from the corresponding author on reasonable
request.

Beltrán-López et al. BMC Evolutionary Biology  (2018) 18:56 Page 18 of 21

https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7
https://doi.org/10.1186/s12862-018-1172-7


Authors’ contributions
RGBL, ODD, conceived the ideas; RGBL, ODD, RPR, conducted the fieldwork
and collected the specimens; RGBL, ODD, RPR, and ID, analyzed the data and
RGBL, ODD, RPR, KP, and ID write the manuscript. All authors have read and
approved the manuscript.

Ethics approval and consent to participate
The research has been carried out within an appropriate ethical framework.
All procedures performed, including field sampling techniques and
laboratory protocols, as anesthetised and euthanasia techniques used in this
study were reviewed and approved by a committee of Mexican Ministry of
Environmental and Natural Resources (SEMARNAT), under collection permit
number PPF/DGOPA-262/17. This procedures were also assessed and
approved by the Institutional Biosecurity and Bioethics committee of the
Institute of Chemical and Biological Research, Universidad Michoacana de
San Nicolás de Hidalgo, México. The specimens were anesthetised using
tricaine mesylate (MS-222) to anesthetize the fishes, according with the
Official Mexican Norm NOM-051-ZOO-1995 and NOM-033-SAG/ZOO-2014 for
humanitarian treatment in the mobilization of animals. The study organism is
neither protected nor endangered.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Programa Institucional de Doctorado en Ciencias Biológicas, Universidad
Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
2Laboratorio de Ictiología, Centro de Investigaciones Biológicas, Universidad
Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico. 3Laboratorio
de Biología Acuática, Facultad de Biología, Universidad Michoacana de San
Nicolás de Hidalgo, Morelia, Michoacán, Mexico. 4Laboratorio Nacional de
Análisis y Síntesis Ecológica para la Conservación de Recursos Genéticos de
México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad
Nacional Autónoma de México, Morelia, Michoacán, Mexico. 5Department of
Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402,
USA. 6Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional
de Ciencias Naturales. CSIC, Madrid, Spain.

Received: 15 August 2017 Accepted: 3 April 2018

References
1. Castoe TA, Daza JM, Smith EN, Sasa MM, Kuch U, Campbell JA, et al.

Comparative phylogeography of pitvipers suggests a consensus of ancient
middle American highland biogeography. J Biogeogr. 2009;36(1):88–103.

2. Ruíz-Sánchez E, ChD S. Influence of the geological history of the
trans-Mexican Volcanic Belt on the diversification of Nolina parviflora
(Asparagaceae: Nolinoideae). J Biogeogr. 2013;40(7):1336–47.

3. Hewitt GM. Some genetic consequences of ice ages, and their role in
divergence and speciation. Biol J Linn Soc. 1996;58(3):247–76.

4. Hewitt GM. The genetic legacy of the quaternary ice ages. Nature.
2000;405(6789):907–13.

5. Hewitt GM. Genetic consequences of climatic oscillations in the quaternary.
Philos Trans R Soc B. 2004;359(1442):183–95.

6. Bermingham E, Martin AP. Comparative mtDNA phylogeography of
neotropical freshwater fishes: testing shared history to infer the evolutionary
landscape of lower central America. Mol Ecol. 1998;7(4):499–517.

7. Bryson RW, García-Vázquez UO, Riddle BR. Phylogeography of middle
American Gophersnakes: mixed responses to biogeographical barriers
across the Mexican transition zone. J Biogeogr. 2011;38:1570–84.

8. Bryson RW, García-Vázquez UO, Riddle BR. Diversification in the Mexican
horned lizard Phrynosoma orbiculare across a dynamic landscape.
Mol Phylogenet Evol. 2012;62(1):87–96.

9. Bryson RW, Chaves J, Smith BT, Miller MJ, Winker K, Pérez-Emán JL, et al.
Diversification across the new world within the ‘blue’ Cardinalids
(Aves: Cardinalidae). J Biogeogr. 2014;41(3):587–99.

10. Ghanavi HR, González EG, Doadrio I. Phylogenetic relationships of
freshwater fishes of the genus Capoeta (Actinopterygii, Cyprinidae) in Iran.
Ecol Evol. 2016;6(22):8205–22.

