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Abstract

Background: Life-history studies of wild bird populations often focus on the relationship between an individual’s
condition and its capacity to mount an immune response, as measured by a commonly-employed assay of cutaneous
immunity, the PHA skin test. In addition, haematocrit, the packed cell volume in relation to total blood volume, is often
measured as an indicator of physiological performance. A multi-year study of a wild population of house wrens has
recently revealed that those exhibiting the highest condition and strongest PHA responses as nestlings are most
likely to be recruited to the breeding population and to breed through two years of age; in contrast, intermediate
haematocrit values result in the highest recruitment to the population. Selection theory would predict, therefore,
that most of the underlying genetic variation in these traits should be exhausted resulting in low heritability,
although such traits may also exhibit low heritability because of increased residual variance. Here, we examine
the genetic and environmental variation in condition, cutaneous immunity, and haematocrit using an animal
model based on a pedigree of approximately 2,800 house wrens.

Results: Environmental effects played a paramount role in shaping the expression of the fitness-related traits
measured in this wild population, but two of them, condition and haematocrit, retained significant heritable variation.
Condition was also positively correlated with both the PHA response and haematocrit, but in the absence of any
significant genetic correlations, it appears that this covariance arises through parallel effects of the environment
acting on this suite of traits.

Conclusions: The maintenance of genetic variation in different measures of condition appears to be a pervasive
feature of wild bird populations, in contradiction of conventional selection theory. A major challenge in future
studies will be to explain how such variation persists in the face of the directional selection acting on condition
in house wrens and other species.
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Background
An animal’s condition is defined by the pool of resources
available to allocate to the production and maintenance
of traits that enhance fitness, and reflects an individual’s
ability to acquire food, avoid predators, and resist dis-
ease [1]. Body condition is critically important to life his-
tory because a variety of traits affecting fitness are often
condition dependent, such as those involved in mate at-
traction [1] or disease resistance [2]. A number of morpho-
logical and physiological indices for measuring condition
have been devised, although the interpretation of these
measures is often controversial and their validity frequently
questioned [3]. In field studies of birds and mammals, an
individual’s condition is often measured as body mass cor-
rected for structural body size, which is often derived from
the residuals of a regression of mass on body size [4]. Con-
dition measured in this manner is assumed to reflect lipid
reserves [5], a major form of energy storage in birds that is
used to fuel the various processes that promote individual
fitness (i.e., flight, migration, reproduction). Indeed, body-
mass based measures appear to be tightly linked with fit-
ness in a number of vertebrate species [6].
In studies of wild bird populations, the condition of

both nestlings and breeding adults is often measured in
the context of understanding life-history variation [7]. For
example, all else being equal, individuals in better condi-
tion should be able to invest more in resource-limited
traits associated with survival and/or reproduction. Such
traits include an individual’s capacity to mount an im-
mune response, which is an important component of
maintenance [8-11]. This is particularly relevant to nes-
tlings that, owing to their lack of mobility, are especially
vulnerable to parasites and pathogens. A standard method
employed for measuring cutaneous immune activity in
wild birds is the phytohaemagglutinin (PHA) skin test, an
assay that involves injecting a novel plant mitogen, PHA,
into the wing prepatagium of the bird and measuring the
ensuing swelling 24 h later. The swelling is taken as a
measure of cutaneous immune responsiveness, which
includes both innate and adaptive components of the
immune system [12-15]. Although the conventional ex-
pectation has been that birds in good condition should
be capable of mounting more robust immune responses
[7], this expectation has been met in some studies
[9,16], but not in others [11,17].
In addition to morphological measures of condition,

haematocrit, the packed volume of red blood cells in rela-
tion to total blood volume, is often measured as a pre-
sumed physiological indicator of condition in field studies
of wild birds [18,19]. Because haematocrit is directly re-
lated to oxygen uptake, it is typically regarded as a meas-
ure of physiological performance [18-20], but its value as
an indicator of condition or health state remains uncertain
[11,17,21]. A growing body of evidence suggests, however,
that physiological variation in haematocrit at different life-
history stages is tied directly to such fundamental pro-
cesses as reproduction, migration, and the acquisition of
flight [22], and so there is reason to believe that haemato-
crit may be linked, at least under some circumstances, to
fitness.
Over the past 10 years, we have routinely measured

