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Background
MicroRNAs are ~ 22nt small non-coding RNAs, which can bind to microRNA 
response elements (MREs) on target RNA sequences (e.g. mRNAs, lincRNAs, pseu-
dogenes, and circle RNAs) through the RNA-induced silencing complex (RISC) and 
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lead to transcripts degraded or translation repressed [1–3]. Different transcripts with 
the same MRE can regulate each other via competitively binding shared microRNAs, 
which are called competing endogenous RNAs (ceRNAs). The ceRNA regulatory is 
a new kind of post-transcriptional regulation mechanism and is also considered the 
“Rosetta Stone of a hidden RNA language” [4, 5]. It has been demonstrated that the 
complex crosstalk among ceRNAs involves numerous physiological and pathologi-
cal progress [6–9], such as cell proliferation, differentiation, invasion, and metastasis 
[10–12]. Because individual microRNAs can target multiple transcripts and the same 
transcript may contain MREs of different microRNAs, there are giant and compli-
cated networks in cells between microRNAs and their target transcripts, as well as 
between ceRNAs themselves. An increasing number of studies about ceRNAs and 
ceRNA networks have been published in the past few years [13, 14], which are widely 
used to detect survival biomarkers, select candidate regulators of disease genes, and 
predict long noncoding RNA functions [15].

As the result of the huge scale of the ceRNA networks, computational methods 
have become efficient approaches to the construction of the ceRNA networks [13, 
16]. Current methods are developed based on two basic principles: (1) ceRNA pairs 
should share a sufficient number of microRNAs; and (2) ceRNA pairs should be co-
expressed. For the first measurement, the hyper-geometric test is used to evaluate the 
enrichment significance of microRNAs of a ceRNA pair. For the second one, statisti-
cal indexes can be categorized into two classes: (1) the pair-wised correlation, such 
as Pearson correlation coefficient (PCC) and mutual information (MI); and (2) par-
tial associated correlation, such as sensitivity correlation (SI) [17], multiple sensitivity 
correlation [18] and conditional mutual information (CMI) [19]. A part from those 
methods, Zhang et  al. [20] proposed LncmiRSRN to construct a lncRNA-mRNA 
ceRNA network via estimating the causal effects of lncRNAs on mRNAs with the IDA 
method [21], where IDA refers to the intervention calculus when the DAG is absent. 
Recently, we proposed that liquid association (LA) is another new measurement for 
the identification of ceRNA pairs [22], where LA can be used to estimate the corre-
lation sensitivity of ceRNAs to microRNAs. Besides those computational methods, 
researchers have established a set of ceRNA databases, such as lnCeDB [23], LncCeR-
Base [24], miRSponge [25], LncACTdb [26] and PceRBase [27].

Although there has been such great progress in ceRNA, there is no software plat-
form to provide overall functions to construct and analyze the ceRNA networks. 
In this study, we developed CeNet Omnibus, an R/Shiny based application, which 
achieves a unified framework to construct and analyze ceRNA network. CeNet Omni-
bus intends to cover comprehensiveness, high efficiency, high expandability, and user 
customizability. CeNet Omnibus integrates complete functions for the construction 
and analysis of ceRNA networks. In order to accommodate to the different usage sce-
narios, CeNet Omnibus allows users to define some functions and set parameters in 
different situations. With the support of the R/Shiny framework, CeNet Omnibus 
offers a web-based user-friendly interface for users to obtain the output intuitionally. 
We expect that CeNet Omnibus will become an efficient and convenient tool to inves-
tigate the ceRNA networks for researchers, especially those, who are not familiar with 
programming.
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Implementation
CeNet Omnibus is implemented with R programming language (Release 3.6) for the 
most parts of computation. For some specific functions, we use Java (Version 1.7) codes 
to improve efficiency. The web-based user interface is developed based on the Shiny 
framework (Version 1.4) from RStudio, as well as a set of associated packages, such as 
shinydashboard (Version 0.7), shinyWidgets (Version 0.5). Network construction and 
analysis are based on igraph package (Version 1.2.4), while the visualization of networks 
depends on javascript plugin Cytoscape.js (Version 3.13) and visNetwork package (Ver-
sion 2.0). Other dependency packages are listed on the homepage of CeNet Omnibus.

CeNet Omnibus consists of five components, including data input, data processing, 
network construction, network visualization, and network analysis. Figure 1 illustrates 
the framework of CeNet Omnibus.

Data input

Users are expected to upload the expression profiles of candidate ceRNAs, the expres-
sion profiles of microRNAs, microRNA- candidate ceRNA interaction data, and candi-
date ceRNA information as inputs before the further operation. All these data should be 
plain text delimited by tab, comma, space, semicolon, or any other practicable marks. 
The expression profiles of candidate ceRNA and microRNA should have sample names. 
The candidate ceRNA and microRNA symbols should meet the same standard in all 
these files. In addition to direct uploading, we also provide an interface for users to 
obtain candidate ceRNA information from Ensembl database [28] with the support of 
biomaRt [29] package, which enables collect large amounts of data in a uniform way.

