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Abstract

Background: Morphological and molecular phylogenetic studies suggest that the pantropical genus Bauhinia L. s.l.
(Bauhiniinae, Cercideae, Leguminosae) is paraphyletic and may as well be subdivided into nine genera, including
Bauhinia L. s.s. and its allies. Their leaves are usually characteristic bilobate and are thus easily recognized in the
fossil record. This provides the opportunity to understand the early evolution, diversification, and biogeographic
history of orchid trees from an historical perspective under the framework of morphological and molecular studies.

Results: The taxonomy, distribution, and leaf architecture of Bauhinia and its allies across the world are summarized
in detail, which formed the basis for classifying the bilobate leaf fossils and evaluating the fossil record and
biogeography of Bauhinia. Two species of Bauhinia are described from the middle Miocene Fotan Group of Fujian
Province, southeastern China. Bauhinia ungulatoides sp. nov. is characterized by shallowly to moderately bilobate,
pulvinate leaves with shallowly cordate bases and acute apices on each lobe, as well as paracytic stomatal
complexes. Bauhinia fotana F.M.B. Jacques et al. emend. possesses moderately bilobate, pulvinate leaves with
moderately to deeply cordate bases and acute or slightly obtuse apices on each lobe.
(Continued on next page)
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Conclusions: Bilobate leaf fossils Bauhinia ungulatoides and B. fotana together with other late Paleogene – early
Neogene Chinese record of the genus suggest that Bauhinia had been diverse in South China by the late
Paleogene. Their great similarities to some species from South America and South Asia respectively imply that
Bauhinia might have undergone extensive dispersals and diversification during or before the Miocene. The fossil
record, extant species diversity, as well as molecular phylogenetic analyses demonstrate that the Bauhiniinae might
have originated in the Paleogene of low-latitudes along the eastern Tethys Seaway. They dispersed southwards into
Africa, migrated from Eurasia to North America via the North Atlantic Land Bridge or floating islands during the
Oligocene. Then the genus spread into South America probably via the Isthmus of Panama since the Miocene
onward, and underwent regional extinctions in the Boreotropics of mid-high-latitudes during the Neogene climatic
cooling. Hence, Bauhinia presently exhibits a pantropical intercontinental disjunct distribution.

Keywords: Bauhinia, Bauhiniinae, Bilobate leaves, Biogeography, Caesalpinioideae, Cercideae, Evolution, Fotan
Group, Legumes, Leguminosae, Miocene, North Atlantic Land Bridge, Orchid trees, Pantropical intercontinental
disjunct, South China, Tethys Seaway

Background
Leguminosae Juss. are the third largest angiosperm fam-
ily with various growth habits across different habitats of
the world, including about 751 extant genera and ca.
19,500 species [1–3]. Traditionally, the family is divided
into three subfamilies, i.e., Caesalpinioideae DC., Mimo-
soideae DC., and Papilionoideae L. ex DC. [4, 5]. Ad-
vances in legume systematics during recent decades,
however, have challenged this traditional classification
scheme and also the circumscription of some large leg-
ume genera [1, 3]. Bauhinia L. s.l. (commonly known as
the orchid tree), being a pantropical large genus with
340 species in the tribe Cercideae Bronn, is among the
legumes with such a problem. Historical factors have
complicated the taxonomy and nomenclature of Bau-
hinia [6–11]. Recent molecular phylogenetic and palyno-
logical studies have revealed that Bauhinia L. s.l. is not
monophyletic [2, 12–14] and may as well be split into
nine separate genera, including Bauhinia L. s.s., Barklya

F. Muell., Gigasiphon Drake, Lasiobema (Korth.) Miq.,
Lysiphyllum (Benth.) de Wit, Phanera Lour., Piliostigma
Hochst., Schnella Raddi, and Tylosema (Schweinf.) Torre
et Hillc. [6–11, 15–22] (Fig. 1; Table 1; see Additional
file 1). We adopt this classification scheme, and these
genera are referred to as “Bauhinia and its allies” in the
present study.
Phylogenetic relationships as well as divergence times of

Bauhinia and its allies have been inferred by molecular
analyses [12, 13] (Fig. 1). However, the scenarios of their di-
versification and migratory routes through time are little
known due to the lack of a comprehensive study of the fos-
sil record of Bauhinia. Bauhinia and its allies in the sub-
tribe Bauhiniinae (Benth.) Walp. usually bear bilobate and
bifoliolate leaves with pulvinate petiole and basal actino-
dromous or acrodromous venation [23–27] (Fig. 2I-CII;
see Additional file 2), which are easily recognized in the
fossil record (Fig. 2CIII-CXVII; see Additional file 2). Bau-
hinia and Bauhinia-like bilobate and bifoliolate leaf fossils

Fig. 1 A simplified diagram showing the phylogenetic relationships and divergence times of Bauhinia L. s.s. and its allies (after [12, 13]). Nodes of
the cladogram refer to key leaf fossils [28–31] and the latest International Chronostratigraphic Chart [58]
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Table 1 A comparison of habit, floral part, distribution and species diversity between Bauhinia and its allies [9–11, 15–22]

Taxon
name

Bauhinia L. s.s. Barklya F.
Muell.

Gigasiphon
Drake

Lasiobema
(Korth.) Miq.

Lysiphyllum
(Benth.) de Wit

Phanera Lour. Piliostigma
Hochst.

Schnella Raddi Tylosema
(Schweinf.) Torre
et Hillc.

Type Bauhinia
divaricata L.

Barklya syringifolia
F. Muell.

Gigasiphon
humblotianum
(Baill.) Drake

Lasiobema
scandens (L.)
de Wit

Lysiphyllum
cunninghamii
(Benth.) de Wit

Phanera coccinea
Lour.

Piliostigma
reticulatum
(DC.) Hochst.

Schnella
macrostachya
Raddi

Tylosema fassoglense
(Schweinf.) Torre
et Hillc.

