
RESEARCH ARTICLE Open Access

3-Dimensional facial expression recognition
in human using multi-points warping
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Abstract

Background: Expression in H-sapiens plays a remarkable role when it comes to social communication. The
identification of this expression by human beings is relatively easy and accurate. However, achieving the same
result in 3D by machine remains a challenge in computer vision. This is due to the current challenges facing facial
data acquisition in 3D; such as lack of homology and complex mathematical analysis for facial point digitization.
This study proposes facial expression recognition in human with the application of Multi-points Warping for 3D
facial landmark by building a template mesh as a reference object. This template mesh is thereby applied to each
of the target mesh on Stirling/ESRC and Bosphorus datasets. The semi-landmarks are allowed to slide along
tangents to the curves and surfaces until the bending energy between a template and a target form is minimal
and localization error is assessed using Procrustes ANOVA. By using Principal Component Analysis (PCA) for feature
selection, classification is done using Linear Discriminant Analysis (LDA).

Result: The localization error is validated on the two datasets with superior performance over the state-of-the-art
methods and variation in the expression is visualized using Principal Components (PCs). The deformations show
various expression regions in the faces. The results indicate that Sad expression has the lowest recognition accuracy
on both datasets. The classifier achieved a recognition accuracy of 99.58 and 99.32% on Stirling/ESRC and
Bosphorus, respectively.

Conclusion: The results demonstrate that the method is robust and in agreement with the state-of-the-art results.

Keywords: Facial expression recognition, 3D faces, Multi-point warping, Automatic facial landmark, PCA, LDA

Background
Emotions in human face play a remarkable role when it
comes to social communication. The identification of
expressions by human beings is relatively easy and ac-
curate. However, achieving the same result by machine
remains a challenge in computer vision. Human face is
the part that hosts the most crucial sensory organs. It
also acts as the central interface for appearance, communi-
cation, expression and identification [1]. Therefore, acquir-
ing its information digitally is important to researchers.
This makes landmark-based geometric morphometrics
methods for facial expression a new insight into patterns of
biological emotion variations [2]. Many advances have
been proposed in the area of acquisition of facial landmark
but with several challenges especially in three-dimensional

model. One of the challenges is the insufficient acqui-
sition of 3D facial landmarks. Another challenge is
the lack of homology due to manual annotation. Whereas
complex mathematical analysis has made many works un-
reproducible in 3D facial landmark acquisition.
The use of three-dimensional face images in morpho-

metrics does not only give room to cover a wider area of
human facial region but also retains all the geometric in-
formation of the object descriptors [3, 4]. In modality
comparison, 3D face has higher detection rate than that
of 2D due to its higher intensity modality [5]. Further-
more, during subjection to systematically increasing
pitch and yaw rotation experiment performed in [6],
there was a dropped in expression recognition perform-
ance in 2D while that of 3D remained constant. This is
as a result of occlusion effects substantial distortion in
out-of-plane rotations. More so, in the area of feature
transformation and classification, 3D modality shows a
little improvement with higher confidence over 2D. But
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in terms of depth features, both show the same perform-
ance; and the cost of 3D model in terms of processing is
higher than that of 2D [5].
Below is the summary of the main contribution of this

work:

1) We developed an approach for 3D facial landmark
using multi-points warping. This approach has
extended the computational deformation processing
in [7] to improve the annotation performance using
a less complex pipeline. We used six iterations and
hundred to 5 % exponential decay sliding step in
our method to ensure convergence and optimum
smoothness.

2) Due to the easy detection, pose correction [8] and
invariant to facial expression of nose tip [9],
Pronasale was selected as the most robust and
prominent landmark point. Since the nose tip area
can be approximated as a semi-sphere of the human
face. This determines the location where the sliding
points begin to spread across the facial surface.

3) We have tested the method on two public 3D face
databases (Stirling/ESRC and Bosphorus) to validate
the precision of the annotation of the landmarks
with the state-of-the-art methods.

4) We have validated the usability of our approach
through its application to soft-tissue facial expression
recognition in 3D. By using PCA for feature selection,
we classify six expressions on both datasets. So far, to
the best of our knowledge, sliding semi-landmark
approach to facial landmarking has not been applied
to solve problem relating to soft-tissue facial expres-
sion recognition in 3D.

Section one of this study focuses on the introduction,
section two discusses the related studies. In section

three, the implementation of the methodology is pre-
sented with supporting references where short explan-
ation has been provided. Section four discusses the
results of the implementations. In section five, a more
detailed discussion is presented for the clarification of
the result and comparison with state-of-the-art methods.
The last section concludes the study and presents the
limitations and future direction. Figure 1 shows the
architectural diagram of the application of multi-points
warping to the analysis of facial expression recognition
in 3D.