Data processing

At the beginning of data processing, the program will automatically obtain three sym-
bol sets, including (1) candidate ceRNAs symbols that are available in all of candidate 
ceRNA expression profiles data, microRNA- candidate ceRNA interaction data and can-
didate ceRNA information data, (2) microRNA symbols available in both microRNA 
expression profiles data and microRNA- candidate ceRNA interaction data, and (3) sam-
ple names available in expression profiles of both candidate ceRNAs and microRNAs.

Considering that there are significant differences between the expression levels of dif-
ferent RNA types and that users may want to investigate a part of candidate ceRNA rela-
tionships in the datasets, users are allowed to divide candidate ceRNAs into different 

Fig. 1  The framework of CeNet Omnibus
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groups to filter non-expressed RNAs or construct a ceRNA subnetwork. For example, 
the candidate ceRNAs can be divided into the “Noncoding” RNAs group and the “Cod-
ing” RNAs group according to their biotypes.

Users are allowed to remove low-quality samples. For this aim, users are required to 
provide the thresholds for the detected microRNAs and candidate ceRNAs respectively. 
Then, CeNet Omnibus plots the histograms of the detected RNAs ratios of samples. 
Users may determine how many samples should be remained based on the histograms. 
Furthermore, to remove the non-expressed RNAs, users should input the minimal 
expression levels of microRNAs and each candidate ceRNA group respectively. Then, 
CeNet Omnibus creates the histograms of the expressing sample ratios of RNAs. Users 
may also determine how many RNAs should be remained based on the histograms.

Finally, users can transform the expression values of microRNAs and candidate ceR-
NAs. We provide the log transformation and the normalization transformation. The two 
transformations can be executed at the same time, in the order of log transformation 
first and normalization the next. We have defined two specific normalization functions, 
which are min–max scaling and z-score scaling. Besides, users can define the normaliza-
tion function themselves.

Network construction

The construction of ceRNA network is associated with the identification of ceRNA pairs. 
CeNet Omnibus provides five different measurements for the detection of ceRNA pairs, 
including shared microRNA enrichment significance (MS), Pearson correlation coeffi-
cient (PCC), mutual information (MI), conditional mutual information (CMI), and liq-
uid association (LA). MS is used to test if a candidate ceRNA pair shares a sufficient 
number of microRNAs. LA is used to estimate the correlation sensitivity of candidate 
ceRNAs to shared microRNAs. PCC, MI, and CMI are all used to evaluate the levels of 
co-expression, where PCC can evaluate the linear correlation, while MI and CMI can 
evaluate the non-linear correlation.

For a given candidate ceRNA pair (e.g., R1 and R2 ), the MS is defined as:

where Q is the total number of considered microRNAs, T1 is the number of microRNAs 
targeting R1 , T2 is the number of microRNAs targeting R2 , and t is the number of micro-
RNAs targeting both R1 and R2.

Let eR1 and eR2 represent the expression of R1 and R2 respectively, and the PCC of R1 
and R2 is defined as:

where E(·) and Var(·) represent the expectation and variance of a random variable 
respectively.

MS(R1,R2) = 1−

t−1
∑

i=0

(
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i

)

×

(
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)

(
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)

PCC(R1,R2) =
E[(eR1 − E(eR1))× (eR2 − E(eR2))]

√

Var(eR1)× Var(eR2)
,
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Let disc(eR1) and disc(eR2) represent the discretized expression of R1 and R2 , the MI of 
R1 and R2 is defined as:

where pR1,R2(r1, r2) is the joint probability distribution of R1 and R2 , pR1(r1) and pR2(r2) 
are the marginal distributions of R1 and R2 respectively.

Similarly, let Rmi indicate the shared microRNAs between R1 and R2 , eRmi represent 
the sum of the expression profile of Rmi , and disc(eRmi) represent the discretized value of 
eRmi . The CMI of R1 and R2 is defined as:

where pR1,R2,Rmi(r1, r2, rmi) is the joint probability distribution of R1 , R2 , and Rmi.
The LA of R1 and R2 is defined as:

where N  is the total number of samples, zi(eR1) and zi(eR2) are the expression of R1 and 
R2 normalized by z-score transformation in ith sample respectively, and normi(eRmi ) is 
the ith value of the expression of Rmi normalized via Van der Waerden’s method [30].

CeNet Omnibus also allows users to define new measurements for the detection of 
ceRNA pairs. Users can select one or a set of measurements to detect ceRNA pairs 
according to their situation.