condition, PHA response, and haematocrit in a wild
population of house wrens, Troglodytes aedon, in north-
central Illinois, USA [23-26]. A multi-year study of a
large subset of the nestlings measured over this time
period revealed that those in the best condition and with
the strongest PHA responses were more likely to be re-
cruited to the breeding population and more likely to
breed through two years of age [27]. The relationship
between haematocrit and fitness was somewhat more
complex, as intermediate haematocrit values resulted in
the highest recruitment to our population, suggestive of
stabilizing selection [27].
If, as our data on recruitment and subsequent breed-

ing success would suggest, condition, immune response
to PHA injection, and haematocrit in this population are
subject to strong natural selection, we would anticipate
that most of the underlying genetic variation in these
traits would be exhausted [28]. However, a number of
studies of wild bird populations have reported significant
heritable variation in each of these traits [condition:
[6,29,30]; PHA response: [10,31,32]; haematocrit: [33]].
This is, perhaps, most surprising in the case of condi-
tion, which is expected to reflect an individual’s current
nutritional state and thus be determined primarily by
environmental variation [6]. Here, we examine the gen-
etic and environmental variation in condition, cutaneous
immune responsiveness, and haematocrit over a three-
year period (2004–2006) during which we used DNA
profiling to determine the parentage of nestlings. Specif-
ically, our objectives were to determine the degree of
heritable variation in each of these traits and to measure
the phenotypic and genetic correlations among these
characters.

Methods
Study animals
House wrens are small (10–12 g), insectivorous songbirds
that are sexually monomorphic in size and plumage. As
obligate cavity-nesters, house wrens readily accept nest-
boxes within which to build their nests. Upon arrival at
the study area in north-central Illinois after spring migra-
tion, females select a male that is defending a nest site
and, after completing the nest, lay a clutch of 4–8 eggs.
About half of the females that successfully rear their first
brood produce a second [26,34,35]. Only female house
wrens incubate the eggs and brood the nestlings, but both
adults provision nestlings and fledglings. House wrens are
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usually socially monogamous, but social polygyny oc-
curs and extra-pair fertilizations are common in the
study population [23,36]. Additional information con-
cerning the breeding biology of house wrens is pro-
vided by Johnson [37].
We conducted this study during the 2004–2006 breeding

seasons on the Mackinaw study site (40°40′N, 88°53′W)
in a second-growth, deciduous forest bordering the
Mackinaw River. Nestboxes (N =700) of uniform con-
struction [38] were spaced 30 m apart along north–
south transects separated by 60 m (Figure one in [39]).
All nestboxes were mounted on 1.5-m metal poles that
had been greased or under which 48.3-cm diameter alu-
minium baffles had been mounted to discourage nest
predators. The nestboxes used in this study (N =301) were
located in three semi-isolated neighbourhoods within
the study area [23]. All activities complied with the Illinois
State University Institutional Animal Care and Use
Committee (Protocol No.17-2003) and United States
Geological Survey banding permit 09211.

Field procedures
We visited all nestboxes every 1–3 days, noting their
contents, the behaviours of any wrens present, and male
identity as revealed by unique combinations of coloured,
Darvic leg rings. We trapped and individually ringed any
previously uncaught females when incubating or males
when provisioning nestlings. To obtain DNA for pater-
nity analyses, we collected a blood sample from adults
upon capture and from all nestlings. On brood-day 11
or 12 (brood-day 0 is the day the first egg of a clutch
hatches), we ringed nestlings with a numbered alumin-
ium band, weighed them on an electronic balance
(Acculab, Pocket Pro 250-B) to the nearest 0.1 g, and
measured their right tarsus length with dial callipers to
the nearest 0.1 mm. At the same time, we obtained a
blood sample (≈75 μL) from the brachial vein in hepa-
rinized microcapillary tubes that were stored on ice in
coolers in the field. Blood was taken to the laboratory
later the same day to be centrifuged at 1,610 g for 60 s
(Hematastat II, Separation Technologies) to separate cel-
lular and plasma components. We measured haemato-
crit as the percentage of whole blood constituted by red
blood cells, using the mean of three measurements. Red
blood cells were stored in lysis buffer at 4°C and plasma
at −20°C until further analysis.
We induced a cutaneous immune response in nestlings

