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Abstract

Background: An important task of macromolecular structure determination by cryo-electron microscopy (cryo-EM)
is the identification of single particles in micrographs (particle picking). Due to the necessity of human involvement
in the process, current particle picking techniques are time consuming and often result in many false positives and
negatives. Adjusting the parameters to eliminate false positives often excludes true particles in certain orientations.
The supervised machine learning (e.g. deep learning) methods for particle picking often need a large training
dataset, which requires extensive manual annotation. Other reference-dependent methods rely on low-resolution
templates for particle detection, matching and picking, and therefore, are not fully automated. These issues
motivate us to develop a fully automated, unbiased framework for particle picking.

Results: We design a fully automated, unsupervised approach for single particle picking in cryo-EM micrographs.
Our approach consists of three stages: image preprocessing, particle clustering, and particle picking. The image
preprocessing is based on multiple techniques including: image averaging, normalization, cryo-EM image contrast
enhancement correction (CEC), histogram equalization, restoration, adaptive histogram equalization, guided image
filtering, and morphological operations. Image preprocessing significantly improves the quality of original cryo-EM
images. Our particle clustering method is based on an intensity distribution model which is much faster and more
accurate than traditional K-means and Fuzzy C-Means (FCM) algorithms for single particle clustering. Our particle
picking method, based on image cleaning and shape detection with a modified Circular Hough Transform algorithm,
effectively detects the shape and the center of each particle and creates a bounding box encapsulating the particles.

Conclusions: AutoCryoPicker can automatically and effectively recognize particle-like objects from noisy cryo-EM
micrographs without the need of labeled training data or human intervention making it a useful tool for cryo-EM
protein structure determination.

Keywords: Clustering, Intensity based clustering (IBC), Micrograph, Cryo-EM, Single particle picking, Protein structure
determination

Background
For decades, X-ray crystallography has been the dominant
technique for obtaining high-resolution structures of mac-
romolecules. Single-particle cryo-electron microscopy
(cryo-EM) was traditionally used to provide low resolution
structural information on large protein complexes that
resisted crystallization (e.g., highly symmetric particles of

viruses). Though the basic workflow of cryo-EM has not
changed considerably over the years, recent technological
advances in sample preparation, computation, and espe-
cially instrumentation, have revolutionized the field of
structural biology [1–3], allowing it to solve large protein

structures at better than 3 A
o
resolution [4–7].

Cryo-EM micrographs contains two-dimensional pro-
jections of the particles in different orientations. Gener-
ally, cryo-EM images have low contrast, due to the
similarity of the electron density of the protein to that of
the surrounding solution, as well as the limited electron
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dose used in data collection. In addition, the micro-
graphs may contain sections of ice, deformed particles,
protein aggregates, etc., which can complicate particle
picking. Because a large number of single-particle im-
ages must be extracted from cryo-EM micrographs to
form a reliable 3D reconstruction of the underlying
structure, particle recognition, represents a significant
bottleneck in cryo-EM structure determination.
To address the bottleneck, numerous computational ap-

proaches have been proposed to facilitate the particle
picking process [8–14]. These methods can roughly be di-
vided into two categories: generative methods [15–17]
and discriminative classification methods [18–20] (e.g. the
recent deep learning methods [21, 22]). The generative
methods measure the similarity of an image region to a
reference to identify particle candidates from micrographs.
A typical generative method employs a template-matching
technique with a cross-correlation similarity measure to
accomplish particle selection. The discriminative methods
first train a classifier on a labeled dataset of positive and
negative particle examples, then apply it to detecting par-
ticle images from micrographs images.
DeepPicker [21] is a deep learning method for semi-

automated particle selection and picking. The first part of
the method involved the manual creation of training data.
The second part was fully automated by learning patterns
from the training data to classify particles. DeepEM [22]
uses a convolutional neural network (CNN) to recognize
particles. The CNN was trained on a manually curated
dataset. The training dataset was augmented by adding
additional particles images generated by image rotation.
The existing unsupervised approaches distinguish the

particle-like objects from background noise in micro-
graphs via an unsupervised learning manner without the
need of any labeled training data [10, 11] but, they do not
fully exploit the intrinsic and unique characteristics of par-
ticles to facilitate automated particle picking. Therefore,
the unsupervised approaches are often combined with the
reference template matching or classification-based ap-
proaches to achieve good picking results. However, in this
case, the training dataset has to be manually created to
train the model. Although these approaches have greatly
reduced time and effort spent on single-particle data ana-
lysis, most of them are not fully automated and still re-
quire substantial human intervention to initialize the
particle selection process. For instance, most methods re-
quire users to prepare an initial set of high-quality refer-
ence particles used as templates to search for similar
particle candidates from micrographs, while the discrim-
inative approaches usually demand the user to manually
pick a number of positive and negative samples to train
the classifier first.
In this paper, we develop a fully automated approach

for particle picking (AutoCryoPicker) that is based on

advanced image preprocessing, robust clustering via the
intensity distribution, and sophisticated shape detection.
The experimental results demonstrate that the fully au-
tomated particle picking scheme can accurately detect a
number of particles that is comparable to those picked
manually. The clustering method is also more accurate
than k-means and Fuzzy C-means (FCM) for particle
clustering. Therefore, our new automated picking ap-
proach can significantly reduce time and labor spent on
single-particle data analysis and thus greatly relieves a
bottleneck in the automated cryo-EM structure deter-
mination pipeline.

Methods
Our AutoCryoPicker framework for automated particle
picking is shown in Fig. 1. In this framework, a user is not
required to manually pick any particle from the micro-
graphs. The fully automated approach has three main
stages: preprocessing, clustering, and particle picking. In
the preprocessing stage, several image processing methods
are applied to enhance the input cryo-EM images such as
image normalization, Contrast Enhancement Correction
(CEC), etc. Clustering is done using three different algo-
rithms k-means [23], Fuzzy C-Means (FCM) [24], and a
new robustness clustering algorithm, which is the
intensity-Based Clustering (IBC) that addresses some typ-
ical clustering issues such as cluster destabilization due to
random initialization of cluster centers. In the particle
picking stage, a final set of particles is selected from clus-
tered particle candidates.

Stage 1: pre-processing
A standard cryo-EM image is stored in the Mixed Raster
Content (MRC) format, which defines a three-
dimensional grid (array) of voxels each with a value cor-
responding to electron density or electric potential. In
order to apply various image preprocessing techniques
to improve the quality of noisy cryo-EM images, we con-
vert cryo-EM images in the MRC format into widely
used 16-bits PNG format using EMAN2 [25]. Since our
goal is to use the unsupervised learning algorithm to
cluster pixels based on the difference in intensity levels
in any cryo-EM image, we select a set of advanced pre-
processing tools to improve the quality of cryo-EM im-
ages. Those tools are tested on two different datasets.
There are two benefits of using the preprocessing.

