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Abstract

Background: In the era of precision oncology and publicly available datasets, the amount of information available
for each patient case has dramatically increased. From clinical variables and PET-CT radiomics measures to DNA-
variant and RNA expression profiles, such a wide variety of data presents a multitude of challenges. Large clinical
datasets are subject to sparsely and/or inconsistently populated fields. Corresponding sequencing profiles can suffer
from the problem of high-dimensionality, where making useful inferences can be difficult without correspondingly
large numbers of instances. In this paper we report a novel deployment of machine learning techniques to handle
data sparsity and high dimensionality, while evaluating potential biomarkers in the form of unsupervised
transformations of RNA data. We apply preprocessing, MICE imputation, and sparse principal component analysis
(SPCA) to improve the usability of more than 500 patient cases from the TCGA-HNSC dataset for enhancing future
oncological decision support for Head and Neck Squamous Cell Carcinoma (HNSCC).

Results: Imputation was shown to improve prognostic ability of sparse clinical treatment variables. SPCA
transformation of RNA expression variables reduced runtime for RNA-based models, though changes to classifier
performance were not significant. Gene ontology enrichment analysis of gene sets associated with individual sparse
principal components (SPCs) are also reported, showing that both high- and low-importance SPCs were associated
with cell death pathways, though the high-importance gene sets were found to be associated with a wider variety
of cancer-related biological processes.

Conclusions: MICE imputation allowed us to impute missing values for clinically informative features, improving
their overall importance for predicting two-year recurrence-free survival by incorporating variance from other
clinical variables. Dimensionality reduction of RNA expression profiles via SPCA reduced both computation cost and
model training/evaluation time without affecting classifier performance, allowing researchers to obtain experimental
results much more quickly. SPCA simultaneously provided a convenient avenue for consideration of biological
context via gene ontology enrichment analysis.

Keywords: Machine learning, hnscc, tcga, Dimensionality reduction, Gene ontology enrichment analysis, Decision
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Background
Data generated for standard clinical oncology care has
expanded exponentially. In addition to well-known clin-
ical variables like symptoms, stage and histology, tumor
specimens are now routinely sequenced for a range of
mutations that may be more or less well characterized.
These molecular profiles may suggest sensitivity to a
range of molecularly targeted agents. Furthermore, high
resolution, functional and molecular imaging methods
(like CT-PET and MR) create quantitative metrics de-
scribed through radiomics features. These also suggest
profiles that can guide intervention and response. To
facilitate the development of novel clinical decision sup-
port tools for oncologists, we have used the publicly
available data characterizing head and neck squamous cell
carcinoma (HNSCC). These profiles present a large data
analysis problem necessitating the use of machine learn-
ing, dimensionality reduction, and biological pathway ana-
lysis techniques. We utilize machine learning classifiers to
predict patient two-year recurrence-free survival and
evaluate a variety of feature sets to discover potential use-
ful clinical biomarkers. Feature sets include combinations
of patient clinical and molecular data. To improve utility
of this dataset for oncological decision support, imput-
ation and dimensionality reduction methods are used to
transform feature sets to more usable, interpretable forms.

Existing literature
Current HNSCC literature often focuses on associ-
ation of regulation of specific genes with prognosis
[1, 2]. Other groups, however, acknowledge the need
for large-scale integrative analysis to capture potential
novel biomarkers [3–5]. In other cancers, unsuper-
vised transformations of molecular data (e.g. RNA
sequencing, DNA methylation, miRNA sequencing)
are known to be useful in machine learning-based
survival prediction [6, 7]. As of this writing, little
work has been done with HNSCC in this manner.
Literature on machine learning imputation of sparse
clinical data is similarly unavailable.