Literature review
The term “Morphometrics” was coined by Robert E.
Blackith more than 50 years ago, who applied multivari-
ate statistical methods to the basic carapace morphology
of grasshoppers [10]. Morphometrics is the study of
shape variation and its covariation with other variables
[7, 11]. According to DC Adams, et al. [12], morphomet-
rics was traditionally the application of multivariate stat-
istical analyses to a sets of quantitative variables such as
length, width, height and angle. But advances in mor-
phometrics have shifted focus to the Cartesian coordi-
nates of anatomical points that might be used to define
more traditional measurements. Morphometrics exam-
ines shape variation, group differences in shape, the cen-
tral tendency of shape, and associations of shape with
extrinsic factors [13]. This is directly based on the digi-
tized x,y, (z)-coordinate positions of landmarks, points
representing the spatial positions of putatively homolo-
gous structures in two or three dimensions; whereas
conventional morphometric studies utilize distances as
variables [7, 11, 14]. The landmark was described in LF
Marcus, et al. [15] as a point in a bi- or three-
dimensional space that corresponds to the position of a
particular trait in an object. This set of points, one on

Fig. 1 Architecture of the proposed method
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each form, are operationally defined on an individual by
local anatomical features and must be consistent with
some hypothesis of biological homology. But the formal
landmark definitions were provided by anthropometric
studies in [16]. This work by LG Farkas [16] has been
provided as the standard for head and face landmark
definitions through the study of thousands of subjects
from different races. These have produced a large num-
ber of anthropometric studies in the head and face
regions.
A flexible and mathematically rigorous interpolation

technique of D’Arcy Thompson’s transformation grids
[17], called Thin Plate-Spline (TPS), was brought into
morphometrics. This ensures that the corresponding
points of the starting and target form appear precisely in
corresponding positions in relation to the transformed
and untransformed grids [18]. With the application of It-
erative Closest Point (ICP), landmark correspondence
can iteratively be registered in the vicinity of a landmark
with a re-weighted error function. Morphometrically, some
studies have been proposed which computed localization
errors of facial landmarks on Bosphorus dataset. A novel
3D constrained Local Models (CLM) approach facial land-
mark detection in 3D images is proposed in [19], which
capitalizes on the Independent Component Analysis (ICA)
properties in order to define appropriate face Point Distri-
bution Model (PDM) tailored to the mesh manifold modal-
ity. Each sample contains 24 manually annotated facial
landmarks. While the PDM includes 33 landmarks and 14
of them are part of the ground truth set tested on Bos-
phorus database. An automatic method for facial landmark
localization relying on geometrical properties of 3D facial
surface was proposed in [20], working on complete faces
displaying different emotions and in presence of occlu-
sions. The method extracts the landmark one-by-one.
While the geometrical condition remains unchanged, the
method double-checks to ascertain whether pronasale,
nasion and alare are correctly localized, otherwise the
process starts afresh. The method is deterministic and is
backboned by a thresholding technique designed by study-
ing the behavior of each geometrical descriptor in corres-
pondence to the locus of each landmark, experimented on
Bosphorus database.
Though facial landmarks are known to be specific

points with an anatomical meaning which has been
described in Table 1; since a considerable amount of
biological variability cannot be assessed using only ana-
tomical landmarks [21], in order to quantify complex
shapes, sliding semi-landmarks have been developed which
can be placed on surfaces [22] or curves [7, 22]. This ap-
proach generates landmarks that are spatially homologous
after sliding [23] which may be optimized by minimizing
bending energy [24, 25] or Procrustes distance [26, 27].
Since sliding semi-landmarks have not been implemented

in analysing facial expression for soft-tissue in 3D, we have
decided to investigate the expression recognition using the
application of multi-points warping approach.
Emotion or expression recognition using facial analysis

has been the current trend in computer vision but the
diversity of human facial expression has made the emotion
recognition somehow difficult [28]. Moreover, asides un-
identifiable lighting challenges, the fairly significant differ-
ences in age, skin colour and appearance of individual
placed additional burden on machine learning. When face
subjects are transformed into feature vectors, any classifier
can be used for expression recognition such as neural
network, support vector machines, random forest, linear
discriminant analysis, etc. But the uniqueness is the appli-
cation of facial image information [29]. Due to the sensi-
tivity of the change in head posture and illumination, the
use of static 2D image is unstable for expression recogni-
tion. The use of 3D does not only play safe in the area of
illumination and pose change but also enables the use of
more image information. This is because facial expres-
sions are generated by facial muscle contractions. It results
in temporary facial deformations in both texture and facial
geometry which is detectable in 3D and 4D [30]. The same
successes achieved in 3D face recognition could still be
naturally adopted for expression recognition [31]. Ac-
cording to M Pantic and LJ Rothkrantz [32] on facial
expression analyser, facial expression follows the general
properties for solving computer vision problems: face de-
tection, landmark localisation, recognition or classifica-
tion. As 3D databases are becoming more and more
available in the computer vision community, different
methods are being proposed to tackle the challenges fa-
cing facial expression recognition. Most of these studies
are based on six fundamental expression classes or less:
anger, fear, disgust, sadness, happiness, and surprise [33].
Many also focus on the use of local features which
retrieves the topological and geometrical properties of the
face expression [29, 34].
Linear discriminant analysis and many other classifiers