Habit Trees, shrubs
(rarely semi-scandent),
sometimes with
intrastipular spines,
rarely with thorns,
without tendrils

Trees (unarmed,
up to 18 m tall)

Mostly trees,
occasionally large
shrubs or climbers,
without tendrils

Tendrilled
lianas, scandent
shrubs, without
intrastipular
spines or thorns

Trees, semi-
scandent shrubs,
tendrilled lianas,
without intrastipular
spines or thorns

Tendrilled lianas,
scandent shrubs,
rarely trees, without
intrastipular spines
or thorns

Trees, shrubs,
without
tendrils

Tendrilled lianas,
scandent shrubs,
without intrastipular
spines or thorns

Trailing or climbing
herbs, lianas, without
intrastipular spines
or thorns

Calyx Spathaceous,
splitting along
one side or
into 2 unequal
lobes

Shortly lobed in
the upper part,
campanulate with
obtuse teeth

Lobed, forming
a very long
hypanthium

Lobed or
truncate

Lobed or split,
broadly campanulate,
ribbed, rusty-velvety

Lobed, forming 4
or 5 approximately
equal lobes

Lobed in the
upper part,
dentate

Lobed or truncate,
five-veined or
inconspicuously
veined

Lobed, forming a
short hypanthium

Fertile
stamen

1-10 10 10 3 10 3, rarely 2 10 10 2

Distribution Pantropics Australia West and East
Africa, Malesia

Asia Australia, Southeast
Asia

South and
Southeast Asia

Africa, Asia,
Australia

Neotropics Africa

Species
number

154 1 6 22 8 92 3 49 5
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have been reported from the Cenozoic of Asia, Africa,
North America, and South America [28–44] (Table 2), pro-
viding the opportunity to evaluate the early evolution, di-
versification, and biogeographic history of the orchid trees
from an historical perspective.
In this article, we comprehensively investigate the leaf

architecture of extant Bauhinia and its allies, describe
two bilobate leafed fossil-species of Bauhinia from
the middle Miocene Fotan Group of Fujian Province,
southeastern China, and discuss their biogeographic
implications.

Methods
Macrofossils
The fossil leaves investigated in this paper were collected
from the Fotan Group at Lindai Village (lat. 24°12′N,
long.117°53′E) of Zhangpu County, Fujian Province,

southeastern China (Fig. 3). Paleobotanical fieldwork
was done in non-National Nature Reserves and non-
private areas with the permission of the local govern-
ment. The stratigraphy of the Fotan Group has previ-
ously been discussed in detail [45, 46]. Generally, it
consists of basaltic rocks, arenaceous conglomerate
rocks, sandstone and mudstone interbedded with lignite
and diatomite. The outcrop at Lindai Village (i.e., sam-
pling site) is composed of an upper layer of light-brown
diatomite and an underlying layer of blue-gray mudstone
(Fig. 3b, c). Both layers yield abundant plant fossils dom-
inated by angiosperm leaves, but fruits are also present
[47, 48]. The fossils from the diatomite layer are com-
monly preserved as impressions with exquisite venation
while those from the mudstone layer are often preserved
as compressions with cuticle. The geological age of the
Fotan flora in Zhangpu is considered the Langhian Stage

Fig. 2 A diagram showing the leaf architecture of Bauhinia L. s.s. and its allies across the world. Red: Asian and Australasian species. Blue: African
species. Green: American species. Yellow: Transoceanically distributed species. Black: fossil-species. (I-CXVII) Representative species (see Additional
file 3). Scale bars = 1 cm
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of middle Miocene [49] on the basis of an Argon-Argon
(40Ar/39Ar) radiometric dating (14.8 ± 0.6 Ma) of the
basaltic rocks underlying the fossil-bearing layers
(Fig. 3c).
The studied fossil leaves were examined and photo-

graphed using digital cameras (Panasonic DMC-FZ30
and Nikon D90). The cuticles were macerated using

Schulze’s solution followed by diluted Ammonia (for a
detailed procedure see [50]), and then mounted on
slides, examined and photographed on a Zeiss Axio-
Scope A1 microscope. Both the figured macrofossil spec-
imens and cuticle slides (prefixed “PB”) are deposited at
Nanjing Institute of Geology and Palaeontology, Chinese
Academy of Sciences, Nanjing, P.R. China.

Table 2 The leaf fossil record of Bauhinia previously reported and used in this study

Fossil-species Leaf sizea Illustration and
notes

Locality Geological age Reference

Bauhinia sp.1 Ca. 2.2 × 2.0 cm Poorly illustrated Mahenge Site,
Singida Town,
Tanzania

Middle Eocene [28]

B. cheniae Q. Wang et al. Ca. 2.0–6.0 × 2.2–6.5 cm Fig. 2CIII here Ningming County,
Guangxi Zhuang
Autonomous Region,
China

Possibly late
Eocene or
Oligocene

[29, 30]

B. larsenii D.X. Zhang et Y.F. Chen Ca. 2.1–4.5 × 1.8–4.8 cm Fig. 2CV here

B. ningmingensis Q. Wang et al. Ca. 4.0–5.3 × 4.0–5.2 cm Fig. 2CIV here

Bauhcis moranii Calvillo-Canadell
et Cevallos-Ferriz

4.3–4.5 × 5.8–6.4 cm Fig. 2CX; attributed
to Bauhinia by
some authors

Los Ahuehuetes,
Tepexi de Rodríguez,
Puebla, Mexico

Oligocene [29–31]

Bauhinia krishnanunnii A.K.
Mathur et al.