Dataset
The Cancer Genome Atlas (TCGA) Research Network
[8] is a coordinated effort to gather, share, and analyze
next generation molecular sequencing data to improve
our understanding of cancer mechanisms on a molecular
level [9]. Data utilized in our analysis were obtained
from the National Cancer Institute Genomic Data
Commons Data Portal [10] and contained 528 TCGA-
HNSC cases, including genotyping, solid-tumor RNA
expression, whole exome sequencing, methylation data,
and clinical information. In this work, only RNA

expression variables and clinical information are consid-
ered. Clinical data includes tumor grading information,
patient demographic data, smoking/alcohol histories,
and several features related to disease progression such
as lymphovascular invasion and margin status. Human
papillomavirus (HPV) status (based on ISH and P16 test-
ing) was also included, as HPV status has strong implica-
tions for prognosis and tumor development [11, 12].
These data have been contributed from a number of stud-
ies from varying institutions, utilizing multiple platforms
and assays that span significant time intervals. The work
presented here addresses the challenges presented by this
common form of dataset in oncological research.
Large, multi-institutional datasets present a variety of

challenges to the development of methods and tools for
clinical decision support. Namely, several clinical data
fields in TCGA-HNSC offered issues of sparsity and in-
consistency. Out of 15 identified clinical characteristics
relevant to treatment regimen, none were populated for
every patient. More specifically, the number of cases
(from a total possible 528 cases in TCGA) with missing
or unavailable data for these fields ranged from 88 to
504, with a mean of 349.5 and median of 342 cases lack-
ing data for each field. In addition to the problem of
missing data, several fields were populated inconsist-
ently, with responses varying both due to human error
(e.g. leading zeros in numeric fields) and varying con-
vention (e.g. “External” vs. “EXTERNAL BEAM”). Such
complications required extensive preprocessing and an
expert system built using domain-specific knowledge to
determine whether each patient had received a specific
type of therapy. Even after this preprocessing and con-
densing of treatment fields, issues of missing data per-
sisted. Whether a patient had received radiotherapy and/
or chemotherapy was unclear for 47 and 27% of cases,
respectively. One possible technique for handling such
problems is to exclude cases or variables with missing
data, as was done previously with this dataset [13]. Due
to the relevance of these features to our decision support
goals, as well as the limited number of cases from which
to draw, we attempt to maximize utilization of the avail-
able data by imputing missing values.
Molecular datatypes are often extremely high-

dimensional. Feature selection and dimensionality
reduction techniques are necessary steps when utiliz-
ing such data to best employ available computational
resources. There are several strategies for selection
and dimensionality reduction, including feature filter-
ing, feature transformations, and wrapper methods
such as sequential selection [14]. In this work, feature
filtering and an unsupervised sparse PCA feature
space transformation of 20,531 solid-tumor RNA ex-
pression variables were employed and evaluated in the
context of TCGA-HNSC.
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Methods
Preprocessing, condensing, and missing data imputation
(Fig. 1a)
Performing imputation on large datasets requires devel-
opment of an expert model. Careful examination and
correction of inconsistent and missing values was per-
formed in collaboration with expert oncologist Dr. John
Buatti (Chair of Radiation Oncology, University of Iowa).
A rubric for consistent preprocessing and condensing of
the 15 relevant treatment fields resulted in a much more
concise and usable dataset. However, a significant frac-
tion of the TCGA-HNSC patients still had uncertain sta-
tus in their treatment regimens. To address this,
Multivariate Imputation by Chained Equations (MICE)
[15] was utilized, and the resulting changes to classifier
performance were measured.
MICE builds predictive models for each missing variable

to realistically impute entries based on the remaining
predictors. It takes into account uncertainty during imput-
ation, allowing it to outperform single imputation
methods [16, 17]. For each missing entry, five intermediate
imputations were performed using random forest models.
Models were trained using 21 clinical characteristics,
including grading, metastasis, tobacco usage, HPV status,
and other demographic data. Patient outcomes were
excluded from the imputation to prevent information
leakage or overfitting. As the imputed treatment variables
are binary, a majority vote was conducted of the five im-
putations to yield a final imputation. Using the imputed
variables, the clinical characteristics utilized in imputation,
and the outcome of two-year recurrence-free survival, two
types of model were trained on the pre-imputation and
post-imputation datasets. Missing values in the pre-
imputation set were given a third category, “Unavailable”.