on brood-day 11 by injecting 50 μL of sterile phosphate
buffered saline (PBS) containing phytohaemagglutinin
(Sigma Aldrich, St. Louis, MO, USA) at a concentration of
5 mg mL−1 [40] into their prepatagium (wing-web). Phyto-
haemagglutinin (PHA), a plant-derived mitogen, induces a
measurable tissue swelling as a result of responses from
both the innate and adaptive axes of the immune
system [12]; but see [15]. We used the change in wing-
web thickness (mean of three successive readings before
and 24 h after PHA injection) as a measure of cutane-
ous immune activity. Wing-web thickness was mea-
sured with a Mitutoyo thickness gauge (no. 547–500,
Mitutoyo America Corp., Aurora, IL, USA). The repeat-
ability of haematocrit and the PHA response was 0.99
and 0.95, respectively [41].

Determination of parentage
We isolated DNA from blood samples using a high-salt
extraction protocol following Bruford et al. [42]. Poly-
merase chain reaction (PCR) amplifications were carried
out in 15-μL volumes containing 200 μM dNTPs,
2.5 mM MgCl2, 1X PCR Buffer II (Applied Biosystems),
and 0.133 μM forward and reverse primers. We used a
thermal profile that followed the touchdown protocol
described in Johnson et al. [43]. Forward primers were
fluorescently labelled, and PCR products were analysed
using a Beckman Coulter CEQ 8000 Genetic Analysis
System. We typed all samples at three loci: TA-C3 (B)2
[44], Mcyμ4 [45], and LTMR6 [46]. When more reso-
lution was needed, two additional loci, TA-A5-15 and
TA-B4-2 [44], were used. We analysed allele data using
Cervus 2.0. No locus deviated significantly from Hardy-
Weinberg equilibrium, with the exception of TA-A5-15,
whose null allele frequency was estimated at 0.094.
Attendant females matched nestlings at all loci with

rare exceptions (i.e., six cases in which there was a mis-
match at a single locus, attributable to mutation) and
were assumed to be the genetic parent in all cases. At
some nests, we were unable to obtain blood samples
from attending adults, in which case, maternity of the at-
tending female was assumed because intraspecific brood
parasitism does not occur in our population [36]; pater-
nity of nestlings in these cases was scored as unknown.
Nestlings that matched attendant males at all loci were
assigned within-pair paternity, and those that failed to
match attendant males at two or more loci were desig-
nated as extra-pair. A few nestlings failed to match at-
tendant males at one locus, so we re-typed at the
anomalous locus to prevent typing error. If they still
failed to match the attendant male, we typed them at
additional loci to attempt to resolve the anomaly. In
some cases, they failed to match the attendant male at
one or more of these additional loci and were therefore
designated as extra-pair nestlings. If the probability of
false assignment [47] based on matching loci was lower
than 0.005, then nestlings were designated as within-pair
nestlings. In some cases, the paternity of nestlings could
not be resolved as a result of loss of sample or when re-
peated attempts to genotype failed to produce reliable
allele data for one or more loci because of the poor qual-
ity of the DNA sample. Exclusion probabilities for each



Figure 1 Relative frequency of male house wrens males siring
young with different numbers of females (solid bars) and the
relative frequency of female house wrens producing young
with different numbers of males (open bars).
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locus were Mcyμ4, 0.811; LTMR6, 0.691; TA-C3(B)2,
0.841; TA-B4-2, 0.641; TA-A5-15, 0.464. For the three-
locus set and five-locus set exclusion, probabilities were
0.991 and 0.998, respectively. Overall, the probability of
false assignment for nestlings designated as within-pair
was <0.008.
Based on these methods, we were able to construct a

