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Abstract

Background: Electron transport chain is a series of protein complexes embedded in the process of cellular
respiration, which is an important process to transfer electrons and other macromolecules throughout the cell. It is
also the major process to extract energy via redox reactions in the case of oxidation of sugars. Many studies have
determined that the electron transport protein has been implicated in a variety of human diseases, i.e. diabetes,
Parkinson, Alzheimer’s disease and so on. Few bioinformatics studies have been conducted to identify the electron
transport proteins with high accuracy, however, their performance results require a lot of improvements. Here, we
present a novel deep neural network architecture to address this problem.

Results: Most of the previous studies could not use the original position specific scoring matrix (PSSM) profiles to
feed into neural networks, leading to a lack of information and the neural networks consequently could not
achieve the best results. In this paper, we present a novel approach by using deep gated recurrent units (GRU) on
full PSSMs to resolve this problem. Our approach can precisely predict the electron transporters with the cross-
validation and independent test accuracy of 93.5 and 92.3%, respectively. Our approach demonstrates superior
performance to all of the state-of-the-art predictors on electron transport proteins.

Conclusions: Through the proposed study, we provide ET-GRU, a web server for discriminating electron transport
proteins in particular and other protein functions in general. Also, our achievement could promote the use of GRU
in computational biology, especially in protein function prediction.

Keywords: Electron transport chain, Cellular respiration, Recurrent neural network, Convolutional neural network,
Position specific scoring matrix, Transport protein, Deep learning, Protein function prediction, Gated recurrent units,
Web server

Introduction
Proteins accomplish a large diversity of functions in-
side the various compartments of eukaryotic cells. It
is therefore not surprising that protein function pre-
diction is one of the well-studied topics in computa-
tional biology and it attracts the attention of
numerous researchers conducting their works. There
has been a lot of attention given to enhancing the
predictive performance of protein functions using a
variety of computational techniques. The two most
common solutions to address it are namely, finding
the best feature sets and using neural networks for
prediction. For example, some researchers only used

traditional neural networks with a feature set such as
position specific scoring matrix (PSSM) [1], biochem-
ical properties [2], and pseudo-amino acid compos-
ition (PseAAC) [3]. Nowadays, according to the
development of deep learning, many researchers in
proteomics have attempted to apply it in predicting
protein functions. There have been a lot of works on
applying deep neural networks in protein function
prediction, such as predicting protein secondary
structure [4], efflux protein [5], and Rab GTPases
protein [6]. Unfortunately, most of the results have
not made full use of the advantages of PSSM profiles
in deep neural networks. In all of the previous works,
the PSSM profiles have been summed up to a fixed
length in order to be fed into neural networks, but in
the process, the order information is lost and thus af-
fects performance results. In our work, we wish to
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present an innovative approach to fill this gap through the
incorporation of 1D convolutional neural network (CNN)
and gated recurrent unit (GRU). We applied our tech-
niques in the prediction of the function of electron trans-
port protein, which is one of the most essential molecule
functions in cellular respiration.
Cellular respiration is the mechanism for creating

adenosine triphosphate (ATP) and it aids cells in
obtaining energy from food molecules (i.e. sugar).
Figure 1 indicates the process of cellular respiration.
The goal of cellular respiration is to accumulate elec-
trons from organic compounds to create ATP, which
is used to provide energy for most cellular reactions
[7]. An electron transport chain is a pathway to store
and transfer electrons in cellular respiration. It can be
categorized into five protein complexes: complex I, II,
III, IV, and V (ATP Synthase). Each complex consists
of different electron carriers and carries out various
molecular functions [8]. Electrons donate to complex
I from nicotinamide adenine dinucleotide (NADH – a
coenzyme found in all living cells) and sequentially
pass to complex II, III, IV, and V. During the move-
ment, the hydrogen ions, or protons, pump across the
membrane and release water molecules (H2O).
Complex V uses the energy created by the pumping
process to convert phosphorylate adenosine diphos-
phate (ADP) to ATP. Numerous types of electron
transport proteins have been identified in humans
and a series of studies have also indicated that a
functional loss of specific complex in electron trans-
port protein resulted in the complication of many