Firstly, those tools improve the contrast of the cryo-EM
images by increasing the particle’s intensity. Secondly,
pre-grouping the pixels inside each particle makes them
easier to be isolated by the clustering algorithm. Specif-
ically, the preprocessing tools are selected based on
three main objectives: enhancing the global contrast of
the cryo-EM, enhancing the local contrast and increas-
ing the intensity level of each particle, and enhancing
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Fig. 1 The general framework of AutoCryoPicker: Fully Automated Single Particle Picking. The dashed boxes represent three stages of the approach:
pre-processing, particle clustering, and particle detection and picking. A solid box denotes an analysis step
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the particle shapes inside the cryo-EM images. In order
to improve the entire contrast between particles and the
background, image normalization is used first and then
contrast enhancement and correction is applied to in-
crease the global intensity value. To increase the global
image contrast, histogram equalization is applied to en-
hance the pixel intensity level and then image restor-
ation is used to recover and improve the quality of an
image. To improve the local contrast and enhancing the
definitions of edges in each particle, adaptive histogram
equalization is employed. Moreover, guided image filter-
ing is used to perform edge-preserving smoothing of
each particle in the cryo-EM image. Finally, morpho-
logical image operation is applied to enhance the particle
shape and make the particle regions similar to each
other and different from the background regions. These
preprocessing methods are described in detail in the fol-
lowing steps.

Step 1: Cryo-EM image resolution improving
Cryo-EM images are affected by different factors that ei-
ther corrupt the micrograph image signal by some
gaussian noise or the image resolution. Different cryo-
EM images have different artificial objects such as ice,
which in some cases, have different thickness and similar
ranges of the particle’s pixel intensity value. In this case,
in a single cryo-EM image, a small number of particles
may not have significant difference of scatter power.
Technically, the cryo-EM image resolution can be im-
proved using computational image (signal) averaging
based on blur motion elimination. This is selected as a
main step of the contrast transfer function (CTF) based
on the image quality evolution of the single particle
cryo-EM and 3D reconstruction tool of viruses [26].
Different cryo-EM images have different intensity value

ranges. In order to unify the range values, we renormalize
the micrograph by setting the background mean to zero

and background variance to one. In this normalization,
the pixel values become the Z-score, i.e., the number of
sigma’s above noise level as shown in Eq. (1) [27]:

x0 ¼ x− x
σ

ð1Þ

Where x is the mean of the intensity pixel values, and
σ is the standard deviation. For instance, for an image
consisting of 50 frames, we used the image averaging
and normalization function in EMAN2 [25] to average
the 50 frames, resulting in a converted cryo-EM image
for further processing and analysis as shown in Fig. 2.

Step 2: global Cryo-EM intensity adjustment
Low-dose micrograph imaging models the exposure to a
very low intensity beam in a large defocus area that has
both good particle distribution and thin ice. This im-
aging mode produces very low intensity cryo-EM im-
ages. To overcome this problem, intensity adjustment is
applied to map the cryo-EM image intensity values to a
new range. An Intensity Enhancement Correction (IEC)
procedure is used to identify the descent image intensity
and improve signal to noise ratio in cryo-EM images. In
order to enhance the global intensity adjustment, we
apply three different steps.

1) Find Limits to Contrast Stretch: In this step, the
range of image intensity is specified by detecting
the low and high values via a MATLAB function
“stretchlim”, which returns a two-element vector
that consists of the low and upper intensity limits
as shown in the cryo-EM histogram in Fig. 3(a).
By default, values in low and high intensities specify
the bottom 2% and the top 2% of pixel values. In
this case, the intensity level of each cryo-EM should
be unified. The gray values returned can be used by

Fig. 2 Cryo-EM image averaging and normalization result using EMAN2. a The original cryo-EM image (stack of 50 frame) in the MRC format before
the averaging and normalization processing. b The cryo-EM image in PNG file format (single frame) after the averaging and normalization processing
using EMAN2
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the “imadjust” function [28] to increase the contrast
of an image as shown in Fig. 3(b).

2) Mid-Range Stretching: In this step, the cryo-EM
image intensity values are stretched to improve

their quality. The gray scale image pixels
are mapped into the range [0 1] by dividing
the intensity values of each pixel as shown
in Eq. (2).

Fig. 3 Contrast transfer correction and adjustment process. a Illustration of the cryo-EM image histogram after the averaging and normalization
step using EMAN2 and the a two-element vector that consists of the low and the upper intensity limits by default. The values in low_high specify
the bottom 2% and the top 2% of all pixel values. b Illustration of the cryo-EM histogram (Histogram shrinking) after automatically detecting and
specifying the low and high intensity range (e.g. [0.2–0.8])
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xij ¼ Input Image
High Range

ð2Þ

where i and j are the row and column index of cryo-EM
image matrix respectively and the High Range is the
highest intensity value in the input image. Figure 4(a)
shows an original cryo-EM image, Fig. 4(b) the histo-
gram of the original image, Fig. 4(c) a cryo-EM image

after mid-range stretching and Fig. 4(d) the histogram of
the stretched image. The histogram in Fig. 4(d) is more
stretched than the original one in Fig. 4(b).

1) Intensity Adjustment: The intensity values of the
cryo-EM image are adjusted to new values in a
condensed smaller range by using the MATLAB
function “imadjust” [28]. Figure 4(e) shows an

a b

c d

e f

Fig. 4 Cryo-EM Contrast Transfer Correction (CTC) process. a The original cryo-EM image after the applying the averaging and normalization
process through the EMAN2 software. b Histogram of the original cryo-EM image. c The cryo-EM image after applying the mid-range stretching
based on the low-high intensity range. d Histogram of the image in (c). e The cryo-EM image after applying the contrast enhancement correction
(CEC) and image adjustment. f The histogram of the cryo-EM image after applying the contrast enhancement correction (CEC)
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example of a cryo-EM image with contrast
enhancement correction (CEC) and image
adjustment, and Fig. 4(f ) shows the histogram of
Fig. 4(e) where the histogram looks more stretching
and the contrast of the cryo-EM is enhanced
compared with the original image in Fig. 4(a).