have been used for classification in many face expression

Table 1 Procrustes ANOVAs for facial shape on Stirling and
Bosphorus datasets

Effect SS MS DF F P

Stirling

Expression 0.178563 2.39E-05 7465 8.36 <.0001

Individual 1.02071 2.86E-06 356,827 1.86 <.0001

Error 0.041283 1.54E-06 26,874

Bosphorus

Expression 0.308295 4.13E-05 7465 16.4 <.0001

Individual 0.65404 2.52E-06 259,782 0.72 1

Error 0.09455 3.52E-06 26,874
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recognitions. A learn sparse features from spatio-temporal
local cuboids extracted from human face was proposed in
[35]. This has application of conditional random field clas-
sifiers for training and testing the model. In H Tang and
TS Huang [36], similar distance feature was explored
using automatic feature selection technique. This was
done by maximizing the average relative entropy of mar-
ginalized class-conditional feature distributions. Using 83
landmarks, less than 30 features were selected. The fea-
tures distance are subtracted from the features of the
expressive scan on the neutral scan which they classified
by Naive Bayes, Neural network and Linear Discriminant
Analysis on BU-3DFE dataset. To approximate the con-
tinuous surface at each vertex of an input mesh, YL Wang
Jun, Wei Xiaozhou, Sun Yi [6] proposed a cubic-order
polynomial functions. It estimated coefficient at a particu-
lar vertex, formed the weingarten matrix for the local sur-
face path. The eigenvectors and eigenvalues of the matrix
could be derived by normal direction along the gradient
magnitude. The facial region was described using 64 land-
marks to overcome the lack of correspondence between
the meshes. Their best performance was obtained using
LDA; no rigid transformation is required due to the geo-
metrical invariance of curvature-based features. To deal
with issue of deformation of facial geometry which results
from expression changes, C Li and A Barreto [37] pro-
posed a framework that is composed of three subsystems:
expressional face recognition system, neutral face recogni-
tion system and expression recognition system. This was
tested on 30 subjects and was classified using LDA, but
used only two expression groups.
H Li, et al. [38] proposed a novel method using fine-

grained matching of 3D key-point descriptors by extend-
ing the SIFT-like matching framework to mesh data. To
account average for reconstruction error of probe face
descriptors, multi-task sparse representation algorithm
was used. The approach was evaluated on Bosphorus
database for expression recognition, pose invariant and
occlusion. A comprehensive comparative evaluation was
performed on Gavab, UND/FRGC, and Bosphorus in
[39] by using local shape descriptor. The method cap-
tured distinguishing traits on the face by extracting 3D
key-points. Similarity expression on faces was evaluated
by comparing local shape descriptors across inlier pairs
of matching key-points between gallery scans and probe.
Using a Key-point-based Multiple Triangle Statistics
(KMTS) with a Two-Phase Weighted Collaborative Rep-
resentation Classification (TPWCRC), a robust to partial
data, large facial expression and pose variations was pro-
posed in [40]. The method was experimented on six da-
tabases including Bosphorus which achieved a promising
result on occlusions, pose variation and expressions. A 3D
face augmentation technique was proposed in [41], which
synthesizes a number of different facial expressions from a

single 3D face scan. The method showed excellent per-
formance on BU-3DFE, 3D-TEC, and Bosphorus datasets,
without application of hand-crafted features. A novel geo-
metric framework for analysing 3D faces was proposed in
[42] with the goals of averaging face shapes and compar-
ing matching. The method presented facial surfaces by
radial curves emanating from the nose tips, which was
experimented on FRGCv2, GavabDB, and Bosphorus.
Furthermore, in order to address the issue of 2D coun-

terpart and the handling of large intra-class and inter-
class variability for human facial expression, W Hariri,
et al. [43] proposed the use of covariance matrices of
descriptors rather than using the descriptors themselves.
Their work focused on application of manifold-based
classification which was tested on BU-3DFE and Bos-
phorus databases. While extended local binary patterns
was proposed in [44] for facial expression recognition
from 3D depth map images where the results on Bos-
phorus showed better performance by the combination
of 3D and 3D curvature.

Experiment results
After the step-by-step methods in facial surface deform-
ation of semi-landmark, the error assessment, the ana-
lysis, visualisation and classification of the experiment
were performed using MorphoJ 1.06d [45], PAST 3.0
[46] and R 5.1 [47].

Landmarks significance
The use of landmarks evolves when locating biological
or anatomical features on human faces. Its validity is
drawn from the morphometric analysis which depends
on the biological justification for designation of the land-
marks as stated in [3]. But not all the facial anatomical
landmarks always indicate a meaningful significant
measure. On Stirling dataset, the overall landmarks are
tested using one way ANOVA to see the significant of
the variation on each expression group, each group hav-
ing the same degree of freedom (df = 1499). Angry: F =
133.9, p < 0.00001; Disgust: F = 120.9, p < 0.00001; Fear:
F = 132.9, p < 0.00001; Sad: F = 130.2, p < 0.00001; Happy:
F = 184.3, p < 0.00001; and Surprise: F = 117, p < 0.00001.
Subsequently, same test was computed for Bosphorus on
each expression group, each group having the same de-
gree of freedom (df = 1499). Angry: F = 2507, p <
0.00001; Disgust: F = 1552, p < 0.00001; Fear: F = 3899,
p < 0.00001; Sad: F = 2543, p < 0.00001; Happy: F = 2435,
p < 0.00001; and Surprise: F = 1582, p < 0.00001. Further-
more, we conducted PERMANOVA (Non-Parametric
MANOVA) which is a non-parametric test of the signifi-
cant difference between the expression groups, based on
the distance measured [48] with F = 7.76 and P = 0.0001
for Stirling dataset and F = 115.5 and P = 0.0001 for Bos-
phorus dataset. The large positive of F value indicates
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that there is a significant difference between the expres-
sion groups.