pedigree comprised of 2,768 house wrens, in which we
were able to identify both parents of 1,661 individuals
and only the mother of an additional 552 individuals.
The pedigree spanned three generations, and included
229 paternal and 265 maternal identities. Not all pheno-
typic traits were measured on all individuals; sample
sizes and mean values (±SE) for all traits are shown in
Table 1. Unlike cross-fostering studies, our ability to sep-
arate nest effects (i.e., the effect of common environ-
ment) from genetic effects depends on the extent of
extra-pair paternity and mate-switching across different
reproductive episodes. As noted earlier, extra-pair pater-
nity is common in our house-wren population (35-40%
of broods; [23,36]), and, on our study area, nearly 60% of
pairs switch mates across broods produced during the
same breeding season [34]. Birds returning to the study
area in subsequent years (as was the case with many of
the birds in our pedigree) invariably pair with a different
mate from the one with which they have paired the
previous year (pers. obs.). As a consequence of the col-
lective force of these factors, a high proportion of fe-
males in our pedigree produced young with more than
one male (39%), and an even higher proportion of
males sired young with more than one female (49%)
(Figure 1). Thus, our pedigree is well suited to separat-
ing common nest effects and genetic effects.
Determination of sex
Sex was determined by amplifying sex-specific introns of
the CHD-1 gene. Polymerase chain reactions (PCR) were
carried out with sexing primers 1237L and 1272H [48]
using a touchdown protocol as described in Johnson
et al. [43], and the products electrophoresed through 2%
agarose gels and stained with ethidium bromide. DNA
isolated from adult house wrens of known sex was in-
cluded in all sets of PCR runs as controls, and their PCR
Table 1 Mean trait values (and associated sample sizes)
for nestling house wrens included in the animal model
analysis

Trait N Mean SD

Mass (g) 2199 9.68 0.89

Tarsus (mm) 1299 18.48 0.69

PHA (mm) 1945 0.60 0.32

Haematocrit (%) 1952 41.46 6.49
products were always electrophoresed with those of
nestling samples. Because some nestlings did not survive
to brood-day 11–12 and some DNA samples did not
successfully amplify, not all nestlings in each nest were
sexed.

Genetic analyses
Data were analysed using animal models fitted in
ASReml (version 3). An animal model is a form of linear
mixed-effect model in which an individual’s genetic
merit is included as a random effect allowing estimation
of the additive genetic (co)variance provided pedigree
data are available [49,50]. We first fitted univariate
models to estimate the additive variance (VA) for each
trait (tarsus, PHA, haematocrit, mass). Nest identity was
included as an additional random effect to minimise the
potential for upward bias in genetic variance from com-
mon environment effects. Nest effects are assumed to be
normally distributed with a mean of zero and a variance
to be estimated (Vnest). Similarly, we assume that resid-
uals from the model are uncorrelated and normally dis-
tributed, with the residual variance (VR) arising from
unmodelled environmental effects and/or measurement
error. Fixed effects included year (2004, 2005, 2006), and
sex (unknown, male, female) as three-level factors for all
traits. In addition, we included a cubic regression of tar-
sus length as a fixed effect in the model of mass. By cor-
recting for the average mass-tarsus length relationship,
variance components (and derived parameters) from our
model of mass can be viewed as pertaining to body con-
dition (i.e. mass “corrected” for skeletal size). For each
trait we determined heritability (h2) as the ratio of VA to
VP (with VP estimated as the sum of the variance compo-
nents; i.e., conditional on fixed effects) and the corre-
sponding proportion of variance explained by nest effects
(denoted n2). To test the genetic basis of hypothesised re-
lationships among traits, we then fitted a multivariate
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model of all traits simultaneously with fixed effects as de-
scribed above but no random effects. Note that the cubic
function of tarsus length was included as a fixed effect on
mass only, not the other response variables. This yielded
an estimate of the phenotypic variance-covariance matrix
(conditional on fixed effects) that we denote P. We then
added individual genetic merit and nest effects back into
the model to partition P into additive genetic (G), nest
(N) and residual (R) matrices. Statistical inference was
based on likelihood-ratio tests (LRT) for random effects
and Wald F-statistics for fixed effects. For LRT of single
random-effect terms in the univariate models, we assume
the test statistic to be asymptotically distributed as a 50:50
mix of χ20 and χ21 [51]. For comparing multivariate models
with differing random effects, we (conservatively) set the
degrees of freedom to equal the number of additional (co)
variance parameters estimated in the more complex
model.
Table 2 Univariate models showing fixed effect estimates for