For better demonstrating the effects of the prepro-
cessing steps, we zoom-in one particle image from
different datasets. Figure 5(a) and (i) show two ori-
ginal particle images from two different datasets.
Figure 5(b) and (j) show the cryo-EM Image reso-
lution being improved by image averaging and
normalization. We can notice that image noise has
been reduced. Figure 5(c) and (k) illustrates the same
single particle images after the global intensity adjust-
ment using Intensity Enhancement Correction (IEC).
In comparison with the same particle region in the
original micrograph after normalization (Fig. 5(b)),
the particles in Fig. 5(c) and (k) has more intensity
contrast and are more isolated from the background
than the ones in Fig. 5(a) and (b), which will make it
easier for clustering algorithms to identify them.

Step3: global Cryo-EM contrast enhancement
Due to the low-dose micrograph imaging mod on a
large defocuses particles area, cryo-EM images have
low contrast areas where the particles are difficult to
detect. Histogram equalization [29] based on a uni-
form distribution is used to increase and enhance the
intensity value of the image pixels. It increases and
improves the global image contrast by mapping the
original image histogram to a uniform histogram. Fig-
ure 5(d) and (l) show an example of a selected par-
ticle region in the micrograph after global contrast
enhancement-based histogram equalization. Compared
with the previous step (e.g. Figure 5(c) and (k)), the
particle object regions have more contrast with the
background.

Step 4: Cryo-EM noise suppressing
Due to the small electron doses and low contrast be-
tween protein and solvent, cryo-EM images tend to be
rather noisy [30]. Image restoration is applied to denoise
single particle cryo-EM images [31]. Based on the prior
knowledge of the degradation process, the image restor-
ation recovers and improves the quality of an image by
identifying the type of noise and then removing it. Since
the cryo-EM images are often corrupted by typically
gaussian noise, the Weiner filter is chosen to model the
noise. The Wiener filter is applied to remove additive
noise and invert the blurring in cryo-EM images [32]. It
minimizes the overall mean square error in the process

of inverse filtering and noise smoothing. The Wiener fil-
ter in the Fourier domain can be expressed as in Eq. (3).

W f 1; f 2ð Þ ¼ H � f 1; f 2ð ÞSxx f 1; f 2ð Þ
H f 1; f 2ð Þj j2Sxx f 1; f 2ð Þ þ Sηη f 1; f 2ð Þ

ð3Þ

where Sxx(f1, f2) + Sηη(f1, f2) are respectively the power
spectra of the original image and the additive noise, and
H(f1, f2) is the blurring filter. Figure 5(e) and (m) show
two different zoom-in particles after applying noise sup-
pressing based image restoration using Wiener filtering.
We notice that, in both cases, some background noise is
removed, and the structure of the particle object appears
more distinctly than the particle object in the previous
step (Fig. 5(a)-(d)).

Step 5: local particles contrast enhancement in cryo-EM
In general, the particle picking process depends on the
quality of the particles in the cryo-EM. Since there are
too many low-quality particle shapes in the cryo-EM im-
ages, the local features of the particles such as the con-
trast, intensity level, and edges, need to be improved and
enhanced [26]. Using adaptive histogram equalization
(AHE) [32] the particle edges are locally enhanced in the
cryo-EM. This is done by improving the local contrast
between the particles and background. It provides a so-
phisticated technique for contrast dynamic range modifi-
cation (CDRM) based on the intensity histogram shape
description. It is applied to small regions of cryo-EM im-
ages, called tiles. It enhances the contrast of each tile so
that the histogram of the output region approximately
matches a specified histogram. The Adaptive Histogram
Equalization combines neighboring tiles using bilinear
interpolation to eliminate artificially induced boundaries.
It is based on a probability model to enhance the con-
trast condition of each small region (sub-rejoin) using
Eq. (4) [32]:

prx ið Þ ¼ 1
4
þ 1−

1
4

� �
Φ x−μij

� �
σ i

−1
h i

ð4Þ

where prx(i) is the image contrast-limited adaptive
histogram equalization function of pixel value and Φ de-
notes the cumulative gaussian distribution function for
each region, which has a separate location parameter es-
timate for each region. 1/4 is a constant for the 4-choice
task [32]. Figure 5(f ) and (n) show two different zoom-in
particles after applying local particles contrast enhance-
ment based on contrast-limited adaptive histogram
equalization. The particle object intensity (contrast) is
significantly improved and enhanced. In both examples,
particles look darker and have a higher contrast than the
previous particle images (Fig. 5(e) and (m)).
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Step 6: particle edges enhancement in cryo-EM
In order to localize each particle object in the cryo-EM
image, particle edges enhancement is proposed to isolate
the particle shapes in the cryo-EM image. Edge-preserving
smoothing technique is used to locally smooth and enhance

the particle edges in order to localize different particles in
any cryo-EM. Guided image filtering [33] is employed to
perform edge-preserving and smoothing using the content
of a second image, called a guidance image, to influence the
filtering. The guided filter generates the filtered output by

Fig. 5 Illustration of effects of the cryo-EM image analysis on a zoom-in selected particle region using two different examples from two datasets.
a An original zoom-in selected particle region in the micrograph image in Apoferritin dataset. b The normalized single particle image region. c
The single particle region after applying the contrast enhancement correction (CEC). d The single particle region after applying the histogram
equalization. e The single particle region after applying image resonation with Wiener filtering. f The single particle region after applying the
contrast-limited adaptive histogram equalization. g The single particle region after applying image guided filtering. h The single particle region
after applying morphological image operation. i An original zoom-in selected particle region in a micrograph image in the KLH dataset before
the preprocessing steps. j The selected particle region in a micrograph image in the KLH dataset after normalization. k The selected particle
region in a micrograph image in the KLH dataset after applying the contrast enhancement correction (CEC). l The selected particle region in a
micrograph image in the KLH dataset after applying the histogram equalization. m The selected particle region in a micrograph image in the KLH
dataset after applying image resonation with Wiener filtering. n The selected particle region in a micrograph image in the KLH dataset applying
the contrast-limited adaptive histogram equalization. o The selected particle region in a micrograph image in the KLH dataset after applying
image guided filtering. p The selected particle region in a micrograph image in the KLH dataset after applying morphological image operation
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considering the content of a guidance image, which can be
the input image itself or a different image. It has a theoret-
ical connection with the matting Laplacian matrix [33] and
can better utilize the structures in the guidance image. Let
us assume that I is a guidance image filter, p is an input
cryo-EM image, and q is an output image. Both I and p are
given beforehand and can be identical. The filtered output

at a pixel i is expressed as a weighted average as shown in
Eq. (5) [33]:

Wij ¼ 1

wj j2
X
k:i∈wk

1þ Ii þ μk
� �

I j þ μk
� �

σ2k þ ϵ

� �
ð5Þ

where i and j are pixel indices. The filter kernel Wij is a

Fig. 6 Different cryo-EM image clustering results using an Intensity-Based Clustering Algorithm (ICB). a Two sets of cryo-EM image clustering
results (Cluster #1, Cluster #2, Cluster #3 and Cluster #4) on the Apoferritin dataset. Most real particles were always assigned to Cluster 1. b Two
sets of cryo-EM image clustering results (Cluster #1, Cluster #2, Cluster #3 and Cluster #4) on the KLH dataset. Most real particles were always
assigned to Cluster 1
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function of the guidance cryo-EM image I and inde-
pendent of p as in Eq. (6) [33]:

qi ¼ Wij Ið Þpj ð6Þ

where qi is the output image after the image guidance

filtering and pj is the input image after the image guid-
ance filtering. A MATLAB function “imguidedfilter” is
used to implement the guided filtering. It performs the
edge-preserving smoothing of the cryo-EM image in
order to reduce the noise while keeping the particle
edges. Figure 5(g) and (o) show two different zoom-in

a

b

Fig. 7 Different cryo-EM image clustering results using the k-means clustering algorithm. a The two sets of cryo-EM images clusters results
(Cluster #1, Cluster #2, Cluster #3 and Cluster #4) on the Apoferritin dataset. Most real particles were assigned to Cluster 2 and Cluster 3,
respectively. b The two sets of cryo-EM image clustering results (Cluster #1, Cluster #2, Cluster #3 and Cluster #4) on the KLH dataset. Most real
particles were assigned Cluster 1 and Cluster 2, respectively
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particles after applying particle edges enhancement using
image guided filtering. The overall contrast of the par-
ticle in the cryo-EM image is improved. Compared to
the same particle in the previous step (Fig. 5(f ) and (n)),
particle edges appear more smoothly and some dark
spots around the particle object become smoother and
brighter while particle object edges become darker. In

addition, the particle edges are more connected and have
higher contrast than the background.

Step 7: particle shape localization in cryo-EM
The last step of the pre-processing stage is the particle
object localization and isolation step. In this step, we use
morphological image processing [29], which is a

Fig. 8 Different cryo-EM image clustering results using the FCM clustering algorithm. a Two sets of cryo-EM images clustering results (Cluster #1,
Cluster #2, Cluster #3 and Cluster #4) on Apoferritin dataset. Most real particles were assigned to Cluster 1 and Cluster 3, respectively. b Two sets
of cryo-EM image clustering results (Cluster #1, Cluster #2, Cluster #3 and Cluster #4) on the KLH dataset. Most real particles were assigned to Cluster 2
and Cluster 3, respectively
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collection of non-linear operations related to the shape
or morphology of features in an image. Logical
operations are applied to make particle regions similar
to each other and different from the background regions.
We apply an opening dilation operation followed by
erosion with the same structuring element as shown in
Eq. (7) [29]:

A•B ¼ A⨁Bð Þ⊖B ð7Þ

where A is the original cryo-EM image and B is the
structure element. Figure 5 (h) and (p) show two differ-
ent zoom-in particles after applying shape localization
using morphological image operation (image closing
with a structural element 5 × 5). The particle object is

Fig. 9 Cryo-EM Particle Clustering Results after Binary Image Cleaning and Non-Circular Object Removal. a The particle clustering image before
binary image cleaning and non-circular object removal on the results of ICB clustering of a cryo-EM image from Apoferritin dataset. b The particle
clustering image after binary image cleaning and non-circular object removal on the results of ICB clustering of a cryo-EM image from Apoferritin
dataset. c The particle clustering image before binary image cleaning and non-circular object removal on the results of ICB clustering of a cryo-EM
image from KLH dataset. d The particle clustering image after binary image cleaning and non-circular object removal on the results of ICB clustering
of a cryo-EM image from KLH dataset. e The particle clustering image before binary image cleaning and non-circular object removal on the results of
k-means clustering of a cryo-EM image from Apoferritin dataset. f The particle clustering image after binary image cleaning and non-circular object
removal on the results of k-means clustering of a cryo-EM image from Apoferritin dataset. g The particle clustering image before binary image
cleaning and non-circular object removal on the results of k-means clustering of a cryo-EM image from KLH dataset. h The particle clustering image
after binary image cleaning and non-circular object removal on the results of k-means clustering of a cryo-EM image from KLH dataset. i The particles
clustering image before binary image cleaning and non-circular object removal on the results of FCM clustering of a cryo-EM image from Apoferritin
dataset. j The particle clustering image after binary image cleaning and non-circular object removal on the results of FCM clustering of a cryo-EM
image from Apoferritin dataset. (k) The particle clustering image before binary image cleaning and non-circular object removal on the results of FCM
clustering of a cryo-EM image from KLH dataset. l The particle clustering image after binary image cleaning and non-circular object removal on the
results of FCM clustering of a cryo-EM image from KLH dataset
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significantly improved and more isolated from the back-
ground. Also, the particle object structure is fully con-
nected and has a higher contrast. The particle
background is smother, compared to the particle back-
ground in the previous step Fig. 5(g) and (o).

Stage 2: particle clustering
In this stage, a binary mask is constructed using un-
supervised learning clustering methods for particle isola-
tion. Two standard clustering algorithms K-means [23]
and FCM) [24] as well as a new intensity-based cluster-
ing (IBC) algorithm are applied. This clustering algo-
rithm is based on an intensity distribution model, P(i; d),
which relates the intensity difference value d to the
signed difference intensity values, i. The detailed de-
scription of the Intensity Based Clustering (IBC) algo-
rithm can be found in the Additional file 1: Algorithm 1.
Figure 6(a) and (b) show an example of different cryo-

EM clustering results by using the intensity-based cluster-
ing method (ICB) with two cryo-EM datasets (Apoferritin
[34] and KLH datasets [35]). It is noticed that the particles
are most stably grouped in Cluster 1. Generally, the parti-
cles of the different images of the same protein can be best
identified in the same specific cluster by the ICB method
according to our experiments. However, the particles are
not most stably grouped in the same cluster by k-means
and FCM algorithms due to their random initialization of

cluster centers. Figures 7 and 8 show the clustering results
of the same cryo-EM images using k-means and FCM re-
spectively. Note that the particles are located in different
clusters. For instance, the particles clustering for two cryo-
EM images in the first dataset (Apoferritin) using k-means
is shown in Fig. 7(a). The particles are grouped in two dif-
ferent clusters (Cluster 2 and 3, respectively). Figure 7(b)
shows the same issue for the k-means on the second data-
set (KLH). The same problem happens to FCM (Fig. 8).