Naïve Bayes and Random Forest (RF) classifiers were
selected for this evaluation. The Bayesian model provides
a pure conditional-statistical effort to predict survival,
though it does not consider interaction effects. The Ran-
dom Forest model, being a set of recursive partitionings,
extensively leverages interaction effects. Earlier work sug-
gests RF models are effective for this classification prob-
lem [18]. The pre- and post-imputation models were
compared with respect to both predictive performance
and variable importance.

RNA expression experiments (Fig. 1b)
In the TCGA-HNSC dataset, solid-tumor expression was
available for 520 of the 528 patients. With a feature set
of 20,531 solid-tumor RNA expression variables, seven
tumor grading variables, and the random forest-imputed
treatment variables, several RF classifiers were trained to
predict two-year recurrence-free survival. The classifiers
varied in feature sampling and tree construction proce-
dures: a standard RF, a weighted subspace RF (WSRF)
[19], and a conditional inference random forest (CIRF)
[20]. The WSRF weights randomly sampled variables
based on their correlation with the output procedure,
increasing the probability that a given tree will sample
variables with high univariate correlation to patient sur-
vival. The CIRF utilizes a conditional inference proced-
ure for tree construction that aims to eliminate bias in
recursive partitioning and reduce computation time with
stopping criteria.
With the full set of RNA expression data, the feature

set was first refined through two filters: a univariate,
near-zero variance filter to remove uninformative fea-
tures and a multivariate correlation filter to remove fea-
tures with correlation greater than 0.9. These filters

Fig. 1 Methods Flowchart. Flow diagram outlining the methods of this work. a Clinical data preprocessing and imputation. b RNA expression
experiments and analysis
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removed several thousand expression variables from the
feature set.
In addition, a dimensionality reduction was performed

via Sparse Principal Component Analysis (SPCA) [21]
which has the potential to improve interpretability of the
model and reduce training time. Interpretability is im-
proved because each sparse principal component (SPC)
has only a handful of genes that contribute to it, allow-
ing connections to be drawn between individual SPCs
and the biological processes related to their constituent
genes. One significant problem of PCA-based data
reduction is choosing the number of components. If too
many components are retained, this transformation may
be amplifying noise. If too few are included, valuable
predictive information may be excluded. To estimate
information inclusion, percent explained variance is ex-
amined in Fig. 2. Here, we chose the number of principal
components to be ten, as this number of components
yielded the best classifier performance over the three RF
classifiers while explaining approximately 90% of the
variance. The resulting ten SPCs (below labeled X1-X10)
were constructed and the feature set supplemented with
the same grading and treatment features as used with
the full set of RNA variables. The same set of RF classi-
fiers was trained on this data to predict two-year
recurrence-free survival.
After training, variable importance for the 10-component

SPCA feature set was evaluated for each of the classifiers.
The genes that comprise the most and least important vari-
ables were examined with a gene ontology enrichment

analysis (GOEA) [22, 23]. Analysis was conducted with the
biological process annotation dataset from the PANTHER
Classification System, using their enrichment analysis tool
[24]. Gene ontology (GO) terms enriched for high-
importance SPC gene sets but not low-importance SPC
gene sets are described.