6.0 × 5.0 cm Fig. 2CIX here Dagshai Cantonment
and Daghota, Kalka-Shimla
Highway, Solan District,
Himachal Pradesh, India

Early Miocene [32]

B. kachchhensis R.N.
Lakh. et Guleria

Ca. 6.2–8 cm wide, at
least 3.5–5 cm long

Incompletely
preserved

Khari Nadi Bed, near
Goyela-Mokra; Thingdawl,
Mizoram; Kachchh, India

Early–Middle
Miocene

[33–35]

Bauhinia sp. 2 7.0 cm wide, at least
3.0 cm long

Incompletely
preserved

Mae Sot, Changwat
Tak, Thailand

Late Early
Miocene–early
Middle Miocene

[36]

B. ungulatoides sp. nov. 7.5–9.5 × 5.4–6.0 cm Figs. 4 and 5 here Lindai Village, Fotan
Town, Zhangpu
County, Zhangzhou City,
Fujian Province,
Southeast China

Middle Miocene [37, this
study]

B. fotana F.M.B. Jacques
et al. emend.

Ca. 4.5–7.5 × 4.0–6.0 cm Fig. 6 here

B. ramthiensis Antal et
N. Awasthi

Ca. 9.0 × 8.6 cm Incompletely
preserved

Right bank of upsteam
of Ramthi River near
Oodlabari, Darjeeling
District, West Bengal,
India

Middle Miocene [38]

B. siwalika R.N. Lakh. et
N. Awasthi

1.5–4.0 × 2.0–6.0 cm Fig. 2CXIII here Siwalik, Bhikhnathoree,
West Champaran District,
Bihar; Cherrapunji,
West Khasi Hills District,
Meghalaya, India

Middle
Miocene–middle
Pleistocene

[39]

B. ecuadorensis E.W. Berry 5.25 × 5.0 cm Fig. 2CXI here Loja Basin, Ecuador Miocene [40]

B. wenshanensis H.H. Meng et
Z.K. Zhou

Ca. 6.0–7.0 × 3.0–4.0 cm Fig. 2CVI here Dashidong Town, Wenshan
County, Southeast Yunnan
Province, China

Late Miocene [41]

B. nepalensis N. Awasthi
et N. Prasad

4.5–7.5 × 5.6–11.4 cm Fig. 2CVII here Surai Khola beds, near
Surai Khola bridge,
Surai Khola, Nepal

Late Miocene–
late Pleistocene

[42]

B. waylandii R.W. Chaney 2.5 × 2.5 cm Fig. 2CXII here Busano, Bugishu
District, Eastern
Province, Uganda

Pliocene [43]

Bauhinia sp. 3 5.5 × 7.0 cm Fig. 2CVIII here Mahuadanr Valley,
Palamu District,
Bihar, India

Neogene [44]

aAs far as the bifoliolate-leafed species are concerned, each leaf is viewed twice as wide as one leaflet

Lin et al. BMC Evolutionary Biology  (2015) 15:252 Page 5 of 17



Fig. 3 A diagram showing the fossil locality and stratigraphy. The maps and images are made and completed by the present authors. a A map
indicating the fossil location. b The sampling site. c A stratigraphical column of the Fotan Group
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In addition, we examined the previously reported Bau-
hinia leaf fossils from the Oligocene Ningming Forma-
tion of Guangxi, South China [29, 30] and the Neogene
of India and Nepal [38, 39, 42, 44]. The specimens are
housed at Natural History Museum of Guangxi, Nanning
(NHMG) and Birbal Sahni Institute of Palaeobotany,
Lucknow (BSIP) (see Additional file 3).

Herbaria
The exsiccatae used in this study are from the following
Herbaria: Harvard University, Cambridge (A), The Nat-
ural History Museum, London (BM), National Botanic
Garden of Belgium, Meise (BR), Queensland Herbar-
ium, Brisbane (BRI), Royal Botanic Garden Edinburgh,
Edinburgh (E), Field Museum of Natural History,
Chicago (F), Centro Studi Erbario Tropicale Univer-
sità degli Studi di Firenze, Firenze (FT), Conservatoire
et Jardin Botaniques de la Ville de Genève, Genève
(G), Royal Botanic Gardens, Kew (K), National Herb-
arium Nederland, Leiden University Branch, Leiden
(L), Botanische Staatssammlung München, München
(M), Real Jardín Botánico, Madrid (MA), National Herbar-
ium of Victoria, Melbourne (MEL), Missouri Botanical
Garden, Missouri (MO), The New York Botanical Garden,
Bronx (NY), Muséum National d’Histoire Naturelle, Paris
(P), The Chinese National Herbarium, Beijing (PE),
the Swedish Museum of Natural History, Stockholm
(S), Trinity College, Dublin (TCD), Smithsonian Insti-
tution, Washington (US), and Wageningen University,
Wageningen (WAG) (see Additional file 3).

Online databases
(1) ILDIS (International Legume Database & Information
Service) [51]. The species and distribution of Bauhinia
and its allies have been compiled by ILDIS, with special
reference to some recently published taxonomic articles
(Table 1; see Additional file 1). (2) eFloras.org [52]. Mor-
phological descriptions and illustrations of Bauhinia and
its allies concerned here were checked. (3) Chinese Vir-
tual Herbarium (CVH) [53]. Online images of herbarium
specimens of Bauhinia and its allies were browsed. (4)
Index Herbarium [54]. The standardized Herbarium
codes were adopted. (5) The International Plant Names
Index [55]. The standardized abbreviations for authors
of plant-names and journal titles in References were
consulted and adopted in this paper.

Terminology
The gross morphology, venation, and cuticle of modern
and fossil leaves were described on the basis of the
standard terminology [56, 57]. The morphological inter-
pretation and terms specifically for leaves of the Cerci-
deae follow the literature [24, 27, 30]. Time calibrations

and geological terms referred to the latest International
Chronostratigraphic Chart [58].

Figures
A simplified diagram (Fig. 1) showing the phylogenetic
relationships and divergence times of Bauhinia and its
allies was redrawn from literature [12, 13]. The diagram
of the locality and strata (Fig. 3) as well as line-drawings
of both modern and fossil leaves (Figs. 2, 4 and 6) were
drawn using CorelDRAW 12.0 program, and photo-
graphs of the sampling site and specimens were com-
bined into figures using CorelDRAW 12.0 program
(Figs. 2, 3, 4, 5 and 6).