diseases [9–13]. Thus, identification of electron
transport proteins helps biologists better understand
molecular functions and possibly curb the prevalent
issue of human disease. Moreover, it is imperative to
develop some computational techniques to address
the issue.
Recently, there have been some published works on

identifying electron transport proteins through the use
of computational techniques because of their essential
role in cellular respiration, energy production, and hu-
man diseases. For instance, one of the most popular
studies is Transporter Classification Database (TCDB)
[14]. It is a web-accessible, curated and relational data-
base containing the sequence, classification, structural,
functional and evolutionary information about transport
systems including electron transport proteins from a var-
iety of living organisms. Next, Gromiha [15] discrimi-
nated the function of electron transport proteins from
membrane proteins using machine learning techniques.
According to Chen [16], the transport targets were di-
vided into four types, including electron transporters to
do prediction and analysis. In the experiment, they
analyze this using amino acid composition (AAC), di-
peptide composition (DPC) and PSSM profiles. Mishra
et al. [17] also identified electron transport proteins from
transport proteins by using PSSM profiles and biochem-
ical properties. Furthermore, Le et al. [18] used radial
basis function networks and biochemical properties in
identifying the electron transport proteins and their
complexes with high accuracy. Le et al. [19] also imple-
mented the ET-CNN, which is a web server that used

Fig. 1 The process of cellular respiration. The goal of cellular respiration is to accumulate electrons from organic compounds to create ATP,
which is used to provide energy for most cellular reactions
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deep CNN to address this problem with improved
accuracy.
Notwithstanding this, previous studies can only be

considered as the first step towards a more profound
understanding of electron transport proteins. Numer-
ous studies have used PSSM profiles to solve the
problem; however, they did not find a solution to in-
put all the PSSM profiles into neural networks. A
new approach is therefore needed to address this
issue. We thus present a new deep learning architec-
ture which uses 1D CNN, GRU, and PSSM profiles to
discriminate electron transport proteins. To our
knowledge, no previous computational biology re-
search has specially incorporated the CNN, GRU, and
PSSM profiles in identifying protein function. The
hybrid of CNN and GRU based recurrent neural
network (RNN) has been presented in some
sequence-based learning tasks, such as protein sec-
ondary prediction [20], discovering complex biological
rules to RNA protein-coding potential [21], and
quantifying the function of DNA sequences [22].
However, they applied this network on original se-
quences, which cannot take advantages of advanced
biological profiles, (i.e. PSSMs). Here we aim to ad-
dress this issue.
We documented several key contributions of our

study to the field of biology: (1) a new computational
model for identifying electron transport proteins
which exhibited significant improvements beyond that
of previous models, (2) a new deep learning frame-
work constructed from CNN, GRU, and PSSM for
classifying the protein functions with high perform-
ance, in which we can input all the PSSM profiles
into deep neural networks and prevent missing infor-
mation in PSSM profiles, (3) a benchmark dataset for
further study on electron transport protein, and (4) a
study that would provide a better understanding of
the electron transport protein structures to biologists
and researchers through the information collected to
aid in any conduction of future research.

Methodology
Most experiments have been carried out with a 1D
CNN, GRU and PSSM profiles. Figure 2 illustrates a
flowchart of the study, and we describe the details of the
proposed approach as follows.

Data collection
In this study, we re-used the benchmark dataset from the
previous study [19], which contains 395 electron transport
proteins and 2240 transport proteins. However, to take full
advantage of deep learning, we collected more data from
UniProt release-2018_05 (on 23-May-2018) [23] and Gene
Ontology (GO) release-2018-05-01 [24], which provide