11. Perea S, Cobo-Simo M, Doadrio I. Cenozoic tectonic and climatic events in
southern Iberian peninsula: implications for the evolutionary history of
freshwater fish of the genus Squalius (Actinopterygii, Cyprinidae). Mol
Phylogenet Evol. 2016;97:155–69.

12. Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Dürr HH, Brosse S, et
al. Partitioning global patterns of freshwater fish beta diversity reveals
contrasting signatures of past climate changes. Ecol Lett.
2011;14(4):325–34.

13. Ferrari L, Orozco-Esquivel T, Manea V, Manea M. The dynamic history of the
trans-Mexican Volcanic Belt and the Mexico subduction zone.
Tectonophysics. 2012;522-523:122–49.

14. Halffter G. Biogeography of the montane entomofauna of Mexico and
central America. Annu Rev Entomol. 1987;32:95–114.

15. Morrone JJ. Halffter’s Mexican transition zone (1962-2014), cenocrons and
evolutionary biogeography. J Zool Syst Evol Res. 2015;53(3):249–57.

16. Marshall CJ, Liebherr JK. Cladistic biogeography of the Mexican transition
zone. J Biogeogr. 2000;27(1):203–16.

17. Halas D, Zamparo D, Brooks DRA. Protocol for studying biotic diversification
by taxon pulses. J Biogeogr. 2005;32(2):249–60.

18. Domínguez-Domínguez O, Pérez-Ponce de León G. ¿La mesa central de
México es una provincia biogeográfica? Análisis descriptivo basado en
componentes bióticos dulceacuícolas. Rev Mex Biodivers.
2009;80(3):835–52.

19. West RC. Surface configuration and asociated geology of middle America.
In: Wanchope R, West RC, editors. Handbook of middle American Indians,
University of Texas Press, Austin; 1964. p. 33–82.

20. Zaldívar-Riverón A. Nieto-Montes de Oca a, Laclette JP. Phylogeny and
evolution of dorsal pattern in the Mexican endemic lizard genus Barisia
(Anguidae: Gerrhonotinae). J Zool Syst Evol Res. 2005;43(3):243–57.

21. Bryson RW, García-Vázquez UO, Riddle BR. Relative roles of Neogene
vicariance and quaternary climate change on the historical diversification of
bunchgrass lizards (Sceloporus scalaris group) in Mexico. Mol Phylogenet
Evol. 2012;62(1):447–57.

22. Arellano E, González-Cozátl FX, Rogers DS. Molecular systematics of middle
American harvest mice Reithrodontomys (Muridae), estimated from
mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol.
2005;37(2):529–40.

23. Puebla-Olivares F, Bonaccorso E, Espinosa de los Monteros A, Omland KE,
Llorente-Bousquets JE, Peterson AT, et al. Speciation in the emerald
Toucanet (Aulacorhynchus prasinus) complex. Auk. 2008;125(1):39–50.

24. Castañeda-Rico S, León-Paniagua L, Vázquez-Domínguez E, Navarro-
Sigüenza G. Evolutionary diversification and speciation in rodents of the
Mexican lowlands: the Peromyscus melanophrys species group. Mol
Phylogenet Evol. 2014;70(1):454–63.

25. Miller RR, Origin SML. Geography of the fishes of Central Mexico. In: Hocutt
CH, Wiley EO, editors. The zoogeography of north American freshwater
fishes. Wiley-Intersciences publication; 1986. p. 487–519.

26. Mateos M, Sanjur OI, Vrijenhoek RC. Historical biogeography of the
livebearing fish genus Poeciliopsis (Poeciliidae: Cyprinodontiformes).
Evolution. 2002;56(5):972–84.

27. Huidobro L, Morrone JJ, Villalobos JL, Álvarez F. Distributional patterns of
freshwater taxa (fishes, crustaceans and plants) from the Mexican transition
zone. J Biogeogr. 2006;33(4):731–41.

28. Domínguez-Domínguez O, Doadrio I, Pérez-ponce de León G. Historical
biogeography of some river basins in Central Mexico evidenced by their
goodeine freshwater fishes: a preliminary hypothesis using secondary
brooks parsimony analysis (PBA). J Biogeogr. 2006;33(8):1437–47.

29. Domínguez-Domínguez O, Pedraza-Lara C, Gurrola-Sánchez N, Perea S,
Pérez-Rodríguez R, Israde-Alcántara I, et al. Historical biogeography of the
Goodeinae (Cyprinodontiforms). In: Uribe MC, Grier HJ, editors. Viviparous
Fishes II. New life publications; 2010. p. 34–69.