Leaf morphological analyses
Leaf morphological variables are measured and calcu-
lated using CorelDRAW 12.0 on the basis of leaf images
(Fig. 2) from illustrated species, including the length-to-
width/2 ratio, dissection index, and sinus (see Additional
file 4). The dissection index (DI) is the ratio of an out-
line’s perimeter to the square root of its area [59–61],
i.e., DI = Perimeter/[2sqrt (π × Area)], which is a stan-
dardized metric to determine shape complexity, espe-
cially regarding the complex degree of bilobate leaves
studied here.

Results
Leaf morphology of Bauhinia and its allies
The leaf architecture of 100 representatives of the Bauhi-
niinae including 15 fossil species is illustrated here
(Fig. 2I-CXVII; see Additional file 2 for each species
name), accounting for ca. 1/3 of the species in the
subtribe. Leaves of Bauhiniinae (Table 1; see Additional
file 1) are generally characterized by unifoliolate, bilobate
and bifoliolate types, and the bilobate type is the com-
monest (Fig. 2). By observing and analyzing 10 charac-
ters, i.e., length-to-width/2 ratio, dissection index
(Perimeter/[2sqrt (π × Area)]), apex, base, lobation,
sinus, texture, primary veins (1), secondary veins (2),
and epidermal anatomy [62–69], we compared the leaf
architecture and morphological complexity of Bauhinia
and its allies (Table 3; see Additional file 4).

Systematics
Family Leguminosae Juss.
Subfamily Caesalpinioideae DC.
Tribe Cercideae Bronn
Subtribe Bauhiniinae (Benth.) Walp.
Genus Bauhinia L. s.s.
Type Bauhinia divaricata L.

Fossil species
Two fossil-species of Bauhinia are described as fol-
lows. All the voucher specimens were collected from
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the same locality and stratigraphy and are deposited
at the same institute.

Type locality
Lindai Village, Zhangpu County, Zhangzhou City, Fujian
Province, P. R. China (Fig. 3a).

Stratigraphic horizon and age
The middle part of the Fotan Group, Langhian Stage
(middle Miocene) (Fig. 3b, c).

Repository
Nanjing Institute of Geology and Palaeontology, Chinese
Academy of Sciences, Nanjing, P.R. China.
Bauhinia ungulatoides Y.X.Lin, W.O.Wong, G.L.Shi,

S.Shen et Z.Y.Li, sp. nov. (Figs. 4 and 5).

Etymology
The specific epithet is derived from the Latin “ungula-
tus” (hoof-shaped) suffixed by “oides” (resembling), im-
plying the striking similarities between leaves of studied
fossils and extant Bauhinia ungulata L. (Fig. 2XXIII).

Fig. 4 Leaf morphology of Bauhinia ungulatoides sp. nov. from the middle Miocene of Fujian Province, southeastern China. a-c Holotype,
PB21584 a, b and its line drawing, indicating extremely ascending primary veins (1°) and acute apices. Red arrows refer to a partially preserved
petiole. d-e PB21585, showing extremely ascending 1°, but slightly deformed due to preservational crushing. f PB21586, indicating a partially
preserved leaf with a base and similar 1° to those in (a-c). Scale bars = 1 cm
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Holotype
PB21584a, b, c, d (Fig. 4a, c; Fig. 5a, b) (designated here.
A gathering with part and counterpart specimens, in-
cluding slides of leaf cuticles).

Paratypes
PB21585 (Fig. 4d), PB21586 (Fig. 4f ) (designated here).

Diagnosis
Lamina ovate-elliptical or elliptical in outline, shallowly
to moderately bilobate, with pulvinate petiole and
untoothed margin. Laminar base slightly or shallowly
cordate, lobe apex acute. Primary venation basal actino-
dromous with 7–9 basal veins. Midvein terminated at
the bottom of a narrow sinus. Lateral primaries straight
or curved, and the innermost pairs reaching the lobe
apex and outer pairs approaching to the laminar margin.
Secondary veins craspedodromous. Intersecondary veins
present. Tertiary veins opposite and alternate percurrent.
Quaternary veins forming irregular polygons. Areolation
well developed. Freely ending veinlets unbranched. Mar-
ginal ultimate veins absent; leaves hypostomatic. Epider-
mal cells on both surfaces, similarly quadrangular or
pentagonal, with straight or slightly curved anticlinal
walls. Stomatal complexes paracytic, randomly oriented.

Description
The leaf attachment is petiolate. Petioles are partially
preserved, at least 1.5 cm long, with a tiny, semicircular

upper pulvinus impression connecting the laminar base
(Fig. 4a-c). Laminae are bilobate, ovate-elliptical or ellip-
tical in outline (Fig. 4a-e), ca. 7.5–9.5 cm long and 5.4–
6.0 cm wide. The apex is bifid to ca. 1/3–2/5 of laminar
length, with a reflex apex angle at ca. 20°–30° (Fig. 4a, b,
d, e). Two lobes are symmetrical or slightly asymmet-
rical. Lobe apices are acute. Laminar bases are slightly or
shallowly cordate (Fig. 4a-f ). The margin is entire. The
texture appears coriaceous. Primary venation is basal
actinodromous with 7–9 basal veins. The midvein is
straight, moderate in thickness, terminated at the bot-
tom of the sinus. Lateral primaries are straight or
curved, extremely ascending and rarely branched, and
the innermost pairs reaching the lobe apex and outer
pairs approaching to the laminar margin (Fig. 4a-f ). Sec-
ondary veins are less prominent, craspedodromous, di-
verging at ca. 40°–80° from the innermost and outmost
lateral primaries and approaching to the laminar margin
(Fig. 4a, b, d, e). Intersecondary veins are approximately
parallel to neighboring secondary veins, radiating out
about 1/3–1/2 of distance from the primaries to laminar
margin. Tertiary veins are opposite and alternate percur-
rent, slightly curved to sinuous, connecting the neigh-
boring primary veins or between the primary veins and
the secondary veins (or the margin). Quaternary veins
are linked with other higher veins, forming irregular
polygons (Fig. 4d, e). The areolation is well developed.
Freely ending veinlets are unbranched. Marginal ultim-
ate veins are absent.