Procrustes ANOVA
For the assessment of localization errors of the land-
marks; the deviations of each landmark is obtained by
simply calculating the amount of displacement from the
average position calculated from all digitization and the
variation accounts for the smallest portion of the total
variation using Procrustes ANOVA. The localization er-
rors accounts for only 0.041 and 0.095 for Stirling and
Bosphorus, respectively, from the total variation (Table 1).

PCA results
The PCA of the total sample of Stirling yielded 239PCs
while Bosphorus yielded 179PCs. When each expression
group was separately computed, each yielded 39PCs and
29PCs for Stirling and Bosphorus, respectively, all with
non-zero variability. Using a broken stick approach of
PCA selection [17], only first 2PCs in each group
accounted for more than 58% of the shape variation for
Stirling while only the first 2PCs accounted for more than
70% for Bosphorus. For Stirling: Angry (PC1: 39.11%, PC2:
18.99%), Disgust (PC1: 38.50%, PC2: 15.65%), Fear (PC1:
41.52%, PC2: 17.51%), Sad (PC1: 41.78%, PC2: 17.51%),
Surprise (PC1: 43.71%, PC2: 15.69%), and Happy (PC1:
42.13%, PC2: 16.96%). For Bosphorus: Angry (PC1:
76.41%, PC2: 8.96%), Disgust (PC1: 55.82%, PC2: 19.88%),
Fear (PC1:56.73%, PC2: 13.28%), Sad (PC1: 75.71%, PC2:

8.99%), Surprise (PC1: 77.54%, PC2: 7.95%), and Happy
(PC1: 66.42%, PC2: 9.09%). For the sake of visualisation,
we only presented the deformations of the first PC which
accounted for the largest variation after Procrustes fit in
each expression group (Fig. 2) as 3D vectors away from
the mean configuration [11].

Classification
We used LDA to classify the expression variations of
240 sample faces of six different classes using 135 se-
lected PCs in Stirling dataset and 180 sample faces of six
different classes using 98 selected PCs in Bosphorus
dataset. Since LDA is easy to implement and no tuning
parameters or adjustment required which has success-
fully been applied to many previous studies [49, 50], etc.
By using leave-one-out cross validation, the data was
learned with 70% training and 30% testing. A call to
LDA returned the prior probability of each expression
class, the group means for each covariate, the coefficient
for each linear discriminant (for the six classes, we have
five linear discriminants) and the singular values that
produced the ratio of the within-class and between-class
standard deviation on the first two LDs variables returned
the proportions of the variance by Stirling (LD1 = 36.23%,
LD2 = 29.57%) and by Bosphorus (LD1 = 36.23%, LD2 =
29.57%) (Fig. 3). The confusion matrixes for both Stirling
and Bosphorus are also produced in Table 2 and Table 3,
respectively. These indicate that only Sad expression is
slightly misclassified with 2.44% for Fear expression in

Fig. 2 Visualisation of the expression group. PC deformation and the percentage variance of selected principal components, showing only the
first principal component which accounted for the largest variation on both datasets
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Stirling dataset while only the same Sad expression is
slightly misclassified with 4.55% for Surprise in Bosphorus
dataset.

LDA model performance
In this scheme, the dataset was divided into 70% training
and 30% testing for both Stirling and Bosphorus. The
scheme performance was measured using precision,
recall and specificity.

Sensitivity=Recall ¼ TP= TP þ FNð Þ � 100 ð1Þ
Specificity ¼ TN= FP þ TNð Þ � 100 ð2Þ

Accuracy ¼ TP þ TN= TP þ FP þ TN þ FNð Þ
� 100 ð3Þ

Where TP is the true positive, TN is true negative, FP
is false positive, FN is false negative. The accuracy shows
overall prediction performance; sensitivity is the capacity
of features to accurately recognize an expression while
specificity is the feature capacity to recognise a true

expression. The classifier produced the percentage preci-
sion, sensitivity, specificity and accuracy of 99.70, 99.60,
99.90 and 99.58%, respectively for Stirling dataset and
99.20, 99.30, 99.90 and 99.32%, respectively for Bos-
phorus dataset. The performance metrics are displayed
in Table 4, showing precision, recall and specificity.

Discussions
The Procrustes ANOVA suggests a modest but appre-
ciable variation in facial shape. Shape differences are
statistically significant even after averaging faces within
expression. Small localization errors for both datasets
show that the landmarks can be annotated with precision
using the proposed method. Table 5 demonstrated super-
iority of our method on localization error when compared
with state-of-the-art methods. Though, many approaches
are available in addressing measurement error. Discussing
such at length is beyond the scope of this study, more and
extended details can be found in [51]. The expression rec-
ognition accuracy demonstrated superiority when com-
pared with state-of-the-art methods (Table 6 and Table 7).