Trait/Effect Level Coefficient ± SE

TARSUS

μ 18.33 ± 0.094

Year1 2005 −0.066 ± 0.079

2006 0.0728 ± 0.075

Sex Male 0.275 ± 0.074

Female 0.031 ± 0.075

HAEMATOCRIT

μ 42.06 ± 0.98

Year1 2005 −1.33 ± 0.87

2006 −1.01 ± 0.87

Sex Male 0.517 ± 0.636

Female 0.311 ± 0.635

PHA

μ 0.785 ± 0.040

Year1 2005 −0.327 ± 0.035

2006 −0.106 ± 0.032

Sex Male −0.047 ± 0.031

Female −0.039 ± 0.031

MASS (“Condition”)

μ 9.81 ± 0.105

Year1 2005 −0.309 ± 0.088

2006 −0.346 ± 0.088

Sex Male 0.225 + 0.079

Female 0.157 + 0.079

Tarsus 0.519 + 0.034

Tarsus2 −0.149 + 0.027

Tarsus3 −0.027 + 0.004
1Year effects for 2005 and 2006 are shown relative to the predicted mean in 2004.
Results
Fixed-effect estimates for nestling house wren traits are
shown in Table 2 and their associated heritabilities are pro-
vided in Table 3. Nest effects accounted for a major portion
of the variation in all traits, ranging from 21% of the vari-
ation in tarsus length to 54% of the variation in the PHA
response (Table 3). Notwithstanding this large amount of
environmental variation, both nestling haematocrit and
condition (i.e., size-adjusted mass) were significantly herit-
able, with additive genetic variance accounting for about
15% of the phenotypic variation in each case (Table 3).
Nestling condition differed across years, and male nestlings
were of significantly higher body condition than female
nestlings (Table 2). There were no significant year effects
or sex differences in nestling haematocrit (Table 2).
Neither tarsus length nor PHA response were signifi-

cantly heritable (Table 3). There was a significant differ-
ence between male and female nestlings in tarsus length,
nestling house wren traits

DFnum DFden F P

1 177.5 83199 <0.001

2 233.2 2.41 0.093

2 637.5 22.83 <0.001

1 319.5 5003 <0.001

2 394.3 1.18 0.310

2 1308 0.59 0.550

1 320.1 491.5 <0.001

2 386.6 49.95 <0.001

2 1340 1.32 0.270

1 316.9 17361 <0.001

2 431.8 8.46 <0.001

2 1505 5.53 0.004

1 2101 235.7 <0.001

1 2100 31.37 <0.001

1 2035 54.2 <0.001



Table 3 Estimated variance components of nestling house wren traits (conditioned on fixed effects) under the animal
model, heritabilities (h2), and nest effects (n2)

Trait/Component Estimate ± SE Full model LnL Reduced LnL χ2 P

TARSUS

VP 0.466 ± 0.021

VA 0.052 ± 0.057 −102.58 −102.99 0.83 0.180

Vnest 0.096 ± 0.026 −102.58 −111.62 18.08 <0.001

Vresidual 0.318 ± 0.038

h2 0.113 ± 0.121

n2 0.206 ± 0.054

HAEMATOCRIT

VP 42.47 ± 2.01

VA 6.34 ± 3.26 −4253 −4256 4.86 0.0137

Vnest 20.18 ± 2.25 −4253 −4374 <0.001

Vresidual 15.95 ± 2.00

h2 0.149 ± 0.076

n2 0.475 ± 0.039

PHA

VP 0.0883 ± 0.0044

VA 0.0068 ± 0.0065 1811 1810 1.24 0.133

Vnest 0.0477 ± 0.0049 1811 1658 305.9 <0.001

Vresidual 0.0338 ± 0.0040

h2 0.077 ± 0.073

n2 0.540 ± 0.038

MASS (“Condition”)