Fig. 5 Leaf micromorphology of Bauhinia ungulatoides sp. nov. from the middle Miocene of Fujian Province, southeastern China. The cuticles
from the holotype, PB21584 c, d. a Adaxial cuticle showing the morphology of epidermal cells. b Abaxial cuticle showing the orientation of
stomata. Scale bars = 20 μm. c-d showing an enlarged paracytic stomatal complex from (b). Scale bars = 10 μm
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Leaves are hypostomatic. The adaxial cuticle con-
sists of isodiametric to slightly elongated epidermal
cells. These cells are usually quadrangular or pen-
tagonal, rarely hexagonal or heptagonal, with straight
to slightly curved anticlinal walls and smooth peri-
clinal walls (Fig. 5a). Epidermal cells in abaxial cuti-
cles are similar in form and size to those in adaxial
cuticles. Stomata are evenly distributed in the non-
venous region of abaxial cuticles and randomly ori-
ented (Fig. 5b). Stomatal complexes are paracytic,
commonly asymmetrical, ovate, elliptical to oblong in

outline. Subsidiary cells are crescent or irregularly
shaped. Guard cells are not sunken (Fig. 5c, d). Tri-
chomes or trichome bases are not observed.

Comparisons
The bilobate leaves described here are obviously differ-
ent from five small genera, i.e., Lysiphyllum, Piliostigma,
Tylosema, Barklya and Gigasiphon (Fig. 2I-VII; Table 3).
Leaves of extant Tylosema, Barklya and Gigasiphon are
unlobed or only very slightly bilobate; Lysiphyllum are
bifoliolate. Piliostigma has bilobate leaves like our fossil
leaves, but differs in having more basal veins (11) and
bigger reflex apex angle (80°–90°). Following comparison
with extant Bauhinia, Lasiobema, Phanera and Schnella
(Fig. 2VIII-CII; Table 3), the present leaf fossils are attri-
bute to Bauhinia in the light of character combinations
such as very similar leaf architecture and dissection
index. Leaves of Schnella have cordate, even auriculate
bases (Fig. 2XCVII-C). In Phanera, leaves are usually
broader than [lower in L/(W/2) ratio] than B. ungula-
toides (Table 3; see Additional file 4), and the widest part
is near the base (Fig. 2LXXXVII-XCIII). Bauhinia
ungulatoides are similar to Phanera coccinea Lour.
(Fig. 2LXXVIII), but are more shallowly bilobate. It can
also be easily distinguished from the bilobate leaves of
Lasiobema by reflex apex angles at ca. 20°–30°. The re-
flex apex angles of leaves in Lasiobema are either very
wide (>40°) (Fig. 2LVIII, LX, LXIV-LXVII) or extremely
narrow (<10°) sinus (Fig. 2LIX, LXI, LXXI, LXXII) (see
Additional file 4). Bauhinia ungulatoides is characterized
by shallowly cordate bases and acute apices on each
lobe. It is more or less distinguishable from the bilobate
leaves of Bauhinia’s allies in Bauhiniinae (Table 3). Al-
though it is possible that these similarities are result of
convergent evolution it is worth noting that Bauhinia
ungulatoides is most similar to two South American spe-
cies, i.e., B. ungulata (Fig. 2XXIII) and B. forficata Link
[26, 63] (Fig. 2XXII), among the investigated extant spe-
cies. They all bear extremely ascending and rarely
branched lateral primary veins. However, since the re-
productive organs of B. ungulatoides are unknown, it is
more appropriate to assign it to a new fossil-species ra-
ther than to any extant species. Regarding fossil-species
(Table 2), B. ungulatoides is similar to B. wenshanensis
H.H. Meng et Z.K. Zhou from the late Miocene of
Yunnan, southwestern China [41] (Fig. 2CVI), but the
latter bears more secondary veins.
Bauhinia fotana F.M.B.Jacques, G.L.Shi et Z.K.Zhou

emend. Y.X.Lin, W.O.Wong, G.L.Shi, S.Shen et Z.Y.Li
(Fig. 6).
Bauhinia fotana F.M.B. Jacques, G.L. Shi et Z.K. Zhou

in Jacques et al., Rev. Palaeobot. Palynol. 216: 78, Fig. 3a,
pl. 1, Figs. 1, 2, 2015.

Fig. 6 Leaf morphology of Bauhinia fotana from the middle
Miocene of Fujian Province, southeastern China. a-b Epitype,
PB21579 and its line-drawing, showing the detailed leaf architecture.
Note that this leaf was torn along the midvein and then became
partially overlapped of two lobes after a twist during the process
of fossilization. c PB21580, showing basal actinodromous primary
veins (1°). Note that the apical parts of the leaf were deformed.
d Holotype, PB21577, indicating a relatively complete leaf with stout,
basal actinodromous 1°. e-f PB21581a, b, showing the part and
counterpart specimens of a leaf. Note that this leaf was torn near
the midvein, and the right lobe was partially folded. Red arrows in
(d, f) refer to a partially preserved petiole. Scale bars = 1 cm
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Table 3 Leaf morphological comparisons between Bauhinia and its allies (Fig. 2; see Additional file 4)

Taxon names Bauhinia L. s.s. outside
America

Bauhinia L. s.s. in America Bauhinia ungulatoides Y.X.
Lin et al.

Bauhinia fotana F.M.B.
Jacques et al.