Fig. 3 Scatterplot of Expression group. Separability and distribution of expression group using scatter plot. a Stirling dataset. b Bosphorus dataset

Table 2 Confusion matrix for six group facial expression
recognition on Stirling dataset

% Ang Dis Fea Sad Hap Sur

Ang 100 0 0 0 0 0

Dis 0 100 0 0 0 0

Fea 0 0 100 0 0 0

Sad 0 0 2.44 97.56 0 0

Hap 0 0 0 0 100 0

Sur 0 0 0 0 0 100

Table 3 Confusion matrix for six group facial expression
recognition in Bosphorus dataset

% Ang Dis Fea Hap Sad Sur

Ang 100 0 0 0 0 0

Dis 0 100 0 0 0 0

Fea 0 0 100 0 0 0

Hap 0 0 0 100 0 0

Sad 0 0 0 0 95.45 4.55

Sur 0 0 0 0 0 100
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There is agreement and consistency in our work with
most of the state-of-the-art studies, which carried out
similar work on Bosphorus dataset using different methods.
In [52], a differential evolution based optimization was pre-
sented by first transforming 3D faces in to 2D plane using
conformal mapping and selecting optimal features using
Speed Up Robust Features (SURF). The method was tested
on Bosphorus dataset and classified by SVM containing six
basic expressions. The results indicated that Sad expression
has the lowest recognition accuracy of 67.50%. The use of
covariance matrices of descriptors proposed in [43] tested
on Bosphorus dataset indicted that Sad expression has the
lowest recognition rate of 79.75%. Though both results are
in agreement with our study, yet our method performed
better in the Sad expression with recognition rate of 95.45%
on Bosphorus dataset.
The scatter plot of the expressions along the first two

linear discriminants produced maximal separation be-
tween all groups; these linear discriminants are linear
combinations of the original variables as in principal
component analysis, which indicates amount of variation
explained by these linear discriminants. The classifier
classified the expression groups with accuracy of 99.58
and 99.32% for both Stirling and Bosphorus, respectively.
Though some Sad faces were misclassified as Fear faces
in Stirling dataset. This indicates that it is possible to
misrepresent a Sad expression with Fear expression.
While Sad faces were misclassified as Surprise in Bos-
phorus dataset. This also indicates that it is possible to
misrepresent a Sad expression with Surprise expression.
In the visualization of the expression using PCs, the de-
formations show various expression regions in the faces.

In Stirling dataset, Surprise shows more expression in
mouth region, Happy shows more expression in the
cheek region, Angry and Disgust show more expression
both in mouth and eyes regions. Only Sad seems to be
very close to the neutral expression but slightly show
expression in the whole facial regions. Whereas in Bos-
phorus dataset, Surprise shows more expression in cheek
region, Sad and Fear show more expression both in
mouth and eyes regions, Angry show more expression in
the cheek region. While Happy and Disgust show more
expression in the whole facial region.
To the best of our knowledge, there is currently no facial

landmark annotation analysis and expression recognition
performed using Stirling/ESRC dataset. Therefore, this is
the first facial expression study using Stirling/ESRC dataset.
According to T Fang, et al. [29, 53] who reported that add-
itional 3D datasets in expression recognition with different
modalities, plus some examples of spontaneous and natural
behaviour captured in 3D are needed for researchers to
evaluate their methods. We believe that, in the future this
dataset will be used for many research benchmarks espe-
cially in the field of facial expression in 3D.
We strongly advise not to rely on broken stick of scree

plot decision on PCA when it comes to classification or
machine learning, further data wrangling must be per-
formed. Note also that the features were never standar-
dised during learning as the data has already been
Procrustes-fitted in PAST software, as covariance matrix
is always affected when such happens. Whereas there is
no effect on covariance matrix for mean centering and
variables scaling.

Conclusions
This method combines pragmatic solutions to configure
an optimized pipeline for high-throughput multi-points
facial signature in three-dimensional. Only the reference
surfaces and curves were warped to each sample faces
using automatic warping approach and the errors were
assessed using Procrustes ANOVA. The result acquired
was further used in the selection of features for classifica-
tion using PCA; and LDA was used to classified

Table 4 Performance metrics reports for facial expression on Stirling and Bosphorus dataset

Stirling Dataset Bosphorus Dataset

Exp Precision Sensitivity Specificity Precision Sensitivity Specificity

Ang 1 1 1 1 1 1

Dis 1 1 1 1 1 1

Fea 1 0.975 1 1 1 1

Sad 0.976 1 0.995 0.954 1 0.992

Hap 1 1 1 1 1 1

Sur 1 1 1 1 0.96 1

Avg/Total 0.997 0.996 0.999 0.992 0.993 0.999

Table 5 Comparison of mean localization error with state-of-
the-art method on Bosphorus datasets

Author Method Landmark Mean error (mm)

[19] CLM-ICA-GGD 33 2.71

[20] Geometric Descriptor 13 4.75

This work Multi-points warping 500 0.094
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expressions. Such a high-throughput and accurate pheno-
typic facial data like this is not only valuable for facial ex-
pression recognition but also in forensic studies of human
facial morphology, sexual dimorphism, anthropology, dis-
ease diagnosis and prediction, statistical shape or image
analysis, face recognition and age estimation. In the feature,
the method can be further improved by automatically
applying the reference model to all the targets at once
without applying to each target one after the other. Fur-
thermore, ViewBox 4.0 does not work well in the annota-
tion of eyeball when the eyes are opened. Though it does
not affect the annotation and measurement of endo-
canthion and exocanthion as they lie at the tissue edges of
the eyeballs; this will be addressed in the future studies.