Stage 3: particle picking
The last stage of the AutoCryoPicker framework has two
main steps. The first step is binary mask image cleaning
and the second step is particle object detection and pick-
ing. In the first step, some post-processing operations
(e.g. binary image region and hole filling, morphological
image operation using image opening, and small object
removal from the binary image) are performed to clean
the binary mask produced in the clustering stage. In the
second step, a modified Circular Hough Transform algo-
rithm (CHT) [36] is applied to detect particles in the
cleaned binary mask.

Step 1: Cryo-EM cluster image cleaning and non-circular
object removal
A binary mask of each cryo-EM cluster image is
cleaned based on removal of the small and non-circular

Fig. 10 Modified Circular Hough Transformation (CHT). a Original cryo-EM image from the KLH dataset. b Edge detection result that will be used
later for CHT to detect the center of each circular object in the binary cryo-EM image from the Apoferritin dataset based on using canny edge
detection. c Edge detection results that will be used later for CHT to detect the center of each circular object in the binary cryo-EM image from
the Apoferritin dataset based on using the modified CHT based IBC clustering and boundary pixels list extraction (outline’s boundary pixel). d
Edge detection result that will be used later for CHT to detect the center of each circular object in the binary cryo-EM image from the KLH dataset based
on using canny edge detection. e Edge detection results that will be used later for CHT to detect the center of each circular object in the binary cryo-EM
image from the KLH dataset based on using the modified CHT based IBC clustering and boundary pixels list extraction (outline’s boundary pixel)

Al-Azzawi et al. BMC Bioinformatics          (2019) 20:326 Page 13 of 26



objects via size filtering and roundness filtering. The
detailed description of the image cleaning and non-
circular object removal algorithm can be found in the

Additional file 1: Algorithm 2. Figure 9 shows the cryo-
EM image cluster cleaning results (particles clustering)
before and after image cleaning step. Figure 9(b), (f ),

Fig. 11 Top View (Circular) Particles Detection and Picking Results using Modified Circular Hough Transform (CHT). a The Ground truth (particles
manually labelled) for the cryo-EM image from the Apoferritin dataset. b ICB clustering results after the binary image cleaning and non-circular
objects removal (Apoferritin dataset). c The center of each particle illustrated by the ‘+’ sign and the radius of each particle by the blue circle
around each particle (ICB and Apoferritin dataset). d The bounding box for each particle object in the original cryo-EM image (ICB and Apoferritin
dataset). e K-means clustering results after the binary image cleaning and non-circular objects removal (Apoferritin dataset). f The center of each
particle illustrated by using the ‘+’ sign and the radius of each particle by the blue circle around each particle (k-means results on Apoferritin
dataset). g The bounding box for each particle (k-means results and Apoferritin dataset). h FCM clustering results after the binary image cleaning
and non-circular objects removal (Apoferritin dataset). i The center of each particle illustrated by the ‘+’ sign and the radius of each particle by
the blue circle around each particle (FCM and Apoferritin dataset). j The bounding box for each particle in the original cryo-EM image (FCM results and
Apoferritin dataset). k The ground truth (particles manually labeled) for the cryo-EM image from the KLH dataset. l ICB clustering results after the binary
image cleaning and non-circular objects removal (KLH dataset). m The center of each particle illustrated by the ‘+’ sign and the radius of each particle
by the blue circle (ICB and KLH dataset). n The bounding box for each particle in the original cryo-EM image (ICB and KLH dataset). o K-means
clustering results after the binary image cleaning and non-circular objects removal (KLH dataset). p Shows the center of each particle illustrated by the
‘+’ sign and the radius of each particle by the blue circle (k-means and KLH dataset). q The bounding box for each particle in the original cryo-EM
image (k-means and KLH dataset). r FCM clustering results after the binary image cleaning and non-circular objects removal (KLH dataset). s The center
of each particle illustrated by the ‘+’ sign and the radius of each particle by the blue circle (FCM and KLH dataset). t The bounding box for each
particle in the original cryo-EM image (FCM and KLH dataset)
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and (j) show the particles clustering and cleaning re-
sults for the cryo-EM images form the Apoferritin data-
set using ICB, k-means, and FCM respectively. Figure
9(d), (h), and (I) show the particles clustering and
cleaning results for the cryo-EM images form the KLH
dataset using ICB, k-means, and FCM respectively. It
noticed that the proposed algorithm (ICB) produces
significantly cleaner clustering images than the other
two standard clustering algorithms.

Step 2: top view (circular) particle detection and picking in
Cryo-EM
Since the regular shape of the protein particle in the test
cryo-EM dataset is a common shape – circle (top view),
a Circular Hough Transform (CHT) [29] is used to de-
tect particles in cluster images. For another common
particle shape in cryo-EM images - square, a square
shape detector would be needed. The detailed description
of the modified Circular Hough Transform (CHT) algo-
rithm can be found in the Additional file 1: Algorithm 3.
The results of replacing the canny edge detection by

our IBC algorithm are shown in Fig. 10(c) and (f ) using
the same images that are used in original CHT (using
canny edge detection) in Fig. 10(b) and (e). The detec-
tion algorithm returns the center and radius of each par-
ticle as is shown in Fig. 11(c), (f ), (i), (m), (p), and (s)

based on the clustering results of the different clustering
algorithms (ICB, k-means, and FCM) respectively for
Apoferritin and KLH datasets. For instance, Fig. 11(c)
shows the center and radius of each particle illustrated
by a ‘+’ sign and a blue circle. A bounding box is drawn
around each particle object in the cryo-EM image
(Fig. 11(d)). Figure 11(c) and (d) show the results of the
particle object detection and picking based on the ICB
clustering and the Circular Hough Transform (CHT) on
the first dataset (Apoferritin). Figure 10(m) and (n) show
the same results on the second dataset (KLH dataset).
Figure 11(f ) and (g) show the results of the particle ob-
ject detection and picking based on k-means clustering
and the Circular Hough Transform (CHT) on the first
dataset. Figure 11(p) and (q) show the same results on
the second dataset. Finally, Fig. 11(h) and (j) show the
results of the particle object detection and picking based
on the FCM clustering and the Circular Hough Trans-
form (CHT) on the first dataset. Figure 11(s) and (t)
show the same results on the second dataset.