high quality resources for research on gene products. No-
tice that we only chose the sequences which have been
reviewed by scientists in their published papers. After this
step, we received 12,832 electron transport proteins and
10,814 general transport proteins in all of species. Subse-
quently, BLAST (version 2.2.26) [25] was applied to re-
move the redundant sequences with identities that have a
similarity of more than 30%. The data collected also re-
veals that the rest of the proteins can be divided into 1324
electron transport proteins and 4569 general transport
proteins. This step aims to prevent overfitting in our
model. Labelling the proposed issue as a binary classifica-
tion problem, we solved it by using electron transport pro-
teins as the positive data and the general transport
proteins as the negative data. To conduct the experiments,
we needed two sets of data: cross-validation and inde-
pendent datasets. In these two datasets, the independent
dataset contained newly discovered proteins and the
cross-validation dataset contained the rest of the data.
The cross-validation dataset was used for constructing
our model, and the independent dataset was used for
evaluating the performance of the proposed method.
Table 1 lists all the detail of the dataset in this study.

Encoding feature sets from the protein sequence
information
In this study, the feature extraction method that is being
applied is PSSM, a matrix represented by all the amino
acid patterns in protein sequences. The matrix is also
used for decoding the evolutionary information of a pro-
tein sequence. PSSM was first presented by Jones [1]
and increasingly applied to many bioinformatics applica-
tions with significant improvements [26–28]. To gener-
ate the PSSM profiles from FASTA sequences, we used
PSI-BLAST [25] to search against non-redundant pro-
tein database for two iterations. The query to produce
the PSSM profile is as follows:
psiblast.exe -num_iterations 2 -db < nr > −in_msa <

fasta_file > −out_ascii_ < pssm_file>.
Numerous studies have attempted to identify the

protein function by using PSSM and the summing
method [18, 26, 29]. This means that they tried to
sum up the same amino acids and convert PSSM pro-
files with a 20*N matrix to a 20*20 matrix. This
method helped them to fix the input length to insert
into neural networks. However, this also raises the big
issue of the loss of information when PSSM profiles
are in order. Therefore, in this study, we attempted
to input all PSSM profiles into deep neural networks
via GRU architectures. We also ensured that the pos-
ition information was not lost and we were able to
preserve this information while sequences of different
lengths remain comparable.
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Feature extraction using one-dimensional convolutional
neural networks
Our deep learning architecture to identify electron
transport protein contains 1D CNN to extract the fea-
tures, and GRU to learn the features in order to build

Fig. 2 The flowchart for identifying electron transport proteins using 1D RNN, GRU, and PSSM profiles. It included four subprocesses: data
collection, feature set generation, neural network implementation and model evaluation

Table 1 Statistics of all retrieved electron transport proteins and
general transport proteins

Original Similarity < 30% CV IND

Electron transport 12,832 1324 1116 208

General transport 10,814 4569 3856 713

CV Cross-validation, IND Independent
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models. This is a deep neural network architecture
which had been shown to handle sequential data sig-
nificantly in various fields. Different from traditional
neural network, RNN can take advantage of sequence
information and theoretically, it can utilize the infor-
mation of arbitrary length sequence. It is able to
memorize parts of the inputs and use them to make
accurate predictions. Our deep neural network struc-
ture was implemented using PyTorch library [30]. We
also accelerated the performance via graphic process-
ing unit (GPU) computing and CUDA kernel. The in-
put is a multiplication of sequence length and size of
amino acid vocabulary. The CNN extracts amino acid
information using various filter sizes. To extract the
PSSM information, we first applied a 1D convolution
over an input shape consisting of several input matri-
ces. The convolutional layer takes a sliding window
that is moved in stride across the input, transforming
the values into representative values. During this
process, convolution operation preserves the spatial
relationship between numeric values in the PSSM
profiles by learning useful features using small
squares of input data [31]. Each protein was treated
as a separate sample and input to the neural network.
Given an input size (N, Cin, L), we can precisely com-
pute the output (N, Cout, Lout) by using the following
formula:

out Ni;Cout j

� � ¼ bias Cout j

� �þ XCin−1

k¼0

weight Cout j ; k
� �

�input Ni; kð Þ 1ð Þ

where * is the valid cross-correlation operator, N is
the batch size, C denotes the number of channels,
and L is the length of the signal sequence. In this
study, the input is the sequence length multiplied by
the size of the amino acid vocabulary (=20). The big
advantage of inputting all the PSSM features into the
neural network is to prevent missing information
from PSSM profiles. We also set the learnable weights
and bias variables of the module of shape. The pool-
ing layer is usually inserted between the convolutional
layers with the aim of reducing the size of matrix
calculations for the next convolutional layer. The op-
eration performed by this layer is also called “down-
sampling” as it removes certain values leading to less
computational operations and overfitting control while
still preserving the most relevant representative fea-
tures. The pooling layer also takes a sliding window
or a certain region that is moved in stride across the
input matrix transforming the values into representa-
tive values [31]. In our study, we performed a 1D
average pooling over an input of several values. In

this step, we can also calculate the output (N, C, L)
and kernel size k as follows:

out Ni;C j; l
� � ¼ 1

k

Xk
m¼0

input Ni;C j; stride � l þm
� �

2ð Þ

Zero-padding is the process of symmetrically adding
zeros to the input matrix which allows the size of the in-
put to be adjusted to certain requirements. In the model
presented in the current study, zero values were added
at the beginning and end of the matrices. This allowed
us to apply the filter to the border positions of the
matrices. If padding is non-zero, then the input is impli-
citly zero-padded on both sides for padding number of
points. The input shape (N, C, Lin) and output shape (N,
C, Lout) can be calculated by:

Lout ¼ Lin þ 2þ padding−kernel size
stride

þ 1

� �
3ð Þ

Learning and classification using GRU
After generating feature sets with 1D CNN, we ap-
plied a multi-layer GRU to an input sequence. GRU,
with its so-called update gate and reset gate, is an
improved version of the standard recurrent neural
network (RNN). Because of the problem of “vanishing
gradient” in the network structure, RNN can only
retrospectively utilize the information on time steps
which are close to it in practical applications. In
order to solve this problem, Long Short Term Mem-
ory (LSTM) and GRU were presented with specially
designed network architecture, which can learn long-
term dependencies information naturally. Basically,
these are two vectors which decide what information
should be passed to the output. The special thing
about them is that they can be trained to keep old or
previous information, without removing information
that is irrelevant to the prediction. The idea behind a
GRU layer is quite similar to that of a LSTM layer, as
are the equations. For each element in the input se-
quence, each layer computes the following function:
(1) Update gate helps the model to determine how

much of the past information (from previous time
steps) needs to be passed along to the future. We cal-
culated the update gate zt for time step t using the
formula:

zt ¼ σ Wizxt þ biz þWhzh t−1ð Þ þ bhz
� �

4ð Þ

where xt is the input at time t, h(t − 1) is the hidden state
of the previous layer at time t-1 or the initial hidden
state at time 0, σ is the sigmoid function, W is the
weight, and b is the bias.
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(2) Reset gate is used from the model to decide how
much of the past information is forgotten. To calculate
it, we use:

rt ¼ σ Wirxt þ bir þWhrh t−1ð Þ þ bhr
� �

5ð Þ

(3) Current memory content uses the reset gate to
store the relevant information from the past:

nt ¼ tanh Winxt þ bin þ rt Whnh t−1ð Þ þ bhn
� �� �

6ð Þ

(4) Final memory at current time step: as the last step,
the network needs to calculate ht vector which holds in-
formation for the current unit and passes it down to the
network. In order to do that the update gate is needed.
That is done as follows:

ht ¼ 1−ztð Þnt þ zth t−1ð Þ 7ð Þ

Output layers
In output layers, we used two linear layers to apply lin-
ear transformation to the incoming input. The first layer
with input feature size (= GRU hidden size) and output
feature (= fully connected layer size) aims to transform
the output of GRU layers. Then the next linear layer was
applied with input feature size of fully connected layer
size and output size of 1 to generate the output results
of the model. Noted that we set bias = true in this step
to let the layer learn the additive biases.
The next layer applied was dropout, which is an effect-

ive technique for the regularization and prevention of
the co-adaptation of neurons as described in the paper
[32]. The importance of the dropout layer was to en-
hance the predictive performance of our model and pre-
vent the problem of overfitting. In the dropout layer, the
model will randomly deactivate the neurons in a layer
that have a certain probability value. If the dropout value
is tuned to a layer, the neural network will learn differ-
ent, redundant representations, and the training time
will be faster. In this study, the dropout values are floats
ranging from 0 to 1 to evaluate our model.
The last element in the output layers is sigmoid, which

is a non-linear activation. Commonly, sigmoid function
is problematic in RNN and it applies the element-wise
function as follows:

Sigmoid xð Þ ¼ 1
1þ exp −xð Þ 8ð Þ

Assessment of predictive ability
We used five-fold cross-validation to evaluate the per-
formance of ET-GRU and the comparison model. In
each validation, all data randomly divides into five equal
parts. Four-fold set data are taken as train data, the rest

one-fold is taken as test data. To guarantee the unbiased
comparison, it confirmed that there is no overlap be-
tween train data and test data. Because 5-fold cross-
validation will yield different results each time, we im-
plemented 10 iterations of 5-fold cross-validation and
averaged the results across the 10 iterations. Further-
more, to control for any systematic bias in the cross-
validation set, the independent dataset was used to
evaluate the performance accuracy. We followed the
widely used evaluation criteria in many bioinformatics
studies [5, 33, 34]. Some standard metrics were used,
such as sensitivity (Sen), specificity (Spe), accuracy (Acc)
and Matthews correlation coefficient (MCC) using the
formula presented in those studies.

Sensitivity ¼ 1−
Nþ

−

Nþ ; 0≤Sen≤1 9ð Þ

Specificity ¼ 1−
N−

þ
N− ; 0≤Spec≤1 10ð Þ

Accuracy ¼ 1−
Nþ

− þ N−
þ

Nþ þ N− ; 0≤Acc≤1 11ð Þ

MCC ¼
1−

Nþ
−

Nþ þ N−
þ

N−

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N−

þ−N
þ
−

Nþ

� �
1þ Nþ

− −N
−
þ

N−

� �s ;

−1≤MCC≤1 12ð Þ
The relationship between these symbols in Eqs. (9, 10,

11 and 12) are indicated by:

N−
þ ¼ FP

Nþ
− ¼ FN

Nþ ¼ TP þ Nþ
−

N− ¼ TN þ N−
þ

8>><
>>: 13ð Þ

where TP means the true positives and refers to the
number of electron transport proteins that were cor-
rectly predicted by the classifier, TN means true nega-
tives and refers to the number of general proteins that
were correctly predicted by the classifier, FP means false
positives and refers to the number of electron transport
proteins that were incorrectly predicted by the classifier,
and FN means false negative and refers to the number of
general proteins that were incorrectly predicted by the
classifier.

Results
Composition amino acid of electron transport proteins
and general transport proteins
We analyzed the composition of amino acid in electron
transport proteins and general transport proteins by com-
puting the frequency between them. Figure 3 illustrates
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the amino acids which contributed the highest frequency
in two distinct datasets. We realized that there were nu-
merous differences in amino acid frequencies between
those surrounding the electron transport proteins and
those surrounding the general transport proteins. For in-
stance, the amino acid E, I, L, or F (with higher variances)
could be applied for classifying electron transport pro-
teins. Also, we used the standard error bars on the chart
to show the significant differences in the contributions of
these amino acids. If two error bars do not overlap, we
can conclude that the difference between these two data-
sets is statistically significant. In Fig. 3, it is easy to say that
there are significant differences between electron trans-
porters and general transporters in amino acid R, D, Q, E,
I, L, K, F, and S. Thus, these amino acids distributions cer-
tainly possessed an essential role in discriminating elec-
tron transport proteins from general proteins.