Barklya F. Muell. Gigasiphon Drake

Length/(Width/2) 2.191 3.306 3.439 2.329 2.101 2.572

Dissection index
(Perimeter/[2sqrt
(π × Area)])

1.350 1.320 1.388 1.322 1.183 1.181

Apex Obtuse, acuminate or acute Acuminate or acute, rarely
obtuse

Acute Acute or slightly obtuse Acuminate Acuminate, with a
drip tip

Base Cuneate, truncate, or Slightly
to deeply cordate

Cuneate, truncate or slightly
cordate, rarely deeply cordate

Slightly or shallowly cordate Moderately to deeply
cordate

Deeply cordate Slightly cordate

Lobation Bilobate or bifoliolate, rarely
unifoliolate

Bilobate or unifoliolate, rarely
bifoliolate

Bilobate Bilobate Unifoliolate Unifoliolate

Texture Chartaceous to coriaceous Mainly coriaceous Coriaceous Chartaceous Chartaceous Coriaceous

Sinus No or < 120° No or < 80° 20°–30° 30°–45° No No

1° veins Actinodromous or
acrodromous

Actinodromous or
acrodromous

Actinodromous Actinodromous Actinodromous Actinodromous

5–13 in number Not
branched to frequently
branched

5–9 Not branched or less
branched, frequently
branched rarely

7–9 Less branched 9–11 Branched 7 Frequently
branched

7 Branched

2° veins Craspedodromous,
eucamptodromous or
brochidodromous

Craspedodromous,
eucamptodromous, rarely
brochidodromous

Craspedodromous Eucamptodromous Cladodromous Eucamptodromous

Epidermal anatomy
([7, 17–19, 21, 22, 62–69],
this paper)

Epidermal walls straight,
wavy or sinuate; stomata
paracytic, anomocytic,
anisocytic or tetracytic;
trichomes multicellular,
uniseriate, unicellular or no;
glands present or not

Epidermal walls straight or
wavy; stomata anomocytic or
paracytic, trichomes
uniseriate or multiseriate,
glandular; glands present or
not

Epidermal walls straight or
slightly curved; stomata
paracytic; no trichome;
no gland

Not preserved Trichomes sometimes
sparse, caducous;
minute intrastipular
trichomes

Subglabrous or
almost glabrous,
with minute
trichomes
on the veins
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Table 3 Leaf morphological comparisons between Bauhinia and its allies (Fig. 2; see Additional file 4) (Continued)

Taxon names Lasiobema (Korth.) Miq. Lysiphyllum (Benth.)
de Wit

Phanera Lour. Piliostigma Hochst. Schnella Raddi Tylosema (Schweinf.)
Torre et Hillc.

Length/(Width/2) 2.798 1.422 2.750 1.702 2.612 1.761

Dissection index
(Perimeter/[2sqrt
(π × Area)])

1.232 1.447 1.313 1.121 1.490 1.198

Apex Acuminate or acute, rarely
obtuse

Obtuse or rounded Obtuse, acuminate
or acute

Obtuse Acuminate or acute Rounded

Base Slightly to deeply cordate or
cuneate, rarely truncate

Slightly to deeply
cordate

Slightly to deeply cordate,
raely cuneate

Cuneate Slightly to deeply cordate Moderately cordate

Lobation Bilobate or unifoliolate Bifoliolate Bilobate, bifoliolate or
unifoliolate

Bilobate Bilobate, rarely bifoliolate Unifoliolate

Texture Mainly chartaceous Chartaceous Chartaceous to coriaceous Mainly coriaceous Mainly coriaceous Chartaceous

Sinus No or < 130° 15°–30° No or < 75° 80°–90° No or < 25° 70°–80°

1° veins Actinodromous or acrodromous Actinodromous Actinodromous or
acrodromous

Actinodromous Actinodromous or
acrodromous

Actinodromous

5–9 Not branched to frequently
branched

8–10 Frequently
branched

5–13 Not branched to
frequently branched

11 Frequently branched 7–11 Not branched to
frequently branched

9 Frequently branched

2° veins Brochidodromous or
eucamptodromous

Craspedodromous or
eucamptodromous

Brochidodromous
craspedodromous, 1 or
eucamptodromous

Simple
brochidodromous

Craspedodromous,
eucamptodromous or
brochidodromous

Cladodromous

Epidermal anatomy
([7, 17–19, 21, 22, 62–69],
this paper)

Epidermal walls straight; stomata
tetracytic; no trichome

Epidermal walls
wavy or sinuate;
stomata tetracytic;
no trichome

Epidermal walls wavy or sinuate;
stomata anisocytic, tetracytic,
anomocytic or paracytic;
trichomes on both surfaces;
no gland

Epidermal walls straight;
stomata anomocytic or
anisocytic; trichomes
multicellular, unicellular,
uniseriate and hooked;
no gland

Epidermal walls undulate or
sinuate; trichomes glandular,
multicellular, uniseriate;
no gland

Trichomes linear,
canaliculate, with
a ring and conical base
or not; no gland
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Holotype
PB21577 (Fig. 6d herein) (first designated and illustrated
by Jacques et al. [37]).

Epitype
PB21579 (Fig. 6a, b) (An epitype is selected and desig-
nated here under Article 9.8 of the ICN (Melbourne
Code) [70] to display the detailed leaf architecture that
the holotype lacks).
Paratype (first designated and illustrated by Jacques et

al. [37]).
PB21578.

Other specimens examined here
PB21580 (Fig. 6c), PB21581a, b (Fig. 6e, f ), PB21582, and
PB21583.