Step 3: side view (square) particle detection and picking in
Cryo-EM
Another common particle shape in the cryo-EM images
is a square (side view). In this case, we add another step
called circular and non-square object removal form the

Fig. 12 Cryo-EM clean clustered images after the circular and non-square object removal. a The cryo-EM clustered images after image cleaning
and small objects removal. b The same cryo-EM clustered images after the circular and non-square object removal
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ICB clustering image after the cleaning and small object
removal step in case of keeping the side view particle
shapes (square). The detailed description of the circular
and non-square object (particles) removal algorithm can
be found in the Additional file 1: Algorithm 4.
Figure 12 shows an example of the cryo-EM clustered

images after the circular and non-square object removal.
For instance, Fig. 12(a) shows cryo-EM clustered images
after image cleaning and small objects removal although,
Fig. 12(b) shows the same cryo-EM clustered images after
the circular and non-square object removal. After this
step, the cleaned image has only the square particle shapes
(side view) in the whole cryo-EM images. We can notice
that not all the particles (side view) are cleaned after the
second post-processing step, but some of them are ac-
cording to the similarity between the Max_Allowable_
Area value and the circularities of each square particle ob-
ject. If the circularity values between each particle shapes
(side view-square and top view-circle) are very close, they
are eliminated from the cleaned image.

After the circular objects and artifacts have been being
removed, the cryo-EM cleaned mask becomes signifi-
cantly clear for detecting and selecting each square par-
ticle. The cleaned binary image has almost only the
square objects (particles side view), in this case, we apply
the square (side-view) particle detection and picking.
The detailed description of the square (side-view) par-
ticle detection and picking algorithm can be found in
the Additional file 1: Algorithm 5.
The results of the side-view particle shapes detection

(square particles) are shown in Fig. 13(c) using different
cryo-EM image samples from the KLH dataset.

Step 4: perfect side view (square) particle detection and
picking in Cryo-EM
Side-view particle detection (square) and picking is not
very accurate. We can notice that some additional objects
are attached to the original square particles in addition to
some overlapped particles, which are also selected as
shown in the final detected results in Fig. 13(b). To

Fig. 13 Side view (square) particles detection and picking results. a The original cryo-EM image (KLH dataset). b The result after circular and non-
square object removal based on the ICB clustering algorithm. c Side view (square) particle detection results
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overcome this problem, we design another post processing
algorithm called perfect square particles shape detection
and picking. The detailed description of the perfect square
particles shape detection and picking algorithm can be
found in the Additional file 1: Algorithm 6.
Figure 14 shows an example of the perfect square

particle shapes detection using Feret object diameter. Fig-
ure 14(a) shows the square particle shapes in the image
after the shapes are smoothed and blurred. Figure 14(b)
shows the new boundary box of each particle based on the
Feret diameter measures. Figure 14(c) shows the perfect

square particle shapes based on the Feret object diameter
measurement. Figure 14(d) shows the square particles
image after eliminating the outlier objects (overlapped par-
ticles). Figure 14(e) shows the square particle detection re-
sults (side view) based on the new Feret boundary box.
Finally, Fig. 14(f) shows the final results of different particle
shape detection and picking (top and side view) based ICB
clustering, modified CHT, and perfect square (side view)
particle shapes detection using Feret object diameter.
It is noticed that there is almost no true positive (top

view particles-circle) missing. In contrast, there are some

Fig. 14 Perfect square (side view) particle shape detection using the Feret object diameter using (KLH dataset). a Square particle image after
shapes smoothing and blurring. b Boundary boxes (each particle) based on Feret object diameter measurement. c Perfect square particle shapes
that are generated based on the new boundary box dimension using Feret object diameter measurement. d Square particle image after the
outlier objects are eliminated. e Square particle detection results (side view) based on the new Feret boundary box dimension. f The final results
of two different particle shape detection and picking (top and side view) based on ICB clustering and modified CHT; and perfect square (side view)
particle shapes detection using Feret object diameter
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true positive example of square particles (side view)
missing. Figure 15 shows some extra cases of the particle
detection and picking results for both cases (top and
side view) using three different algorithms (ICB, k-
means, and FCM). Figure 15(a) shows the original cryo-
EM image, while Fig. 15(b), (c), and (d) shows the target
detection and picking image using ICB, k-means, and
FCM respectively. Those examples have been manually
labeled in the case of showing the detection and picking

performance. The red dots illustrate hand labeling of the
circular particles (top view) while the green squares il-
lustrate hand labeling the squares particles (side view),
although, the blue circles showing the particle Auto-
CryoPicker detection and picking results for the top
view particles, and the yellow squares showing the side
view particles detection and picking results.
Figure 15 illustrates some cases in which AutoCryo-

Picker failed to detect and pick in both top and side

Fig. 15 Automated particle picking results for both cases (top and side view) on KLH dataset. a The original cryo-EM images form the KLH
dataset. b Target detection and picking results (top and side particles view) using the ICB clustering algorithm. c Target detection and picking
results (top and side particles view) using the k-means clustering algorithm. d Target detection and picking results (top and side particles view)
using the FCM clustering algorithm
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views on the KLH dataset. In the third test example
(Fig. 15(b), (c), and (d)), there is one top view circular
particle not detected by ICB, k-means, and FCM re-
spectively. Figure 15(b) also shows some side view
square particles not recognized by ICB clustering. In
both cases (top and side view particles), there are almost
no false positive detections by ICB clustering, indicating
that AutoCryoPicker rarely picked objects from either
the background area or icy area. Figure 15(c) and (d)
show some side view particles not detected by k-means
and FCM respectively. k-means and FCM missed more
particles than ICB clustering. They had some false posi-
tives (Fig. 15(c) and (d)). In one case, a side view was
mistakenly detected as a top view, and in another case a
background area was detected as a top view.

Results
We evaluate the performance of AutoCryoPicker in the
three stages according to multiple metrics such as clus-
tering accuracy, particle misclassification (or particles
detection) rate, Dice, and time complexity.

Datasets
Images from two datasets (Apoferritin dataset and Keyhole
Limpet Hemocyanin (KLH) dataset) are used to evaluate
AutoCryoPicker. The particles in the two datasets are regu-
lar shapes, which are ideal for testing AutoCryoPicker be-
cause it is designed to detect and pick regular (e.g. circular)
particle shapes. Two common shapes of protein particles in
cryo-EM images are circles and rectangles.
Apoferritin dataset [34] uses a multi-frame MRC image

format (32 Bit Float). The size of each micrograph is 1240
by 1200 pixels. It consists of 20 micrographs each having
50 frames at 2 electrons/A^2/frame, where the beam en-
ergy is 300 kV. The particle shape in this dataset is circular.
The Keyhole Limpet Hemocyanin (KLH) dataset from

US National Resource for Automated Molecular Micros-
copy [35] uses a single frame image format in a JPG file
format. The size of each micrograph is 2048 by 2048
pixels. It consists of 82 micrographs at 2.2 electrons/
A^2/pixel, where the beam energy is 300,120 kV. There
are two main types of projection views in this dataset:
the top view (circular particle shape) and the side view
(square particle shape). The KLH dataset [33] is a stand-
ard test dataset for particle picking. The KLH dataset is
a challenging dataset because of different specimens (dif-
ferent particles) and confounding artifacts (ice contam-
ination, degraded particles, particle aggregates, etc.).