VP 0.712 + 0.031

VA 0.096 + 0.055 −373.8 −375.4 3.166 0.038

Vnest 0.315 + 0.035 −373.8 −478.3 209.0 <0.001

Vresidual 0.300 + 0.034

h2 0.135 + 0.077

n2 0.443 + 0.039
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with males exhibiting longer tarsi (Table 2). Tarsus
length did not vary across the three years of the study.
There was no sex difference in the PHA response, but
PHA response varied across the three years of the study
(Table 2).
Our multivariate modelling with no random effects in-

cluded showed that P contained significant among-trait
covariance (LRT comparison of model with full P matrix
to one with diagonal elements only, i.e., all covariance
terms set to zero; χ26 = 136, P < 0.001). This result was
driven by significant positive phenotypic correlations be-
tween nestling body condition and each of the other three
traits, tarsus length, PHA response, and haematocrit
(Table 4). There was also a small, but significant correlation
between tarsus length and PHA response. Partitioning the
P matrix provided support for statistically significant co-
variance in N (full covariance matrix (full) versus variance
only matrix (diagonal) LRT; χ26 = 22.4, P = 0.001) and R
(full versus diagonal matrix LRT; χ26 = 38.5, P < 0.001).
Among broods (i.e., nests), nestling body condition was
positively associated with both tarsus length and haem-
atocrit, but was not correlated with PHA response
(Table 4). However, there was no evidence of significant
covariance structure in G (full versus diagonal matrix
LRT; χ26 = 3.24, P = 0.778), and pairwise genetic correla-
tions were characterised by large standard errors in all
cases (Table 4).

Discussion
In keeping with a number of other studies of wild bird
populations, the majority of variation in condition, cuta-
neous immune response, and haematocrit in our house
wren population could be accounted for by nest effects,
attesting to the paramount role of the early environment



Table 4 Phenotypic covariance structure (P) and its additive genetic (G), nest (N) and residual (R) components

Matrix Trait Tarsus PHA Hematocrit Condition

P Tarsus 0.053 (0.026) 0.021 (0.023) 0.605 (0.020)

PHA 0.011 (0.005) −0.004 (0.025) 0.108 (0.023)

Haematocrit 0.093 (0.125) −0.007 (0.049) 0.138 (0.022)

Condition 0.382 (0.02) 0.03 (0.007) 0.835 (0.139)

G Tarsus −0.130 (0.759) −0.648 (0.701) 0.516 (0.434)

PHA −0.002 (0.0140) 0.020 (0.545) 0.361 (0.529)

Haematocrit −0.334 (0.303) 0.004 (0.095) −0.384 (0.470)

Condition 0.038 (0.045) 0.01 (0.015) −0.306 (0.329)

N Tarsus 0.082 (0.114) 0.077 (0.122) 0.436 (0.105)

PHA 0.006 (0.008) −0.035 (0.080) 0.097 (0.080)

Haematocrit 0.115 (0.183) −0.035 (0.08) 0.278 (0.077)

Condition 0.083 (0.026) 0.012 (0.01) 0.729 (0.217)

R Tarsus 0.074 (0.082) 0.124 (0.088) 0.629 (0.057)

PHA 0.008 (0.008) 0.050 (0.087) 0.066 (0.079)

Haematocrit 0.283 (0.199) 0.037 (0.066) 0.175 (0.080)

Condition 0.221 (0.03) 0.008 (0.009) 0.442 (0.207)

P was estimated from a multivariate model with no random effects while individual identification and nest were then included to decompose the covariance
matrix into G, N and R. Values below the diagonals are covariances (with SE) and values above the diagonals are the corresponding correlations. Bold values
denote nominally significant parameter at P <0.05 based |estimate| ≥2SE.

Sakaluk et al. BMC Evolutionary Biology 2014, 14:242 Page 7 of 11
http://www.biomedcentral.com/1471-2148/14/242
in influencing the expression of these traits. This is, per-
haps, not surprising given that these traits often are sub-
ject to strong natural selection, which might be expected
to exhaust any genetic variation underlying these traits
[28,52-54]. Nevertheless, two of the traits measured in
this study, condition and haematocrit, were significantly
heritable, while our measure of cutaneous immune re-
sponsiveness was not, in seeming contrast to some stud-
ies showing heritable variation in the PHA response
[10,31,32], and other cross-fostering studies showing an
absence of nest-of-origin effects on nestling haematocrit
[17,21]. Below, we explore the proximate underpinnings
of the environmental and genetic factors influencing
these important fitness-related traits, and the phenotypic
and genetic relationships among them.
Nest effects accounted for the largest portion of pheno-