Classifier training and hyperparameter tuning
A nested cross validation (CV) is used to tune hyper-
parameters and estimate out-of-sample performance, a
measurement of how well a classifier would generalize if
it were to be trained on the entire dataset. Data is split
into ten folds (or partitions) for the outer CV. In each
iteration, one fold acts as the testing data and the
remaining nine folds act as the training data. Within
each fold of the outer CV, a repeated grid search CV
procedure [25] is carried out on the training data to
estimate the best hyperparameter(s). Then, a model is
trained on all of the training data with the best hyper-
parameter set, and its generalization performance is
estimated using the testing data for that fold. The classi-
fier’s ability to accurately predict the class labels of test
data points is then estimated from performance within
the ten folds, using a classifier performance metric.
For the missing data imputation, models were trained

and tested in Weka 3.9.1 [26] with 10-fold cross valid-
ation as the internal cross validation procedure using the
“CVParameterSelection” wrapper method. One hyper-
parameter, the number of randomly chosen predictors to

Fig. 2 Cumulative Percent Explained Variance. Percent explained variance from SPCA as it relates to the number of components retained. The
dark vertical line indicates the value used for transforming RNA expression into the SPCA feature set for these experiments
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be considered for each split, was tuned for the Random
Forest.
In the RNA expression experiments, three different RF

classification procedures are considered. Classifier train-
ing and evaluation was handled using the R package
caret [27]. Classifiers trained on the full-RNA data were
evaluated with the internal cross validation procedure as
ten-fold cross validation, and those trained with the
dimensionality-reduced data were evaluated (within each
fold) using five-times repeated ten-fold cross validation.
Repeated cross validation reduces bias due to random
partitioning [28]. Preprocessing was handled within each
CV iteration with the R recipes package [29]. For these
RF models, the number of randomly-sampled predictors
for each tree was varied over a span of values appropri-
ate for each feature set.

Classifier performance metric
To evaluate classifier out-of-sample performance, the
area under the receiver operating characteristic curve
(commonly denoted AUC) is employed. AUC is a very
popular and commonly used classifier metric in the lit-
erature with an intuitive probabilistic interpretation:
AUC is the probability that the classifier will score posi-
tive observations higher than negative observations.
Mathematically, an AUC of 0.5 is equivalent to random
guesses and is the standard baseline for this metric.

Variable/feature importance
Feature importance is a measurement of how perturba-
tions to variables affect classifier performance. A condi-
tional variable importance procedure has been applied in
this work. Conditional importance involves not only
univariate perturbations, but conditional perturbation of
variables and the variables with which they correlate
[30]. For the imputation experiments, the correlation
threshold was set at 0.2 for computational viability. In
analysis of SPCA variables, this threshold was set to 0.05
as the feature space is smaller. Importance of categorical
variables can also be biased in this scenario (depending
on the number of categories), so a conditional inference
random forest model is used to reduce this bias [20].
Reported importance values are relative to the most
important variable in each case and were averaged over
50 runs to ensure stability.

Results
Imputation evaluation
As shown in Table 1, imputation of treatment fields using
MICE yielded no significant change in AUC. Changes in
relative importance values can be seen in Table 2.
The relative importance of treatment features doubled

as a result of imputation (see Figure 3). Interestingly,
changes were observed in non-imputed features as well,

with some features (HPV status, margin status) becom-
ing more important and others (Pathologic Tumor status
grade, tumor grade, gender, ethnicity, alcohol consump-
tion) dropping in importance. This is partially due to
variance from non-treatment variables being incorpo-
rated into the imputed treatment variables during
imputation.

RNA expression experiments
Table 2 shows that classifier performance was slightly higher
(though not significantly so) with the dimensionality-
reduced dataset. The best-performing classifier overall
appears to be the CIRF, which was middling in runtime. A
drastic difference in evaluation runtime is observed (as
expected) between the Full RNA feature set (20,541 predic-
tors) and the SPCA feature set (20 predictors). With both
feature sets, the non-standard RF variants required more
compute time and computational resources than the stand-
ard RF classification procedure .
Explained variances for all SPCs are reported in

Table 3. Considering Fig. 4, SPC X6 is favored most by
the conditional inference importance metric. SPCs X9
and X2 are the next-highest ranked. X7, X1, and X3
were the least important variables to the CIRF classi-
fier, indicating they had little-to-no effect on classifi-
cation performance. The genes composing these six
SPC features were selected for further examination via
GOEA (see Table 4). It is worth noting that within the
gene sets constituting the SPCs, many repeats of genes