Methods
Dataset & Description
The first dataset is acquired from Stirling/ESRC 3D face
database captured by a Di3D camera system [54]. The
image format used for this study is in wavefront obj file
containing 240 faces which were randomly selected from
different expression positions: Angry (40), Disgust (40),
Fear (40), Happy (40), Sad (40), and Surprise (40). This is
intended to facilitate research in sexual dimorphism, face
recognition, facial expression recognition and perception.
The dataset is being used as a test set for a competition
on 3D face reconstruction from 2D images, with the 3D
scans acting as ‘ground truth’ in IEEE conference. The
second dataset is the Bosphorus database, which was

intended for research on 3D and 2D human face process-
ing tasks. A total of 180 subjects are rondomly selected for
this study: Angry (30), Disgust (30), Fear (30), Happy (30),
Sad (30), and Surprise (30). The dataset was acquired
using structured-light based 3D system. The subjects were
instructed to sit at a 1.5 m distance with sensor resolution
in x, y and z depth of 0.3 mm, 0.3mm, and 0.4mm, re-
spectively, with a high-resolution color texture [5, 55].

Creating template mesh
The template mesh was created by manually locating six-
teen anatomical points on a 3D face (Fig. 4) with neutral
expression called fixed points according to facial landmark
standard [56] (details in Table 8). The anchor landmarks
were not subjected to sliding but were used for establishing
the warping fields that would be used for minimizing the
bending energy. Due to the easy detection, pose correction
[8] and invariant to facial expression of nose tip [9], Prona-
sale has been selected as the most robust and prominent
landmark point. Since the nose tip area can be approxi-
mated as a semi-sphere of the human face. This is where
the sliding points begin to spread across the facial surface.
Using this anchor point (Pronasale), 484 semi-landmarks
were automatically generated overlapping on Pronasale
showing in blue color. These were first randomly placed on
the facial mesh before they were uniformly distributed on
the selected facial surface using the locational position of
the anchor anatomical points with 1.5mm radius to accom-
modate all the 500 points (see Additional file 1: Table S1

Table 6 Comparison of classification rates with state-of-the-art method on Stirling and Bosphorus datasets

Author Method Dataset Classifier Accuracy (%)

[39] Local shape descriptor Bosphorus RANSAC 93.40

[40] KMTS Bosphorus TPWCRC 98.90

[41] Face augmentation technique Bosphorus CNN 99.20

[42] Geometric framework Bosphorus – 87.06

[38] Extended SIFT-like matching Bosphorus – 98.80

[6] 3D-PSFD – LDA 83.60

[52] Differential Evolution based optimization Bosphorus SVM 84.00

[44] Extended LBP Bosphorus SVM 76.98

[43] Covariance matrices of descriptors Bosphorus SVM 86.17

This work Multi-points warping Stirling/ESRC LDA 99.58

Bosphorus LDA 99.32

Table 7 Comparison of classification rates by each expression with state-of-the-art method on Bosphorus datasets

Author Hap (%) Fea (%) Dis (%) Ang (%) Sad (%) Sur (%) Overall (%)

[52] 97.50 86.25 90.00 82.50 67.50 83.75 84.10

[43] 93.00 81.00 85.25 86.25 79.75 90.50 86.17

This work 100 100 100 100 95.45 100 99.32
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Fig. 4 A three-dimensional mesh template with the location of the prominent point at the center of the face for pose-invariant correction. The
16 fixed anatomical landmarks are shown in red color. The blue color on the Pronasale indicates the point where the semi-landmarks begin the
sliding process

Table 8 Anchor anatomical points and descriptions

No Anchor Landmarks 3D Notation Description

1 Endocanthion left enl Left most medial point of the palpebral fissure, at the inner commissure of the eye

2 Exocanthion left exl Left most lateral point of the palpebral fissure, at the outer commissure of the eye

3 Exocanthion right exr Right most lateral point of the palpebral fissure, at the outer commissure of the eye

4 Endocanthion right enr Right most medial point of the palpebral fissure, at the inner commissure of the eye

5 Sellion se Deepest midline point of the nasofronal angle

6 Pronasale pr The most anteriorly protruded point of the apex nasi

7 subnasale su Median point at the junction between the lower border of the nasal septum and the philtrum area

8 Alare left all Left most lateral point on the nasal ala

9 Alare right alr Right most lateral point on the nasal ala

10 Cheilion left chl Left outer corners of the mouth where the outer edges of the upper and lower vermilions meet

11 Cheilion right chr Right outer corners of the mouth where the outer edges of the upper and lower vermilions meet

12 Labiale superius ls Midpoint of the vermilion border of the upper lip

13 Labiale inferius li Midpoint of the vermilion border of the lower lip

14 Gnathion gn Median point halfway between pogonion and menton

15 Obelion left obl Left median point where the sagittal suture intersects with a transverse line connecting parietal foramina

16 Obelion right obr Right median point where the sagittal suture intersects with a transverse line connecting parietal foramina
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and Additional file 2: Table S2) (Fig. 5). To quantify the
morphological data of a complex, three-dimensional trait of
both reference and target shapes, we have used geometric
morphometric tools based on a landmark-based method-
ology in [57–61] and the landmark acquisition
process was fully implemented in ViewBox 4.0 [61].