typic variation in both tarsus length and condition, but
unlike tarsus length, condition was significantly heritable.
Although we can only speculate as to the sources of envir-
onmental variation for these two traits, likely candidates
include differential provisioning among broods [39,55] or
spatial variation in the availability of insect prey [16]. Para-
sites might also contribute to the observed nest effects on
these traits [33], as nestlings in our house wren population
are frequently infested with ectoparasitic mites [56]; how-
ever, in an earlier study of our population, nestling mass
was not affected by ectoparasite numbers [56] and in a dif-
ferent house wren population, ectoparasites had no de-
tectable effect on nestling tarsus and only a slight effect
on mass [57]. There was also significant variation among
years in nestling condition, which might also reflect tem-
poral variation in prey availability arising from annual
variation in rainfall and summer temperatures.
The absence of significant genetic variation in tarsus

length was surprising, given that the heritability of tarsus
length in birds typically hovers around 0.5 [58]. How-
ever, Christe et al., [33] also found that tarsus length was
not significantly heritable in house martins, Delichon
urbicum. Because environmental factors such as para-
sites and food availability can profoundly influence vari-
ation in tarsus length, heritability of tarsus may vary
according to the environment in which it is measured.
Moreover, heritability estimates based on the animal
model are typically about 24% lower than those based
on other methods such as parent-offspring resemblance
[58], so our estimate of heritability of tarsus length in
house wrens (0.11) is relatively conservative. Alternatively,
low heritability of tarsus may be due to high residual vari-
ance rather than low additive genetic variation [59]. A
long-term study of Savannah sparrows (Passerculus sand-
wichensis), for example, has shown that heritability can
vary with the age at which traits are measured, and re-
sidual variation was generally much higher in traits
expressed early in development (e.g., tarsus length in nes-
tlings) [59].
Consistent with a number of other studies employing

the animal model [6,11,29,30], condition was signifi-
cantly heritable, with additive genetic variation account-
ing for about 14% of the phenotypic variation in this
trait. This result might be considered surprising, given
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that body condition often is subject to strong directional
selection [2,6,60] and that nestling condition in our house
wren population is positively correlated with recruitment
to the breeding population and subsequent reproductive
success [27]. However, assuming that condition is influ-
enced by the expression of many loci, including those in-
volved in the acquisition and efficient use of resources,
this alone might sustain genetic variation in the face of
strong directional selection [1]. In addition, selection may
be acting primarily on the environmental component of
variation in condition [6]. This occurs if the positive cor-
relation found between condition and fitness reflects a
shared dependence on environmental factors rather than
a causal relationship [61].
PHA response was not significantly heritable, consist-

ent with other studies employing the animal model to
estimate additive genetic variance [11,62], as well as
those relying on parent-offspring resemblance [63,64]. A
prominent exception to this pattern is a study of common
kestrels (Falco tinnunculus) employing the animal model
that revealed a surprising high heritability of PHA re-
sponse in fledglings (h2 = 0.47-0.55) [65]; as with tarsus
length discussed above, such differences could be due to
age-related variation in the magnitude of residual variance.
Although a number of cross-fostering studies also have re-
ported significant heritable variation in the PHA response
[10,31,32], these have relied on full-sib comparisons that
likely produce inflated estimates because of dominance
variance and maternal effects [62].
Nest effects accounted for over half the phenotypic

variation in nestling PHA response, a result consistent
with previous studies in this population showing that
hatching date and time of injection can influence PHA
response of nestling house wrens [24,25,41,66]. Add-
itional environmental factors might also include food
availability, temperature, and parasite load [12], and we
also cannot rule out the possibility of parental effects
arising from differential provisioning of broods [39,55]
or transgenerational priming of immunity arising from
the transfer of maternal antibodies in eggs [67]. Given
the complex nature of the PHA response, which in-
volves both innate and adaptive components of the
immune system [12,13], Martin et al. [12] have cau-
tioned against interpreting larger swellings as indica-
tive of stronger cell-mediated immunocompetence. In
our house wren population, however, a multi-year
study has revealed that nestlings with the strongest re-
sponse to PHA injection have the highest likelihood of
recruitment to the breeding population, and those
with the strongest PHA responses are more likely to
breed through two years of age [27]. Thus, the PHA
response appears to be the focus of significant direc-
tional selection in our population and intimately asso-
ciated with offspring fitness.
Nest effects had a major influence on nestling haem-
atocrit, consistent with studies of other wild bird popula-
tions [17,20,21]. A number of environmental factors can
influence nestling haematocrit, among them parasite
load [19,20], food availability [16,68], and temperature
[69]. Parasite load appears to be an especially important
factor in other species, but ectoparasite loads in another
population of house wrens did not affect nestling haem-
atocrit [57]. In our house wren population, nestlings are
frequently infested with two species of ectoparasitic
mites [56] and their density varies greatly among nests
[56]. Although a relationship between the density of
mites and nestling haematocrit has not been established
in our population, variability in the level of infestation
could account for at least a portion of the nest effects
detected in the present study, as it has been in other
species [70]. In addition to variation in ectoparasite load,
parental effects mediated through differences among
broods in levels of parental provisioning of nestlings
could further contribute to nest effects on nestling
haematocrit [71]. Although we did not measure provi-
sioning of nestlings in the present study, provisioning
rates within and among pairs can vary widely [39,55],
and thus differences among broods in the amount of
food provided to nestlings could explain some of the
nest effects on nestling haematocrit.
In addition to the strong environmental effect on