Table 1 Effect of Imputation on Classifier Performance

Classifier Dataset AUC

Naïve Bayes Pre-imputation 0.633 ± 0.077

Post-imputation 0.675 ± 0.063

Random Forest Pre-imputation 0.668 ± 0.062

Post-imputation 0.675 ± 0.063

Classifier performance on the imputed and non-imputed datasets. Baseline
AUC is 0.500

Table 2 RNA Expression Classifier Performance

Datasets Classifiers: RF WSRF CIRF

AUCs

Full RNA 0.632 ± 0.106 0.596 ± 0.038 0.629 ± 0.105

SPCA 0.640 ± 0.128 0.626 ± 0.114 0.658 ± 0.044

Nested CV Runtimes – – –

Full RNA 52 h 185 h 85 h

SPCA 12min 1.9 h 30 min

AUC and approximate runtime values for the RNA expression feature sets. The
best value in each row is bolded. Here, runtimes are evaluation times for a
given classifier on a given feature set via 10-fold nested cross validation with
the internal cross validation procedures as described in Methods.
Computations performed on the University of Iowa’s Argon High-Performance
Computing cluster
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and gene families are present. This is an artifact of
gene family co-expression and the tendency of SPCA
to focus on genes with high variance.

Discussion
Imputation evaluation
With imputation, classifier performance is not negatively
affected, which is expected based on other studies using
the MICE imputation technique [17, 31]. Increases in
variable importance after imputation indicate that the
treatment variables more effectively predict patient out-
comes after application of MICE. It is worth noting that
imputation incorporates variance from the features used

for imputation into the imputed variables, likely boost-
ing their apparent importance and detracting from the
importance of features integral to imputation. Because
importance is calculated with a random forest, the
importance changes in non-imputed variables might
indicate that the bias introduced by MICE imputation to
the treatment variables modifies the landscape of vari-
able interactions to a high enough degree that the fea-
ture selection within trees is affected.

RNA expression experiments
For this prediction problem, the dimensionality-reduced
features (SPCs) allow comparable classifier performance
while drastically reducing runtime and necessary com-
putation. Though not quantified here, memory require-
ments were also much lower for the dimensionality-
reduced data. Additionally, this reduction allowed us to
identify gene set candidates for GOEA. In both import-
ant and not-important SPCs, the GO term “cornifica-
tion” is found, indicating that this biological process is
related to high-variance genes in this dataset. Terms
found only in the high-importance SPC gene sets are
related to cell motility (cell adhesion, extracellular inter-
actions), immune response, cell growth, and blood vessel
development. Activity of genes involved in these pro-
cesses could be indicative of a cancer’s ability to survive,
grow, and metastasize, suggesting that these SPCA
transformed RNA data contain useful information about
underlying relationships between solid- tumor expres-
sion and two-year recurrence-free survival.

Table 3 SPC Explained Variances

SPC Percent Explained Variance

X1a 53.84%

X2 a 9.43%

X3 a 9.19%

X4 5.31%

X5 3.14%

X6 a 2.27%

X7 a 2.04%

X8 1.67%

X9 a 1.24%

X10 0.93%

Explained variances for the sparse principal components. The 10 SPCs account
for 89.05% of the original data’s variance. a denotes SPCs chosen for further
analysis based on variable importance (see Fig. 4)

Fig. 3 Importance Change with Imputation. Pre-imputation and post-imputation CIRF conditional variable importance for predicting two-year
recurrence-free survival. Importance values are relative to the most important variable. Imputed treatment features are denoted with *, and
several clinical variables are shown for comparison
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Conclusions
In modern oncological research, TCGA datasets present
significant large data analysis challenges, from clinical
parameter sparsity to high dimensionality. Facing these
problems requires significant preprocessing and machine
learning modeling to uncover new knowledge. A multi-
variate imputation method (MICE), SPCA dimensional-
ity reduction, and an SPC-focused GOEA are presented
in the context of TCGA-HNSC clinical and RNA

expression variables to improve usability of data for fu-
ture HNSCC decision support.
vAs others [17, 31] have found, MICE is an effective

practical method for imputing data, though introduc-
tion of some bias is very likely. In this case variable
importance of imputed features was improved, while
the importance measures of other variables were re-
duced through interaction effects and addition of bias
to the imputed variables. Most importantly, the