Multi-points warping
The geometry of curves and surfaces is easier in 2D or
3D but it is not so easy to define semi-landmarks for
non-planar surfaces in 3D [62]. This is because they are
not guaranteed to be homologous after first placement.
This could alternately be achieved by subjecting the
semi-landmark to sliding in the direction that reduces
shape variance. This closely positions the points on the
same locations in the 3D space. The sliding step is im-
portant as it places the landmarks in positions where
they correspond better to each other across individuals
[26]. The semi-landmarks were allowed to slide on the
curves and surface mesh of each target using TPS warp-
ing of the template. This positions the reference points
on the target facial mesh by minimizing the bending
energy.
According to FL Bookstein [18], physical steel takes a

bending form with a small displacement. This is because
the function (x, y, z) is the configuration of lowest phys-
ical bending energy which is consistent with the given
constraints. In this 3D face deformation, the transform-
ation of TPS was done mathematically by interpolation
of smooth mapping of h from ℝ3→ℝ3 which is a selec-
tion of a set of corresponding points {ΡRi,ΡTi}, i = 1, …, N
on the reference object (template) and target (subject)
faces minimizing the bending energy function Ε(h) using
the following interpolation conditions [7, 18, 63]:

Ε hð Þ ¼ ∭ℝ3ð ∂2h
∂x2

� �2

þ ∂2h
∂y2

� �2

þ ∂2h
∂z2

� �2

þ

2
∂2h
∂xy

� �2

þ2
∂2h
∂xz

� �2

þ2
∂2h
∂yz

� �2

Þdxdydz ð4Þ

s:t: h ΡTið Þ ¼ ΡRi; i ¼ 1;…;M

where ΡTi is the target object and ΡRi is the reference ob-
ject of the sets of corresponding points, h is the bending
energy function that minimizes non-negative quantity of
the interpolation of the integral bending norm or the in-
tegral quadratic variation Ε(h). TPS now form a decom-
position of each component into affine and non-affine
components such that,

h Ρhð Þ ¼ Ψ Ρhð ÞΚþ ΡhΓ ð5Þ

where Ρh is the homogeneous coordinate points on the
target 3D face, and Ψ(Ρh) = (Ψ1(Ρh),Ψ2(Ρh),…,ΨM(Ρh))
is a 1 ×M kernel vector of TPS with the form:

Ψw Ρhð Þ ¼ ∥Ρh−ΡTw∥ ð6Þ

while Κ is a M × 4 non-affine warping coefficient matrix,
and Γ is homogeneous affine transformation of 4 × 4
matrix. The energy function is minimized to find
optimum solution in (4) if the interpolation condition in
(1) is no longer necessary.

E β;K ;Ψð Þ ¼ 1
M

XM

J¼1
∥h ΡTj

� �
−ΡRj∥þ βE hð Þ ð7Þ

The interpolation conditions in (1) are satisfied if the
smoothing regularization term β is zero; Γ and Κ are
TPS parameters obtained by solving the linear equation:

Fig. 5 A three-dimensional mesh template with 500 landmarks for reference model. Showing 16 fixed anatomical points and 484 semi-landmarks
with 1.5 mm radius. a Frontal skewed view. b Profile view
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Ψ ΡR

ΡTR 0

� �
K
Γ

� �
¼ ΡT

0

� �
ð8Þ

Ψ is a M ×M matrix with the component Ψwl = ∥ ΡTw
− ΡTl ∥ and ΡR is a M × 4 matrix with each row being the
homogeneous coordinate of the point ΡRi, i = 1, …, M.
Using (2), the target facial mesh ΡTi is deformed to the
reference mesh ΡRi. Applying the bending energy, the
process was iterated specified number of cycles (6) to
have optimum sliding of the points on the facial surface
which gives points relaxed. This changed the bending
energy from initial value Ei to final value Ef after a
complete iteration. This makes the semi-landmarks to
be treated the same as homologous landmarks with re-
spect to downstream analyses. Because the warping may
result in points that do not lie directly on the facial sur-
face on the target mesh, the transferred points were pro-
jected on the closest point on the mesh surface. This
was done using Iterative Closest Point (ICP) method [8],
which aims to iteratively minimize the mean square
error between two point sets. If the distance between the
two points is within the acceptable threshold, then the
closest point is determined as the corresponding point
[64]. The homologous landmark warping HKΓ after a six
complete iterations is, therefore:

HKΓ ¼ E f −i
K
Γ

� �
ð9Þ

Where

K
Γ

� �
¼ Ψ ΡR

ΡTR 0

� �−1
ΡT
0

� �
; ð10Þ

is the linear TPS equation obtained during deformation
surface of the target mesh to the reference mesh before
convergence was finally reached and Ef − i = Ef − Ei of six
complete iterations. The first iteration showed a partial
distribution of sliding points on the target surface mesh
(Fig. 6). This was automatically repeated until optimum
homologous result was achieved using exponential decay
sliding step of hundred to 5 %. During the relaxation of
the spline, the semi-landmarks slid along the surface and
the curve tangent structures, and not on the surfaces or
the curves which reduced the computational effort. This
makes the minimization problem become linear, as slid-
ing along the tangents lets the semi-landmarks slip off
the data [22]. The target surface mesh is now treated as
homologous points (Fig. 7). Note that we did not build a
new deformable mathematical equation from scratch but
extended the standard deformable method that has been
established in [7].
In assessing error, 18 subjects (three from each expres-

sion) from each dataset were randomly selected; each
one belonging to a different individual, distinct from the
template subject. Each was digitized twice following the
same method to account for digitization error. The re-
sults were analyzed using Procrustes ANOVA [65, 66]
which has been implemented in morphometrics to
analyze measurement error in MorphoJ [67–69]. This is
done by the minimization of the squared sum of the dis-
tance of all objects and the consensus configuration [51].

Fig. 6 Partially warped 500 sliding point on target facial surface. a Angry. b Disgust. c Fear. d Sad. e Surprise. f Happy
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Feature selection with PCA
The features were selected by dimensionality reduction
using Principal Components Analysis (PCA). Here, the
data is represented as matrix M = [m1,m2,…mn], where
mi is the ith column vector representing the ith training
data. The covariance matrix K = cov (M) =MMT, we then
carried out eigenvalue decomposition on the matrix M to
produce highest ranking eigenvectors known as Principal
Components (PCs) with the help of their corresponding
eigenvalues. We chose x eigenvectors (p1, p2,…, pn) that
best described the data with projection onto the space

spanned by these vectors such that X ¼ ½p1; p2;…; pn�Tm ;
where X is the n dimensional vector used as features dur-
ing the training and classification process. The total PCs
computed during reduction process is 239PCs and
179PCs for Stirling and Bosphorus, respectively (see Add-
itional file 3: Table S3 and Additional file 4: Table S4).
Among these, only 135PCs from Stirling and 98PCs from
Bosphorus which have been observed to have the highest
ranking eigenvectors were selected for classification using
Bartlett’s test for the first principal component method
[70, 71]. In other to establish total PCs that expressed
meaningful variation in each expression group, a broken
stick was used [70, 72]. This is based on the eigenvalues
from random data of the principal components.

Linear discriminant analysis (LDA)
The method used multi-class LDA to classify the fea-
tures. This is one of the supervised learning methods for

classification. It operates by maximizing the ratio of
between-class variance to that of within-class variance in
a dataset, thereby guaranteeing maximum separability. It
has been widely applied to many applications such as
microarray data classification [73], face recognition [74],
and image retrieval [75]. LDA comes with singularity
problem [76] which has given room to many extensions
to LDA such as regularized LDA [77], pseudo-inverse
LDA [78], and subspace LDA [79]. In order to overcome
the singularity issue of classical LDA, PCA was applied
as an intermediate dimensionality reduction.
Computing LDA for multi-class is slightly different

from two-class. The multi-class requires the application
of multiple discriminant analysis [80]. The maximization
of ratio of within-class scatter to between-class scatter is
done among the competing classes [81]. The multi-class
can also be called Canonical Variates Analysis (CVA)
but the major assumption for LDA is that the variance–
covariance matrices are all equal [82]. To simplify the
computational process, we first computed the within-
class matrix for n classes (n = 6 for this study) such
that:

Σ̂w ¼ S1 þ…þ Sn

¼
Xn

i¼1

X
Χ∈ci

X−Xi
� �

X−Xi
� �0 ð11Þ

followed by between-class matrix, given by:

Σ̂b ¼
Xn

i¼1
mi Xi−X

� �
Xi−X
� �0 ð12Þ

Fig. 7 Complete and homologous 500 warped points on target mesh. a Angry. b Disgust. c Fear. d Sad. e Surprise. f Happy
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where mi is the number of samples for each class, Xi is
the mean vector for each class and X is the summed
mean vector computed as X ¼ 1

m

Pn
i¼1miXi:

By obtaining the within-class and between-class matri-

ces (Σ̂w and Σ̂bÞ, we now obtained the transformation Φ
by solving generalized eigenvalue problem:

Σ̂bΦ ¼ λ Σ̂wΦ ð13Þ
Once the transformation Φ is solved, the classification

is then performed based on distance metrics in trans-
formed space. Here, Euclidean distance is applied such
that:

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
xi−yið Þ2

q
ð14Þ

and cosine measure

d x; yð Þ ¼ 1−

P
ixiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ix

2
i y

2
i

p ; ð15Þ

we arrive at a new instance z, which classified into argmin
dðzΦ;Xk ΦÞ; where Xk is the centroid of k-th class.
The advantage of multiple discriminant analysis over sin-
gle discriminant analysis is that it produces an elegant
classification with the use of discriminant features [81].
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