30. Pérez-Rodríguez R, Domínguez-Domínguez O. Pérez-ponce de León G,
Doadrio I. Phylogenetic relationships and biogeography of the genus
Algansea Girard (Cypriniformes: Cyprinidae) of Central Mexico inferred from
molecular data. BMC Evol Biol. 2009;9:223.

Beltrán-López et al. BMC Evolutionary Biology  (2018) 18:56 Page 19 of 21



31. Parra-Olea G, Windfield JC, Velo-Antón G, Zamudio KR. Isolation in habitat
refugia promotes rapid diversification in a montane tropical salamander.
J Biogeogr. 2012;39(2):353–70.

32. Pedraza-Lara C, Doadrio I, Breinholt JW, Crandall KA. Phylogeny and
evolutionary patterns in the dwarf crayfish subfamily (Decapoda:
Cambarellinae). PLoS One. 2012;7(11):e48233.

33. Domínguez-Domínguez O, Alda F, Pérez-ponce de León G, García-
Garitagoitia JL, Doadrio I. Evolutionary history of the endangered fish
Zoogoneticus quitzeoensis (bean, 1898) (Cyprinodontiformes: Goodeidae)
using a sequential approach to phylogeography base don mitochondrial
and nuclear DNA data. BMC Evol Biol. 2008;8:161.

34. Domínguez-Domínguez O, Pérez-Rodríguez R, Doadrio I. Morphological and
genetic comparative analyses of populations of Zoogoneticus quitzeoensis
(Cyprinodontiformes: Goodeidae) from Central Mexico, with description of a
new species. Rev Mex Biodivers. 2008;79(2):373–83.

35. Pérez-Rodríguez R, Domínguez-Domínguez O, Mar-Silva F, Doadrio I. Pérez-
ponce de León G. The historical biogeography of the southern group of the
sucker genus Moxostoma (Teleostei: Catostomidae) and the colonization of
Central Mexico. Zool J Linnean Soc. 2016;177(3):633–47.

36. Pérez-Rodríguez R, Domínguez-Domínguez O, Doadrio I, Cuevas-García E,
Pérez-ponce de León G. Comparative historical biogeography of three
groups of Neartic freshwater fishes across Central Mexico. J Fish Biol.
2015;86(3):993–1015.

37. Family Poeciliidae LPHF. In: Reis RE, Kullander SO, CJJr F, editors. Check list
of the freshwater fishes of south and central America. Porto Alegre:
EDIPUCRS; 2003. p. 555–81.

38. Miller R, Minckley W, Mark, S. Freshwater Fishes of México. University of
Chicago. Estados Unidos de América. 2005.

39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular
evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

40. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA
polymorphism data. Bioinformatics. 2009;25(11):1451–2.

41. Stephens M, Donelly P. A comparison of Bayesian methods for haplotype
reconstruction from population genotype data. Am J Hum Genet.
2003;73(5):1162–9.

42. Sousa-Santos C, Robalo JI, Collares-Pereira MJ, Almada VC. Heterozygous
indels as useful tools in the reconstruction of DNA sequences and in the
assessment of ploidy level and genomic constitution of hybrid organisms.
DNA Seq. 2005;16(6):462–7.

43. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary
studies. Mol Biol Evol. 2006;23(2):254–67.

44. González-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fernández-Riverola F,
Posada D. ALTER: program-oriented conversion of DNA and protein
alignments. Nucleic Acids Res. 2010;38(2):14–8.

45. Kass RE, Raftery AE. Bayes factors. J Amer Statist Assoc. 1995;90(430):773–95.
46. Lanfear R, Calcott B, Ho SY, Guindon S. PartitionFinder: combined selection

of partitioning schemes and substitution models for phylogenetic analyzes.
Mol Biol Evol. 2012;29(6):1695–701.

47. Silvestro D, Michalak I. RAxMLGUI: a graphical front-end for RAxML. Org
Divers Evol. 2012;12(4):335–7.

48. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

49. Alfaro ME, Zooler S, Lutzoni F. Bayes or bootstrap? A simulation study
comparing the performance of Bayesian Markov chain Monte Carlo
sampling and bootstrapping in assessing phylogenetic confidence.
Mol Biol Evol. 2003;20(2):255–66.

50. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, et al.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice
across a large model space. Syst Biol. 2012;61(3):539–42.

51. Rambaut A, Drummond A. Tracer v1.5. 2007. Available: http://tree.bio.ed.ac.
uk/software/tracer.

52. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with
BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–73.

53. Zardoya R, Doadrio I. Molecular evidence on the evolutionary and
biogeographical patterns of European cyprinids. J Mol Evol.
1999;49(2):227–37.

54. Machordom A, Doadrio I. Evidence of a cenozoic Betic-Kabilian connection
based on freshwater fish phylogeography (Luciobarbus, Cyprinidae).
Mol Phylogenet Evol. 2001;18(2):252–63.

55. Near TJ, Benard MF. Rapid allopatric speciation in logperch darters
(Percidae: Percina). Evolution. 2004;58(12):2798–808.

56. Drummond AJ, Ho SYW, Phillips J, Rambaut A. Relaxed phylogenetics and
dating with confidence. PLoS Biol. 2006;5:e88.

57. Heled J, Drummond AJ. Bayesian inference of population size history from
multiple loci. BMC Evol Bio. 2008;8:289.

58. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to
perform population genetics analyses under Linux and windows.
Mol Ecol Res. 2010;10(3):564–7.

59. Nylander JAA, Olsson U, Alström P, Sanmartín I, Baker A. Accounting for
phylogenetic uncertainty in biogeography: a Bayesian approach to
dispersal–Vicariance analysis of the thrushes (Aves: Turdus). Syst Biol.
2008;57(2):257–68.

60. Ree RH, Moore BR, Webb CO, Donoghue MJ. A likelihood framework for
inferring the evolution of geographic range on phylogenetic trees.
Evolution. 2005;59(11):2299–311.

61. Ree RH, Smith SA. Maximum-likelihood inference of geographic range
evolution by dispersal, local extinction, and cladogenesis. Syst Biol.
2008;57(1):4–14.

62. Yu Y, Harris AJ, Blair C, He J. RASP (reconstruct ancestral state in phylogenies): a
tool for historical biogeography. Mol Phylogenet Evol. 2015;87:46–9.

63. Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent
inference of past population dynamics from molecular sequences.
Mol Biol Evol. 2005;22(5):1185–92.

64. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, et al. Novel
methods improve prediction of species’ distributions from occurrence data.
Ecography. 2006;29(2):129–51.

65. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of
species geographic distributions. Ecol Model. 2006;190(3–4):231–59.

66. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution
interpolated climate surfaces for the global land areas. Int J Climatol.
2005;25(15):1965–78.

67. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. Predicting species
distributions from small numbers of occurrence records: a test case using
cryptic geckos in Madagascar. J Biogeogr. 2007;34(1):102–17.

68. Graham MH. Confronting multicollinearity in ecological multiple regression.
Ecology. 2003;84(11):2809–15.

69. Araujo MB, Pearson RG, Thuiller W, Erhard M. Validation of species-climate
impact models under climate change. Glob Change Biol. 2005;11(9):1504–13.

70. Ferrari L, Rosas-Elguera J. Late Miocene to quaternary extension and the
northern boundary of the Jalisco block, western Mexico. The Tepic-Zacoalco
rift revised. Geol. Soc. am. Bull. Special Paper. 1999;334:1–23.

71. Rosas-Elguera J, Urrutia-Fucugauchi J. Tectonic control on the volcano-
sedimentary sequence of the Chapala graben, western Mexico. Int Geol Rev.
1998;40(4):350–62.

72. Domínguez-Domínguez O, Pompa-Domínguez A, Doadrio I. A new species
of the genus Yuriria Jordan & Evermann, 1896 (Actinopterygii, Cyprinidae)
from the Ameca basin of the central Mexican plateau. Graellsia.
2007;63(2):259–71.

73. Pérez-Rodríguez R, Pérez ponce de León G, Domínguez-Domínguez O,
Doadrio I. A new species of Algansea (Actinopterygii: Cyprinidae) from the
Ameca River basin, in Central Mexico. Rev Mex Biodivers. 2009;80(2):483–90.

74. Alda F, Reina RG, Doadrio I, Bermingham E. Phylogeny and biogeography of
the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in central
America. Mol Phylogenet Evol. 2013;66:1011–26.