Fig. 4 SPC Conditional Importance Values. Relative conditional variable importance values for the 10 SPCs, labeled X1–10. In cases where a very
low importance is reported for an SPC, its effect on classifier performance is negligible

Table 4 RNA SPCA Enriched GO Terms

SPC Contributing Genes (Gene Name|GeneID) Enriched GO Biological Processes

X6 ADAM6|8755, FBP4|2167, FN1|2335, GAPDH|2597, KRT13|3860, KRT16|3868,
KRT17|3872, LOC96610|96,610

Cornification

X2 COL1A1|1277, COL1A2|1278, COL3A1|1281, FN1|2335,
KRT13|3860, KRT14|3861, KRT16|3868, KRT17|3872, KRT5|3852,
KRT6A|3853, SPARC|6678

Cornificationa, keratinocyte differentiation, wound healing,
cell-substrate junction assemblya, collagen fibril organizationa

X9 ACTB|60, ADAM6|8755, COL1A1|1277, COL1A2|1278, FN1|2335,
LAMC2|3918, TGFBI|7045

Skin morphogenesis, protein heterotrimerization, platelet
activationa, cell junction assembly, cell junction organization,
extracellular matrix organization, extracellular structure
organization, blood vessel developmenta, cell adhesion

X7 ADAM6|8755, FABP4|2167, KRT16|3868, KRT17|3872, KRT5|3852,
KRT6B|3854, LOC96610|96,610, PI3|5266

Cornificationa, programmed cell death, cell death, keratinization,
skin development

X1 KRT14|3861, KRT16|3868, KRT17|3872, KRT5|3852, KRT6A|3853,
KRT6B|3854, KRT6C|286,887, S100A9|6280

Cornificationa, intermediate filament cytoskeleton organizationa,
cell death, hair cycle

X3 COL1A1|1277, COL1A2|1278, COL3A1|1281, KRT13|3860,
KRT14|3861, KRT16|3868, KRT17|3872, KRT5|3852, KRT6A|3853,
KRT6B|3854, KRT6C|286,887, SFN|2810

Cornificationa, multicellular organism development, intermediate
filament cytoskeleton organizationa, collagen fibril organization

SPC gene sets listing both gene names and Entrez gene IDs; PANTHER annotation terms found to be enriched in each of the SPC gene sets. Annotation terms are
reported in increasing order of p-value, with all p < 0.001. a indicates some lower level hierarchical terms omitted for brevity
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imputation provided a complete set of treatment vari-
ables to incorporate into our models, furthering our
ability to evaluate the effectiveness of potential bio-
markers in later analyses.
Unsupervised transformation of RNA expression data

via SPCA was extremely useful in improving interpret-
ability of survival models and biomarker identification,
by limiting the number of genes contributing to each
principal component and allowing for a more nuanced
examination of the underlying biological processes. The
biological processes found to be associated with only
high-importance SPCs may be useful in future feature
vselection for biomarker discovery. Additionally, the
SPCA functioned well as a dimensionality reduction tech-
nique, as the dimensionality reduced features allowed for
significantly lower computation time without significantly
affecting classifier performance. From the literature and
these analyses, unsupervised transformations of RNA ex-
pression data seem a viable option for future integration
of molecular data into HNSCC clinical predictive models.
Future work will consider the effect of clinical imput-

ation on models also utilizing molecular data, both with
SPCA transformations and other unsupervised feature
transformations methods such as denoising autoenco-
ders. Additionally, biomarker evaluation will be ex-
panded to directly consider right-censored survival.
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