nestling haematocrit, haematocrit was significantly her-
itable, in contrast to cross-fostering studies of other
species [17,21] that have shown significant effects of
nest-of-rearing on nestling haematocrit, but no effect of
nest-of-origin. Additive genetic variation accounted for
approximately 15% of the phenotypic variation in this
trait. Studies that have employed cross-fostering [17,21]
or parent-offspring resemblance [20] to detect genetic
effects on haematocrit have relied on much smaller
sample sizes than the one on which our pedigree was
based, and, thus, the absence of a genetic effect in these
studies may have been due to a lack of statistical power
(but see [33] for evidence of a significant nest-of-origin
effect in house martins). In support of this possibility, a
study of a captive population of zebra finches (Taeniopygia
guttata) based on a pedigree of similar size as the one
considered here [11], reported a heritability of 0.38 ± 0.077
(P <0.001) as determined by the animal model.
There was a significant positive phenotypic correlation,

but no genetic correlation, between nestling haematocrit
and condition. This suggests that the phenotypic correl-
ation arises because of parallel effects of the common nest
environment (including parental effects) on the two traits,
and not because of any underlying pleiotropic effect. The
absence of genetic correlations in this study should be
regarded with some caution, however, as our power to de-
tect such correlations given our sample sizes is probably
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limited. This is reflected in the large standard errors asso-
ciated with our rG estimates. Increased precision could be
obtained through larger sample sizes and/or the use of
cross-fostering designs that better facilitate statistical sep-
aration of additive genetic from nest effects [72]. Both
nestling condition and haematocrit appear to be closely
related to fitness in our population, predictive of both re-
cruitment to the breeding population and subsequent re-
productive success [27], and would thus seem to represent
different axes of condition, one reflecting fat stores and
the other oxygen-uptake capacity. The relationship be-
tween haematocrit and fitness is more complex than the
one between condition and fitness, however, as intermedi-
ate haematocrit values result in the highest recruitment to
our population, suggestive of stabilizing selection [27]. Al-
though oxygen transport generally increases with increas-
ing haematocrit, increases in blood viscosity beyond a
certain threshold may actually hinder oxygen transport
[73]. Indeed, experimental studies in mice have shown
that oxygen uptake and physical endurance are maximized
at intermediate values of haematocrit [73].

Conclusion
Environmental effects played a paramount role in shaping
the expression of the fitness-related traits measured in this
wild population of house wrens, but two of them, condition
and haematocrit, retained significant heritable variation. It
is becoming increasingly evident that the maintenance of
genetic variation in condition measures, in particular, ap-
pears to be a pervasive feature of wild bird populations, in
apparent contradiction of conventional selection theory
[6,30,74]. A major challenge in future studies will be to ex-
plain how such variation persists in the face of the direc-
tional selection acting on condition in house wrens and
other species. Condition was also positively correlated with
both the PHA response and haematocrit, but in the ab-
sence of any significant genetic correlations, it appears that
this covariance arises through parallel effects of the envir-
onment on this suite of traits (but see [9]). This would seem
to bolster the case for the utility of metrics designed to cap-
ture the multi-dimensionality of condition based on mul-
tiple physiological and morphological measures including
mass, haematocrit, and immune responsiveness [3].
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