To improve the efficiency of the calculation, CeNet Omnibus can calculate these meas-
urements parallelly with the parallel package (Version 3.6). In addition, users can only 
calculate a part of relations in the datasets depending on the results of gene grouping in 
Data Processing Section.

After the calculation of selected measurements, CeNet Omnibus will create the den-
sity plots for each measurement. Users can select a specific threshold for each computed 
measurement according to their situation. CeNet Omnibus will collect interactions, 
which are satisfied with all the thresholds, to construct networks. After the construc-
tion of the ceRNA network, CeNet Omnibus will summarize the basic information of 
the network, including the number of connected nodes, isolated nodes, edges, and con-
nected components.

Network visualization

Users can use the network visualization component to view the overview structure of 
the constructed ceRNA network. Users are able to modify the layout of the network, the 
size, color, and shape of specific nodes, as well as the displayed symbols of nodes. Users 
can also search for nodes they are interested in for the next analysis.

MI(R1,R2) =
∑

r1∈disc(eR1 )

∑

r2∈disc(eR2 )

pR1,R2(r1, r2) log
pR1,R2(r1, r2)

pR1(r1)pR2(r2)
,

CMI(R1;R2|Rmi) =
∑

rmi∈disc(eRmi
)

∑

r1∈disc(eR1 )

∑

r2∈disc(eR2 )

pR1,R2,Rmi(r1, r2, rmi)

log
pRmi(rmi)pR1,R2,Rmi(r1, r2, rmi)

pR1,Rmi(r1, rmi)pR2,Rmi(r2, rmi)

LA(R1,R2|Rmi) =

N
∑

i=1

zi(eR1)× zi(eR2)× normi(eRmi)

N
,
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Network analysis

For further analyzing the ceRNA network, CeNet Omnibus supplies a one-stop solu-
tion, including network topological property analysis, network module detection, gene 
enrichment, and survival analysis.

In the part of network topological property analysis, CeNet Omnibus provides four 
topological properties of nodes, which include degree, betweenness, clustering coeffi-
cient, and closeness, as well as an topological property of edges–edge betweenness. The 
analysis of network topological properties can help users to find the important nodes 
and edges in the ceRNA networks for further analysis.

In the part of network module detection, CeNet Omnibus embeds the popular module 
detection algorithms, such as Louvain method [31], MCL [32], MCODE [33], and EPCA 
[34]. Because some algorithms require parameters, CeNet Omnibus allows users to test 
the performance of different parameters, and it will give a report, including the count 
of modules, the modularity of modules, the average density of the modules, the mod-
ules size distribution, the edge counts of modules distribution, and the modules density 
distribution, to help users determine the final parameters. The microRNAs associated 
with edges in modules are considered as the module associated microRNAs, and these 
microRNAs are also listed in the results of network modules. CeRNAs may form dense 
subnetworks to regulate each other, and current studies have suggested that the ceRNA 
modules may be potential biomarkers for cancer therapy. These results may be used for 
further analysis.

For further understanding the biological and medical principles in the ceRNA net-
works, CeNet Omnibus provides users the functions of enrichment analysis and survival 
analysis. The current version has integrated the functional enrichment with g:Profiler 
[35, 36]. Besides, users can input user-defined datasets for other enrichment analysis. 
Furthermore, the current version has integrated two survival analysis models to investi-
gate the relationships between ceRNAs and disease therapy. Kaplan–Meier survival esti-
mator is used to study the effect of a single factor on survival probability, while the Cox 
proportional hazards regression model can estimate multiple factors simultaneously.

Results
Comparison with related package

CeRNA networks are effective tools to study the ceRNA regulation. However, there are 
not enough available computational tools to help researchers construct and analyze the 
ceRNA networks. We surveyed the published computational tools, and only found the 
CeRNASeek [37], which is an R package to identify and analyze ceRNA-ceRNA inter-
actions. Comparing with CeRNASeek, CeNet Omnibus is more comprehensive, more 
expandable, and more user-friendly.

CeNet Omnibus and CeRNASeek are both R-based packages. Different from CeR-
NASeek, CeNet Omnibus provides a user-friendly web-based interface to eliminate 
the gap between users and programming. CeNet Omnibus provides comprehensive 
toolkits, from data processing to network analysis. However, CeRNASeek depends on 
users to input processed data and lacks the analysis of the network properties. Finally, 
CeNet Omnibus uses the parallel computing technique to speed up the calculation, and 
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it provides interfaces to expand application scenarios. The comparison details are shown 
in Table 1.