75. Garduño V, Tibaldi A. Kinematic evolution of the continental active triple
junction of the western Mexican Volcanic Belt. C R Acad Sci. 1991;2:135–42.

76. Webb T, Bartlein PJ. Global changes during the last 3 million years: climatic
controls and biotic responses. Annu Rev Ecol Evol Syst. 1992;23:141–73.

77. Conant R. Observations on garter snakes of the Thamnophis eques Complex
in the lakes of Mexico’s Transvolcanic Belt, with descriptions of new taxa.
American museum Novitates. Bull Am Mus Nat Hist. 2003;3406:64.

78. Pacheco J, Mortera-Gutiérrez C, Delgado-Granados H, Singh S,
Valenzuela R, Shapiro N, et al. Tectonic significance of an earthquake
sequence in the Zacoalco half-graben, Jalisco, Mexico. J S Am Earth Sci.
1999;12(6):557–65.

79. Nelson SA, Carmichael ISE. Pleistocene to recent alkalic volcanism in the
región of Sanganguey volcano, Nayarit, Mexico. Contrib Mineral Petrol.
1984;85(4):321–35.

80. Huang WD, Zhao XY, Zhao X, Zhao HL, Wang SK, Lian J. A combined
approach using ISSR and ITS analysis for the characterization of Artemisia
halodendron from Horqin sandy land, northern China. Biochem Syst Ecol.
2011;39(4–6):346–51.

Beltrán-López et al. BMC Evolutionary Biology  (2018) 18:56 Page 20 of 21

http://tree.bio.ed.ac.uk/software/tracer
http://tree.bio.ed.ac.uk/software/tracer


81. Huang WD, Zhao XY, Zhao X, Li Y, Lian J. Effects of environmental factors
on genetic diversity of Caragana microphylla in Horqin Sandy land,
Northeast China. Ecol. Evol. 2016;6(22):8256–66.

82. Su ZH, Zhang ML. A range wide geographic pattern of genetic diversity and
population structure of Hexinia polydichotoma (Asteraceae) in Tarim Basin
and adjacent areas. Biochem Syst Ecol. 2014;56:49–59.

83. Faye A, Deblauwe V, Mariac C, Damien R, Sonké B, Vigouroux Y, Couvreur
TLP. Phylogeography of the genus Podococcus (Palmae/Arecaceae) in
central African rain forests: climate stability predicts unique genetic diversity.
Mol Phylogenet Evol. 2016;105:126–38.

84. Perea S, Doadrio I. Phylogeography, historical demography and hábitat
suitability modelling of freshwater fishes inhabiting seasonally fluctuating
Mediterranean river systems: a case study using the Iberian cyprinid Squalis
valentinus. Mol Ecol. 2015;24(14):3706–22.

85. Moncayo-Estrada R, Israde-Alcántara I, Garduño-Monroy VH. La cherehuita
Hubbsina turneri De Buen (1941) (Pisces, Goodeidae). Origen, distribución y
su uso en la regionalización de la cuenca del Lerma. Hidrobiologica.
2001;11(1):1–13.

86. Israde-Alcántara I. Lagos Volcánicos y Tectónicos de Michoacán. In:
Garduno-Monroy VH, Corona-Chavez P, Israde-Alcántara I, MennellaL,
Arreygue E, Bigioggero B, Chiesa, S, editors. Carta Geológica de Michoacán
Escala 1:250000. Universidad Michoacana de San Nicolás de Hidalgo.
1999. p. 45–72.

87. Ornelas-García CP, Alda F, Díaz-Pardo E, Gutiérrez-Hernández A, Doadrio I.
Genetic diversity shaped by historical and recent factors in the live-bearing
twoline skiffia Neotoca bilineata. J Fish Biol. 2012;81(6):1963–84.

88. Corona-Santiago DK, Doadrio I, Domínguez-Domínguez O. Evolutionary
history of the live-bearing endemic Allotoca diazi species complex
(Actinopterygii, Goodeinae): evidence of founder effect events in the
Mexican Prehispanic period. PLoS One. 2015;10(5):e0124138.

89. Galindo-Villegas J, Sosa-Lima F. Gonopodial system review and a new
fish record of Poeciliopsis infans (Cyprinodontiformes: Poeciliidae) for
Lake Patzcuaro, Michoacan, Central Mexico. Rev Biol Trop.
2002;50(3–4):1151–7.