Emended description
The leaf attachment is petiolate. Petioles are partially
preserved, at least ca. 1/2 of laminar length, with a tiny,
semicircular upper pulvinus impression connecting the
laminar base (Fig. 6a, b, e, f ). Laminae are bilobate,
broadly ovate to suborbicular in outline (Fig. 6a-f ), ca.
4.5–7.5 cm long and 4.0–6.0 cm wide. The apex is bifid
to ca. 1/3 of laminar length, with a reflex apex angle at
ca. 30°–45° (Fig. 6b, d). Two lobes are symmetrical or
slightly asymmetrical. Lobe apices are acute or slightly
obtuse. Laminar bases are moderately to deeply cordate
(Fig. 6a-f ). The margin is entire. The texture appears
chartaceous. Primary venation is basal actinodromous
with 9–11 basal veins. The midvein is stout in thickness,
terminated at the bottom of the sinus. The outmost
pairs are weaker than the midvein and inner pairs. Lat-
eral primaries are curved, branched or unbranched, and
the innermost pairs reach the lobe apex and outer pairs
approaching to the laminar margin (Fig. 6a-f ). Secondary
veins are eucamptodromous, diverging at ca. 45°–80°
from the innermost and outmost lateral primary veins
and approaching to the laminar margin (Fig. 6a-b). Ter-
tiary veins are opposite and alternate percurrent, mostly
sinuous and convex, rarely straight, connecting the
neighboring primary veins or between the primary veins
and the secondary veins (or the margin), as well as form-
ing agrophic veins to the margin at the laminar base
(Fig. 6a-b). Quaternary veins are linked with other
higher veins, forming irregular polygons (Fig. 6b). The
areolation is well developed. Freely ending veinlets are
unbranched. Marginal ultimate veins are absent. Cuticles
are unavailable.

Comparisons
Bauhinia fotana was originally described on the basis of
two fossil leaves [37], but the initial description is very
simple without characters of high order veins known.

Here, we emended it based upon its types and newly col-
lected specimens from the same locality. Its leaves are
broader [smaller in L/(W/2) ratio] than Schnella
(Fig. 2XCVIII-C) and most Phanera species
(Fig. 2LXXVIII, LXXXVI-LXXXVIII) (Table 3, see Add-
itional file 4). Bauhinia fotana is somewhat similar to
Phanera ornata (Kurz) Thoth. (Fig. 2XC), but bears
more deeply bilobate leaves with much less secondary
veins. It is different from Lasiobema, which usually has
an obvious caudate apex (Fig. 2LVIII, LXIV, LXV). Ex-
cept for the size (4.5–7.5 × 4.0–6.0 cm), B. fotana shows
great similarities with the extant B. acuminata L. (9–
12 × 8–12.5 cm) (Fig. 2XIII) in bearing broadly ovate or
suborbicular bilobate leaves with an acute apex, a mod-
erately to deeply cordate base as well as similar venation.
Among the fossil species (Table 2), B. fotana closely re-
sembles Bauhinia sp. 3 (Fig. 2CVIII) from the Neogene
of India [44], but the latter bears weak primary veins
and larger L/(W/2) ratio of leaves.

Discussions
The pantropical genus Bauhinia and its allies have simi-
larly bilobate, bifoliolate, or unifoliolate leaves. They
along with the northern temperate to subtropical genus
Cercis L. constitute the tribe Cercideae as sister to the
remaining legumes in the molecular phylogenetic trees
[1–5, 10–13] (Fig. 1). Recently, strictly east-to-west vi-
cariances for the biogeographic evolution of Cercis and
Bauhinia have been suggested through molecular ana-
lyses [41, 71]. The earliest diverging clades in the Bauhi-
niinae were inferred to make their debut most possibly
in Asia during the middle Paleocene (ca. 62.7 Ma) [41].
The fossil record of Cercis and Bauhinia can provide
key points of reference for deciphering the early evolu-
tion and biogeographic history of the Cercideae.
Bilobate fossil leaves that are attributed to or closely

compared with Bauhinia are also reported from the late
Eocene of Vietnam [72], the late Eocene-early Miocene of
Brazil [73], and the latest Oligocene-mid-late Miocene of
Australia [74]. These records, however, have been either
rejected or questioned due to lack of evidence for the pul-
vinus and/or basal actinodromous or acrodromous ven-
ation [30]. Paleobotanical evidence indicates that Cercis
[75] and Bauhinia [30] (Table 2) had first appeared in the
Eocene to Oligocene of mid-low latitudes in the Northern
Hemisphere. This may more or less support a tropical Te-
thys Seaway (Laurasian) origin [4, 5, 13] or an “Out of
Tropical Asia” dispersal [25, 41] of the Cercideae and the
Leguminosae as previously hypothesized. In contrast, the
West Gondwana hypothesis or “Out of Africa” hypothesis
for the origin of legumes [76–78] has been recently
rejected by biome supertree and molecular analyses [4, 5].
In this article, bilobate leafed fossil-species, i.e., B. ungula-
toides and B. fotana, from the middle Miocene of Fujian,
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southeastern China provide some new insights into the
biogeography of Bauhinia and its allies.

Floristic exchanges between East Asia and South Asia
Major collision of India with Asia in the early Cenozoic
enlarged the land-area linked to Eurasia, and subsequent
connection with Australasia during the Neogene led to
more connections between Eurasia and Oceania [79–82],
which have greatly facilitated the floristic exchanges be-
tween East Asia, South Asia, Southeast Asia and Oceania.
Recent paleobotanical studies have suggested that the
Sino-Indian floristic affinities have begun to be established
between the tropical flora of India and (sub) tropical floras
of southwestern and southeastern China during the Mio-
cene [37, 83–85]. Our present study on the Miocene Bau-
hinia further supports this viewpoint.
Bilobate leaves of Bauhinia from the Miocene of

southeastern China show considerable similarities with
the congeneric fossil-species [41, 44] from the Neogene
of southwestern China and India, implying that the ex-
pansion of Bauhinia from (sub) tropical East Asia to
tropical South Asia might have taken place since the
Miocene with the northward drift and collision of south-
ern landmasses into Eurasia, as well as the closure of the
eastern Tethys Seaway [86]. The fossils presented here
further support the previous viewpoint [30] that the
tropical zone [87] of South China may represent one of
the centers for early diversification of Bauhinia. The bi-
lobate and bifoliolate leaves from the Oligocene (or pos-
sibly late Eocene) Ningming Formation of Guangxi,
South China [30] are the earliest, well-documented, reli-
able fossils of Bauhinia.