Evaluation metrics
In addition to the proposed clustering algorithm (ICB),
we select two popular cluster algorithms (k-means and
FCM). We compare them based on three factors. The

first one is the running time. K-means and FCM based
pairwise distance comparison is more time consuming.
The second one is the effectiveness, which includes the
clustering accuracy, misclassification rate, dice criteria,
precision, recall, and the f1 measure. The third factor is
the clustering destabilization. Because K-means and
FCM use random selection for cluster initialization, they
may group the same points into different clusters in dif-
ferent runs. This requires an extra manual step to select
the most appropriate cluster representing particles,
which is not fully automated. In contrast, the ICB clus-
tering algorithm is based on computing the interval size
to determine the range of the intensity of cluster centers.
Therefore, the particles that have the similar intensity
values will be grouped into the same cluster.
For the particles clustering stage, we use clustering ac-

curacy and misclassification rate which are defined by Eqs.
(20) and (21), respectively. Each evaluation metric is calcu-
lated according to the numbers in a confusion matrix such
as the True Positive (TP) which refers to the number of
correct detections of positive cases, true Negative (TN)
the number of correct detections of negative cases, False

Table 1 The results of AutoCryoPicker using the three
clustering methods on the first dataset (Apoferritin)

Measures ICB k-means FCM

Sensitivity/Recall (%) 98.11 87.90 83.60

Specificity (%) 97.76 87.97 85.85

Precision (%) 97.11 88.81 87.99

Misclassification Rate (%) 7.784 7.666 15.881

F1 Score (%) 97.61 84.59 83.10

Accuracy (%) 95.36 81.64 78.46

DICE Score (%) 97.76 87.97 85.85

Time consuming (sec.) 1.71 10.29 30.98

Clustering Selection Approach Fully Automated Manually Manually

The table reports the average of the sensitivity or recall, specificity, precision,
F1 score, accuracy, DICE score, and the particle clustering time (seconds)

Table 2 The results of AutoCryoPicker using the three
clustering methods on the second dataset (KLH)

Measures ICB k-means FCM

Sensitivity/Recall (%) 96.23 93.42 84.67

Specificity (%) 95.095 92.71 94.7925

Precision (%) 95.095 92.71 94.7925

Misclassification Rate (%) 3.77 6.58 15.33

F1 Score (%) 95.595 92.825 88.61

Accuracy (%) 91.8275 87.5025 80.835

DICE Score (%) 95.595 92.825 89.5

Time consuming (sec.) 4.714643 23.8332305 105.676302

The table reports the average of the sensitivity or recall, specificity, precision,
F1 score, accuracy, DICE score, and the particle clustering time
consuming (seconds)
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Positive (FP) the number of incorrect detections of posi-
tive cases and False Negative (FN) the number of incorrect
detections of negative cases [37].

Accuracy ¼ TP
TP þ TN

� 100 ð8Þ

Fig. 16 Automated particle picking results on the two datasets. a A cryo-EM image with a high identical particle density and a lack low-frequency
from the Apoferritin dataset. b A low SNR cryo-EM image from the Apoferritin dataset. c A micrograph image from the KLH dataset that includes
excessively overlapped particles due to confounding artifacts such as ice contamination, degraded particles, and particle aggregates. d A micrograph
image from the KLH dataset that has a very low spatial density and different intensity levels. e and (f) Particle picking results using Intensity Based
Clustering Algorithm (ICB) (Apoferritin dataset). i and (j) Particle picking results using k-means (Apoferritin dataset). m and (n) Particle picking results
using FCM (Apoferritin dataset). g and (h) Particle picking results using Intensity Based Clustering Algorithm (ICB) (KLH dataset). k and (l) Particle
picking results using k-means (KLH dataset). o and (p) Particle picking results using FCM (KLH dataset)
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Fig. 17 (See legend on next page.)
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Misclassification Rate ¼ FP þ TN
Total

� 100 ð9Þ

Moreover, Dice Criteria (DIC) is also used for the
similarity measure between a cluster image and the
Ground Truth (GT). DC is defined by Eq. (10) [38]:

Dice ¼ 2 A∩Bð Þ
Aþ B

� 100 ð10Þ

where, A is the cluster image and B is the ground truth
image of A. Finally, we use the precision, recall, and F1
measure scores [37] to evaluate the particle picking re-
sults in the particle picking stage. The precision, recall,
and F measure are defined by Eqs. (11), (12) and (13), re-
spectively [39]:

Precision ¼ TP
TP þ FP

� 100 ð11Þ

Recall ¼ TP
TP þ FN

� 100 ð12Þ

F1 measure ¼ 2� Recall � Precision
Recall þ Precision

ð13Þ

Particle clustering, detection and picking results
In order to evaluate the performance of automated par-
ticle clustering and picking, we generated a true reference
by manually picking the particles on the images.
Figure 11(a), and (k) show two different cryo-EM images
from the two datasets (Apoferritin and KLH), respectively.
The results on one image from the Apoferritin dataset are
shown in Fig. 10(d), (g), and (j) while the results for KLH
dataset are shown in Fig. 11(n), (q), and (t). It was demon-
strated that most of the particles were correctly picked by
AutoCryoPicker. Table 1 reports the recall, precision, ac-
curacy, F1 score, and the running time of AutoCryoPicker
based on three clustering algorithms: K-means, FCM, and

IBC. On the Apoferritin dataset the AutoCryoPicker based
on ICB clustering achieves a higher accuracy of 95.36%
than 84.59 and 78.46% of k-means and FCM respectively.
Also, ICB ran significantly faster in particles clustering
(average time 1.71 s versus 10.29 s and 30.98 s of k-means
and FCM, respectively).
Table 2 shows the results on the KLH dataset. Auto-

CryoPicker based on ICB achieves a higher accuracy
91.82% than that of k-means and FCM (i.e. 87.50 and
80.83% respectively). The average clustering time of the
whole dataset using ICB was 4.7 s on average, faster than
the k-means by 23.8 s and 105.8 s of the FCM.
Two different cases from each of the two datasets are

illustrated in Fig. 16. Figure 16(a) shows cryo-EM images
of a high particle density from the Apoferritin dataset
with a low-frequency and Fig. 16(b) a cryo-EM image of
low SNR. Figure 16(c) and (d) shows two different
micrograph cases from the KLH dataset that consist of
excessively overlapped particles and some confounding
artifacts such as ice contamination, degraded particles,
and particle aggregates. AutoCryoPicker still performed
very well on these cases. Figure 16(e)-(p) show the par-
ticle picking results using ICB, k-means, and FCM
methods on the two datasets, respectively.