90. Ramírez-Herrejón JP, Castañeda-Sam LS, Moncayo-Estrada R, Caraveo-Patiño
J, Balart EF. Trophic ecology of the exotic Lerma livebearer Poeciliopsis infans
(Cyprinodontiformes: Poeciliidae) in the Lago de Pátzcuaro, Central Mexico.
Rev Biol Trop. 2013;61(3):1289–300.

91. Welcomme RA. History of international introductions of inland aquatic
species. ICES Mar Sci Symp. 1992;194:3–14.

92. Contreras-MacBeath T, Mejía-Mojica H, Carrillo-Wilson R. Negative impact
on the aquatic ecosystems of the state of Morelos, Mexico from
introduced aquarium and other commercial fish. Aquarium Sci Conserv.
1998;2(2):67–78.

93. Caballero M, Lozano-García MS, Vázquez-Selem L, Ortega B. Evidencias de
cambio climático y ambiental en las cuencas de altura del centro de México
durante el último máximo glacial. Bol Soc Geol Mex. 2010;62(3):359–77.

94. Hampe A, Petit R. Conserving biodiversity under climate change: the rear
edge matters. Ecol Lett. 2005;8(5):461–7.

95. Lachniet MS, Vázquez-Selem L. Last glacial maximum equilibrium line
altitudes in the circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia,
and Venezuela). Quat Int. 2005;138-139:129–44.

96. Hofreiter M, Stewart JR. Ecological change, range fluctuations and
population dynamics during the Pleistocene. Curr Biol. 2009;19(14):R584–94.

97. Lozano-García S, Torres-Rodríguez E, Ortega B, Vázquez G, Caballero M.
Ecosystem responses to climate and disturbances in western Central Mexico
during the late Pleistocene and Holocene. Paleogeogr Palaeoclimatol
Palaeoecol. 2013;370:184–95.

98. Alfaro R, Martínez V, Segovia N, Peña P, López M, Armienta M, et al. Radon
behavior in springs and wells around Cuitzeo Lake, Lerma River basin,
Mexico. Geofís. Int. 2002;41(4):439–46.

99. De la Vega-Salazar MY, Avila-Luna E, Macías-García C. Ecological evaluation
of local extinction: the case of two genera of endemic Mexican fish.
Zoogoneticus and Skiffia Biodivers Conserv. 2003;12(10):2043–56.

100. Domínguez-Domínguez O, Mercado-Silva N, Lyons J. Conservation
status of Mexican goodeids: problems, perspectives, and solutions. In:
Uribe MC, Grier HJ, editors. Viviparous Fishes. New life publications;
2005. p. 495–504.

101. Mercado-Silva N, Lyons JD, Maldonado GS, Nava MM. Validation of a fish-
based index of biotic integrity for streams and rivers of Central Mexico.
Rev Fish Biol Fish. 2002;12(2):179–91.

102. Domínguez-Domínguez O. Pérez Ponce de León G. Los goodeidos, peces
endémicos del centro de México. CONABIO. Biodiversitas. 2007;75:12–5.

103. Domínguez-Domínguez O, Boto L, Alda F, Pérez-Ponce de León G, Doadrio
I. Human impacts on drainages of the mesa central, Mexico, and its genetic
effects on an endangered fish, Zoogoneticus quitzeoensis. Conserv Biol.
2007;21(1):168–80.

104. Doadrio I, Perdices A, Machordom A. Allozymic variation of the endangered
killifish Aphanius iberus and its application to conservation. Env Biol Fish.
1996;45(3):259–71.

Beltrán-López et al. BMC Evolutionary Biology  (2018) 18:56 Page 21 of 21


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Sample collection
	DNA extraction, PCR amplification and sequencing
	Phylogenetic analyses and haplotype networks
	Divergence time estimation and genetic distances
	Genetic diversity and population structure
	Ancestral area reconstruction
	Historical demography
	Poeciliopsis infans Distribution modelling

	Results
	Phylogenetic relationships and haplotype networks
	Divergence time estimation and genetic distances
	Genetic diversity and population structure
	Ancestral area reconstruction
	Historical demography
	Poeciliopsis infans Distribution modelling

	Discussion
	Biogeographic and evolutionary history of P. infans
	Biogeography within clade A
	Biogeography within clade B
	Human mediated dispersion
	Historical demography and distribution modeling
	Conservation implications

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