Floristic exchanges between Eurasia and Africa
Africa has been connected with Europe by the collision
between the Afro-Arabian and Eurasian plates since the
late Late Cretaceous [88], which facilitated floristic ex-
change such as the pantropical palms (Arecaceae Schultz
Sch.) [78, 89]. Bauhinia and Bauhinia-like fossils previ-
ously reported from the early Paleocene to Miocene of
Europe [90–95] have been either rejected or transferred
to other groups [30]. Instead, some other bilobate leaf
fossils that had been described as Cassia L. and Mimosa
L. from the Oligocene of Germany and France [96–100]
(Fig. 2CXIV-CXVII) are far more likely to represent
Bauhinia. Cassia rottensis Weyland, Mimosa weberi
Schimp., M. deperdita Saporta, and M. ayamadi Marion
closely resemble the extant Bauhinia in their basal acti-
nodromous or acrodromous venations. Specifically, C.
rottensis and M. weberi from Germany bear great
similarities with the extant African species Bauhinia
morondavensis Du Puy et R. Rabev. (Fig. 2XXVIII), B.
natalensis Hook. (Fig. 2XXX), and B. kalantha Harms.
(Fig. 2XXXI).

Under such circumstances, Bauhinia and Bauhinia-
like bilobate leaf fossils from the Oligocene of Germany
(Fig. 2CXIV, CXV) as well as from the middle Eocene of
Tanzania [28] imply that the Bauhiniinae might have
begun to exchange between Europe and Africa across
the western Tethys Seaway. Bauhinia might have be-
come depauperate and finally extinct in Europe after the
Oligocene with the uplift of the Himalayan-Tibetan plat-
eau [101], the desertification in the Asian interior [102],
the establishment of the Asian monsoon system [103],
and the desiccation of the Mediterranean Sea [104].

Migration from Eurasia to America via the North Atlantic
Land Bridge
In America Bauhinia and Bauhinia-like bilobate leaves
(Fig. 2CX, CXI) are only known from the Oligocene of
Mexico [31] and the Miocene of Ecuador [40]. The Bau-
hina leaf from late Eocene-early Miocene of Brazil is
questionable since it lacks pulvinus and the primary ven-
ation is not distinctly basal actinodromous [30]. Brazil
that occupies highly diversified Bauhinia species today
has been suggested as the center for origin of orchid
trees [73]. However, recent molecular phylogenetic study
resolved Asian species as the basalmost lineage in the
genus Bauhinia whereas the neotropical species di-
verged during the middle Miocene [41]. The relatively
extensive fossil record of Bauhinia from the late
Paleogene – early Neogene of South China also sup-
ports that South China is one of the centers for early
diversification of the genus.
Given that the Bauhiniinae originated in the Paleogene

of low-latitudes along the eastern Tethys Seaway as we
hypothesize here, it is most likely that Bauhinia and its
allies migrated into North and Central America from
Europe via the North Atlantic Land Bridge (NALB)
[105–108]. During the early Paleogene, with the epicon-
tinental seaways around North America and Eurasia re-
ceding, barriers between these two continents were
reduced, allowing floristic exchanges of thermophilous
plants to develop into a more uniform and continuous
Boreotropical flora [78, 105, 106, 109]. The NALB lay at
lower latitude in the Paleogene-early Neogene than the
Bering Land Bridge (BLB), and it may have been more
favorable for tropical, subtropical or even temperate
plants to migrate [107–110]. So far, Bauhinia fossils are
unknown in mid-high latitudes from East Asia and
North America, supporting that the BLB, situated at
higher latitudes, seems not to have witnessed the migra-
tion of Bauhinia. Hence, the NALB may have been the
most feasible route for migration of Bauhinia from
Eurasia to North America since the late Paleogene. An
alternative migration route from Eurasia to North
America for (sub) tropical lineages that have recently
been suggested for Smilax Havanensis group [111] might
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also apply to the presumable trans-Atlantic dispersal of
Bauhinia. These authors suggested trans-Atlantic cross-
ings at lower latitudes via “floating islands” as has also
been suggested for numerous angiosperm lineages [112]
and for animals (e.g., platyrrhine monkeys) [113].
It is of great interest that bilobate leaves of Bauhinia

presented here from the middle Miocene of southeastern
China exhibit great similarities with some extant Bau-
hinia species (Fig. 2XXII, XXIII) from South America,
implying extensive dispersals of Bauhinia populations
from Eurasia to America in or by the Miocene, during
which the Isthmus of Panama was formed, facilitating
the Great American Biotic Interchange [114, 115]. This
inference is also consistent with the result based on mo-
lecular phylogenetic study [41], which suggests that
South American Bauhinia diverged during the middle
Miocene.

Conclusions
Bilobate leaf fossils, i.e., B. ungulatoides and B. fotana
presented here, from the middle Miocene of southeast-
ern China are consistent with the viewpoint that the
tropical zone of South China is one of the centres for
early diversification of Bauhinia, and their great similar-
ities to some species from South Asia and South America
imply that Bauhinia might have undergone extensive dis-
persals and diversification during the Miocene.
The reliable fossil record, extant species diversity, as

well as molecular phylogenetic analyses suggest that the
Bauhiniinae might have originated in the Paleogene of
low-latitudes along the eastern Tethys Seaway. They dis-
persed southwards into Africa, migrated from Eurasia to
North America via the North Atlantic Land Bridge or
floating islands in southern North Atlantic during the
Oligocene. Then they spread into South America via the
Isthmus of Panama since the Miocene onward, and
underwent regional extinctions in the Boreotropics of
mid-high-latitudes by the Neogene climatic cooling, so
Bauhinia presently exhibits a pantropical intercontinen-
tal disjunct distribution.
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