Model selection
We have classified the electron transport proteins
using various hyper-parameters i.e., convolutional fea-
ture size, kernel size, fully connected layer size, and
so on. First, we used six filters ranging from 32 to

1024 to train the cross-validation and in the consider-
ation of the optimal filter. The fully connected layer
size of 32 achieved the highest performance in dis-
criminating the electron transport proteins with an
accuracy of 93.5 and 92.3% for the cross-validation
and independent datasets, respectively. This point
proved that a bigger filter size did not have a signifi-
cant impact to this problem, and thus we only need
to use the simplest filter size while still be able to
achieve significant results. Comparing these results
with those of the other performances, we also saw
that the result was consistent between cross-
validation and independent datasets. It means that the
hyper-parameters from the cross-validation test can
be used to evaluate the independent test with the
same level of performance. Our model did not run
into the overfitting problem either. Further, we also
examined the performance results of different GRU hid-
den layer sizes. For these experiments, the GRU hidden
layer size of 200 performed better than others. In sum-
mary, Table 2 shows all layers with weights and trainable
parameters of our GRU model. Thereafter, we decided to
use these parameters for the rest of the experiments.

Fig. 3 Amino acid composition and variance of amino acid composition in electron transport and general transport proteins. There are numerous
differences between the amino acid frequencies surrounding the electron transport proteins and general transport proteins. For instance, the
amino acid E, I, F, or R could be adopted for classifying electron transport proteins

Le et al. BMC Bioinformatics          (2019) 20:377 Page 7 of 12



Comparative performance between the proposed method
and the previous technique on PSSM profiles
From the model selection (previous section) we identi-
fied the optimal hyper-parameters for the best perform-
ing model architecture. We then compared our
performance with those of previous state-of-the-art tech-
niques. Previous techniques on PSSM profiles summed
up all of the same amino acids to become a vector 400D
or a matrix 400D to input into neural networks. This
technique was efficiently used in a variety of bioinfor-
matics applications and achieved significant results [16,
19]. With this technique, the composition of amino acids
will be kept as the features in networks. However, the
order information is missing and our method fills the
gap of this missing information. Due to the significant
improvements of k-nearest neighbour (kNN) [35],
Random Forest [36], and support vector machine (SVM)
kernel [37] in many bioinformatics applications, we con-
ducted experiments using these classifiers. The next
classifier that we would like to conduct experiments for
comparison is CNN, which is currently considered as
the best method for this type of problem [19]. All the
processes for tuning parameters had been carried out on
the training dataset and the optimizations had been
chosen according to the accuracy metric. We varied the
number of nearest neighbors in kNN from one to ten
(step size of 1), performed a grid search to estimate the

accuracy of each parameter combination to find the op-
timal cost and gamma in LibSVM (log2c was ranged
from − 5 to 5 (step size of 2), log2g was ranged from − 4
to 0 (step size of − 2)), number of trees were ranged
from 100 to 500 (step size of 100) in RandomForest; and
hyper-parameter tuning in CNN. The optimal parame-
ters of these classifiers are shown in Table 3’s footnote.
Table 3 shows the comparative performance between

the proposed method, GRU, with previous methods on
the same dataset. We used a two-proportion z-test to
determine whether other methods are significantly better
(+), worse (−) or have no statistical difference compared
with GRU at a confidence level of 95%. As shown in
Table 3, the statistical tests show that GRU exhibited
higher performance than other techniques for most of
the given evaluation metrics. Furthermore, to have a
more comprehensive and intuitive assessment of predic-
tion models, ROC Curves are provided in this section.
As shown in Fig. 4, the Area Under the Curve (AUC) of
our proposed method (GRU) outperformed the other
methods (AUC = 0.97 and 0.95 in the cross-validation
and independent tests, respectively). Therefore, many
evidence supported us to claim that the order informa-
tion of PSSM plays an important role in classifying the
protein function in general and electron transport in
particular.