Case study: K562 single‑cell microRNA‑mRNA co‑sequencing data

To examine the performance of CeNet Omnibus, we applied CeNet Omnibus on sin-
gle-cell microRNA-mRNA co-sequencing data from [38]. The data set contains 23,284 
mRNAs/noncoding RNAs FPKM values and 2822 mature microRNAs log2-transformed 
miRNA expression of 19 K562 single cells. The interactions between ceRNAs and micro-
RNAs are downloaded from mirwalk2.0 database [39]. To obtain the gene biotypes, 
we downloaded the gene information from Ensembl database [28]. The sample data is 
shown in Additional file 1: Table S1.

After uploading the four data files into CeNet Omnibus, the program obtains 17,058 
valid mRNAs/noncoding RNAs, and 2532 valid microRNAs of 19 valid samples. We 
group the mRNAs/noncoding RNAs according to gene biotype attribution in gene infor-
mation files. We put RNAs, whose biotypes are “protein_coding”, into the “Coding” 
group, while other RNAs are put into the “Noncoding” group. The gene count statistics 
are shown in Fig. 2.

We use log2(1e-4) and 1 as the thresholds of detected microRNAs and mRNAs/
noncoding RNAs samples respectively, and remove two samples with the lowest 
detected RNA ratios for each data set (Fig.  3a, b). Then, we obtain 15 high-quality 
samples for the next step. To exclude lowly expressed microRNAs, we only retain 
microRNAs with expression value > log2(2e-4) in > 80% of cells (Fig.  3c). For RNAs 
in group “Coding”, we retain RNAs with expression value > 1 in > 80% of cells, while 
for RNAs in group “Noncoding”, we retain RNAs with expression value > 0.5 in > 50% 
of cells (Fig. 3d, e). Finally, we obtain 36 microRNAs, 6212 “Coding” RNAs, and 108 

“Noncoding” RNAs to construct ceRNA networks. The FPKM values of “Coding” and 
“Noncoding” RNAs are log2-transformed.

Table 1  The comparison between CeNet Omnibus and CeRNASeek

Items CeNet Omnibus CeRNASeek

Environment Language R R

Operation interface web-base command line

Functionality Data processing Yes No

Network Construction PCC, MS, MI, CMI, LA, and 
self define

Ratio, HyperT, HyperC, SC, 
CMI, and Cernia

Network Visualization Yes Yes

Network topological 
Property

Yes No

Network module Yes No

Enrichment analysis Yes Yes

Survival analysis Yes Yes

Feature Usability GUI with document tutorial R function with document 
tutorial

Efficiency Yes No

Expandability Yes No
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As CeNet Omnibus provides five different measurements for constructing ceRNA 
networks, here we use MS, PCC, and LA for the network construction. We calcu-
late these three measurements for each RNA group pair, and the density plots are 
shown in Fig. 4. We choose the thresholds for each measurement as shown in Table 2. 
Finally, we obtain a ceRNA network with 3695 nodes, 16,879 edges, and 42 connected 
components.

We use the network analysis component to analyze the constructed network. Fig-
ure  5 shows  a part of  topological properties distribution of  the network, and the 
specific topological properties of the partial nodes are shown in Additional file  2: 
Table S2. We use the Louvain method [31] to detect network modules, and the whole 
module information is listed in the Additional file  3: Table  S3. We use Module50 
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Table 2  The thresholds used of MS, PCC and LA for each group pair

Measurement Group pair Direction Thresh

MS Coding versus Coding < 0.05

Coding versus Noncoding

Noncoding versus Noncoding

PCC Coding versus Coding > 0.48

Coding versus Noncoding > 0.46

Noncoding versus Noncoding > 0.46

LA Coding versus Coding > 0.3

Coding versus Noncoding

Noncoding versus Noncoding
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(Fig. 6a) as an example for further analysis. The GO: BP and REACTOME enrichment 
terms of Module50 are shown in Fig. 6c, d, and Additional file 4: Table S4. We find 
Module50 is highly associated with RNA transcript and translation. Furthermore, 
we download the expression profiles and clinical information of 155 acute myeloid 
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leukemia (AML) patients from TCGA to evaluate if genes of Module50 can be a mod-
ule biomarker to predict patient prognostic. As shown in Fig. 6b, the patient group 
with lower expressions of ZNF580, RPL34, RPL30, RPS15A, RPL32, RPL38, and 
UBA52 has relatively worse prognostic than the group with higher expression.

Conclusion
CeNet Omnibus is a comprehensive platform for the construction and analysis of 
ceRNA networks. It provides a friendly-used framework to process uploaded data, apply 
different strategies to construct ceRNA networks, and investigate the biological and 
medical principles in the networks. It is highly customizable and outputs the results in 
intuitive and interactive. In testing on our data, our platform successfully constructed a 
single-cell ceRNA network and detected a prognostic module biomarker with abundant 
biological functions. Given its design as an open-source Shiny application with a web-
based interface, CeNet Omnibus is an important tool for researchers to systematically 
study the properties of different ceRNA networks and their effects in different biological 
progresses.
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