Benchmark PSSM profiles with different sensitive
alignment methods
As shown in some of the previous publications in bio-
informatics [38, 39], sequence alignments were easily ap-
plicable to any protein class recognition. Therefore, we
aim to benchmark the proposed method with other sen-
sitive alignment methods. We consulted the previous
work from [38] to generate different alignments such as
PSI-BLAST and hidden Markov model (HMM). PSI-
BLAST alignment has been done with BLAST package
and e-value of 0.01. As shown in BLAST manual,
BLAST hit with e-value smaller than 0.01 can be consid-
ered as a good hit for homology matches and it can be
used to compare with our PSSM profiles. Another pro-
file that we would like to compare is the HMM profile,

Table 3 Predictive performance of classifying electron transport proteins using different neural networks

CV Independent

Sen Spe Acc MCC Sen Spe Acc MCC

kNN 37.7(−) 98.9(+) 85.2(−) 0.53(−) 32.7(−) 96.5(+) 82.1(−) 0.41(−)

RF 64.8(−) 97.1(+) 89.8(−) 0.69(−) 56.3(−) 96.4(+) 87.3(−) 0.61(−)

SVM 74(−) 96.2(+) 91.2(−) 0.74(−) 74(−) 91.7(−) 87.7(−) 0.65(−)

CNN 73.8(−) 95(−) 90.3(−) 0.71(−) 78.2(+) 92.5(−) 89.5(−) 0.69(−)

GRU 83.7 96.3 93.5 0.81 79.8 95.9 92.3 0.77

Note: (kNN: k = 10, RF: n_estimators = 500, SVM: c = 32, g = 0.125, CNN: 128 filters, GRU: 32 filters, (+) for significantly better than GRU, (−) for significantly worse
than GRU in a two-proportion z-test)

Table 2 All layers with weights and trainable parameters in the
proposed method

Layer Weights Parameters

Conv1d (20, 200, 3) ((200, 20, 3), (200,)) 12,200

AvgPool1d (3) 0 0

Conv1d (200, 200, 3) ((200, 200, 3), (200,)) 120,200

AvgPool1d (3) 0 0

GRU (200, 200, 1) ((600, 200), (600, 200), (600,), (600,)) 241,200

Linear (200, 32) ((32, 200), (32,)) 6432

Dropout (0.5) 0 0

Linear (32, 1) ((1, 32), (1,)) 33

Sigmoid () 0 0
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which is a probabilistic model that encapsulates evolution-
ary changes that have occurred in a set of biological se-
quences. To generate HMM profiles, we used Pfam as our
database for scanning. Table 4 shows the comparative

performance among different alignment methods in the in-
dependent test. It is observed that the PSSM profile was su-
perior to the other methods in most of the metrics.
Therefore, we can again claim that this network

Fig. 4 ROC Curves for predicting electron transport protein using GRU and PSSM profiles. (a) cross-validation testing, (b) independent testing
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architecture is useful for generating the hidden information
of PSSM profiles.

Comparison to current predictors on electron transport
proteins
To ensure a new approach is efficient and fair, we need
to make a comparison with the predictions from other
published works on the same dataset. In this section, we
would like to compare our work with some of the re-
cently published works on electron transport proteins:
TrSSP [17], Chen et al. [16], Le et al. [18], and ET-CNN
[19]. Table 5 shows the comparison between our pro-
posed method and other predictions on the cross-
validation dataset. We easily observed that our method
performed better than the others for any given evalu-
ation metric. However, the comparison is not sufficiently
fair because most of works used a different dataset. They
are only considered as a relative comparison and need a
more accurate and fair comparison.
Therefore, to have a fair comparison, we attempted to

apply the independent test to evaluate how they per-
form. At this step, we chose ET-CNN [19] as a basis of
comparison because a web server is provided and it is
also the latest one for this type of data. As shown in
Table 5, ET-GRU is able to predict electron transport
proteins with higher sensitivity, accuracy, and MCC.
This higher performance is evidence of identifying elec-
tron transport proteins with higher accuracy than previ-
ous techniques. Therefore, we are able to conclude that
the order information plays an important role in PSSM

profiles and our approach can help identify electron
transport proteins more accurately.

Web server development
To allow readers and users to assess the proposed
method, we provided a simple web server which can be
freely accessible at http://140.138.155.216/etgru/. The
implementation of ET-GRU was done by Python lan-
guage and Flask framework. ET-GRU can be used by a
wide variety of biologists with no knowledge of compu-
tational techniques. The users only need to submit the
amino acid sequence(s) in the ‘FASTA’ format. Our ser-
ver then processes all the submitted sequences and pre-
dicts them. The best model was integrated into our web
server which helps the users identify their sequence be-
longs to electron transport proteins or not.

Discussions
In this study, we constructed a new dataset for identify-
ing electron transport proteins from general transport
proteins and there are a few differences between our
dataset and previous dataset [19]. In the ET-CNN data-
set, the amino acids playing important roles in the elec-
tron transport protein are A, S, and G while our dataset
can provide some additional contributions from amino
acid E, I, L, or F. Therefore, our classifiers are able to
capture more information to classify and reach high per-
formance results. Further, the more data collected, the
more differences between the two types of dataset in the
composition of amino acids.
Furthermore, feature extractions played an essential

role in discriminating protein functions in general and
electron transport protein in particular. Although a
number of methods have been proposed for extracting
features of protein sequences via PSSM profiles [16, 18,
19], most of them showed great limits on ordering infor-
mation. ET-GRU is able to prevent this missing informa-
tion in PSSM via a combination of 1D CNN and GRU.
As a result, it was superior to the previous techniques
on PSSM profiles which has been applied successfully in
a lot of bioinformatics applications. We also compared
our performance with the previous works [15, 16, 18,
19] and our ET-GRU also outperformed the others on
the same dataset. It is strong evidence that ordering in-
formation of PSSM profiles plays a vital role in improv-
ing predictive performance. Another reason is the use of
deep neural network which helped to extract hidden in-
formation in PSSM profiles better than other shallow
networks.
However, our study still endures some limitations and

there remain possible approaches to enhance the per-
formance results in the future. Firstly, a bigger dataset
needs to be retrieved and used to get full advantage of
deep learning. Secondly, future studies could investigate

Table 4 Predictive performance of classifying electron transport
proteins using different sensitive multiple alignments

Sen Spe Acc MCC

PSI-BLAST 75.5 83.6 81.8 0.54

HMM 76 95 90.8 0.73

PSSM 79.8 95.9 92.3 0.77

Table 5 Comparison with state-of-the-art predictions on the
cross-validation dataset and independent dataset

Sen Spe Acc MCC

Cross-validation

TrSSP [17] 85 80 81.43 0.6

Chen et al. [16] 71.6 93.5 90.1 0.62

Le et al. [18] 74.6 95.8 92.9 0.7

ET-CNN [19] 51.1 96.1 89.4 0.54

ET-GRU 83.7 96.3 93.5 0.81

Independent

ET-CNN [19] 52.9(−) 96.6(+) 86.8(−) 0.59(−)

ET-GRU 79.8 95.9 92.3 0.77

with ET-GRU as the base case, (+) and (−) indicates whether ET-CNN is
significantly better or worse, respectively
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how to integrate the PSSM information and the other
state-of-the-art features (i.e., biochemical properties,
physicochemical properties, or pseudo components) to
maximize the performance of GRU network. Thirdly,
there is necessary for retrieving a standard negative data-
set instead of using general transport proteins.

Conclusions
This paper has proposed an innovative method using 1D
CNN, GRU, and PSSM profiles for discriminating the
electron transport proteins. This is the first study that
has applied this method to protein function prediction.
With this method, we are able to preserve all of the
PSSM information which is fed into the deep neural net-
works. We evaluated its performance using 10 iterations
of 5-fold cross-validation and an independent test data-
set (208 electron transport proteins and 713 general
transport proteins). Our method showed an average 5-
fold cross-validation accuracy of 93.5% and MCC of 0.81
for predicting electron transport proteins. The accuracy
and MCC with the independent dataset are 92.3% and
0.77, respectively. Compared with the performance of
the state-of-the-art predictors, this approach achieved an
evinced improvement in all of the measurement metrics.
Throughout this study, we experimented with a powerful
model that identifies the new proteins that are electron
transport proteins with high accuracy. The findings of
this study act as a potential basis for further research
that can use the combination of CNN, GRU, and PSSM
profiles in bioinformatics. Moreover, scientists can use
our approach to solve various protein function predic-
tion problems in the future.
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