Comparison with another particle picking software
EMAN2 was selected as an example of particle picking
software for cryo-EM images [25]. The “e2boxer.py” pro-
gram of EMAN2 was applied to the same images input
to AutoCryoPicker.
For the Apoferritin images, a reference set of 10 parti-

cles was selected manually (Fig. 17(a), 17(b)) and then au-
tomated picking was performed with different threshold
values (lower threshold results in more particles picked).
For example, use of arbitrarily low threshold values of 0.0
and 0.5 results in most of the valid particles being

(See figure on previous page.)
Fig. 17 Particle picking using EMAN2 and AutoCryoPicker. a The manually selected reference particles of the Apoferritin dataset that were used
for automated particle picking with EMAN2. b Zoomed-in view of the reference particles for the Apoferritin dataset. c EMAN2 automatic picking
result based on threshold value = 0.0 using the first tested image of the Apoferritin dataset. d EMAN2 automatic picking result based on threshold
value = 0.5 using the first tested image of the Apoferritin dataset. e EMAN2 automatic picking result based the threshold value = 2.3 using the first tested
image of the Apoferritin dataset. Red dots mark missed particles). f Ground truth of first tested image of the Apoferritin dataset. Yellow dots mark valid
particles. g EMAN2 automatic picking result based the threshold value = 2.3 using the second tested image of the Apoferritin dataset. Red dots mark
missed particles). h Ground truth of second tested image of the Apoferritin dataset. Yellow dots mark valid particles. i The manually selected reference
particles of the KLH dataset that were used for automated picking of top-view (circular) particles with EMAN2. j EMAN2 automatic picking result based
the threshold value = 0.5 using the first tested image of the KLH dataset. Red squares mark the false positives and the yellow dots the missing particles. k
Zoomed-in view of the automatically picked particles (threshold value = 0.5) for first tested image of the KLH dataset. l EMAN2 automatic picking result
based the threshold value = 0.5 using the second tested image of the KLH dataset. Red squares mark the false positives, and the yellow dots mark the
missing particles (top-view). m Particle picking result from AutoCryoPicker using the first tested image of the Apoferritin dataset. Red ‘+’ mark the center
of each particle and blue circles the top-view detected particles in the cryo-EM image. n Particle picking result from AutoCryoPicker using the second
tested image of the Apoferritin dataset. Red ‘+’ mark the center of each particle and blue circles the top-view detected particles in the cryo-EM image. o
Particle picking result from AutoCryoPicker using the first tested image of the KLH dataset. Red ‘+’ marks the center of each particle, blue circles the top-
view detected particles in the cryo-EM image, and the yellow squares the side-view detected particles in the cryo-EM image. p Particle picking result
from AutoCryoPicker using the second tested image from the KLH dataset. Red ‘+’ marks the center of each particle, blue circles the top-view detected
particles in the cryo-EM image, and the yellow squares the side-view detected particles in the cryo-EM image
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selected; however, false positives likely corresponding to
thick ice were also selected (Fig. 17(c), (d)). Increasing the
threshold to a more reasonable value of 2.3 resulted in no
false positives at the expense of leaving several good parti-
cles unpicked (Fig. 17(e), (g)). The lack of particle set com-
pleteness is evident by comparison to the ground truth
result (Fig. 17(f), (h)). In comparison, AutoCryoPicker
successfully captured all the valid particles on the images
without any false positives (Fig. 17(m), (n)).
Similarly, results of using EMAN2 autopicking with

the circular particles in the KLH images yielded incom-
plete recording of the valid particles and several false
positives (Fig. 17(j), (l)). In contrast, AutoCryoPicker was
able to identify almost all of the true particles (both the
circular and rectangular projections) in the KLH images,
without the generation of false positives (Fig. 17(o), (p)).
Quantitative assessment of the comparison is shown

in Fig. 18 and Tables 3, 4 and 5. Figure 18(a) and (e)
show two original images from the Apoferritin dataset
where the images have top-view particle shapes only.

Figure 18(b) and (f ) show the manually particle picking
labels (Ground Truth) where each particle is marked by
a yellow circle on top of each particle in the original im-
ages. Figure 18(c) and (g) show the particle picking per-
formance results using EMAN2. In terms of evaluating
each particle’s picking tool in addition to the AutoCryo-
Picker, three criteria are selected to label and evaluate
the particles picking performance results. True Positive
(TP) picking where the correct particles are marked by
the green circles. False Negative (FN) picking where the
missed particles are marked by red circles. False Positive
(FP) picking where the incorrectly picked particles are
marked by orange circles. Figure 18 (d) and (h) show the
same criteria of the particle picking results using Auto-
CryoPicker. Similarly, two images from the KLH dataset
are shown in Fig. 18(i) and (m). Figure 18(j) and (n)
show the particles ground truth (hand picking and label-
ing). Figure 18(k) and (o) illustrate the performance re-
sults of the particle picking using EMAN2. Figure 18(l)
and (p) show the same performance results using
AutoCryoPicker.
Table 3 illustrates the statistical evaluation of the perform-

ance results based on the TP, FN, FP for each single particle
picking algorithm, as well as the particle shape class and
total number of the particles (ground truth) in each image.
Note that AutoCryoPicker performed better in detecting
two different particle shapes on same images (Table 3).

(See figure on previous page.)
Fig. 18 Evaluation of particle picking using EMAN2 and AutoCryoPicker. a Apoferritin cryo-EM image with top-view particle shapes only. b The
ground truth (manually particle picking labels) of the first Apoferritin cryo-EM image where each particle is marked by a yellow circle on top of
each particle. c The particle picking results of the first Apoferritin image using EMAN2. The particles are labeled as follows: Green, True Positive
(TP); red, False Negative (FN). d The particle picking results of the first Apoferritin cryo-EM image using AutoCryoPicker. The particles are labeled
as follows: Green, True Positive (TP); red, False Negative (FN); orange, False Positive (FP). e The second original Apoferritin cryo-EM image with
top-view particle shapes only. f The ground truth (manually particle picking labels) of the second Apoferritin cryo-EM image where each particle
is marked by a yellow circle on top of each particle. g The particle picking results of the second Apoferritin cryo-EM image using EMAN2. The
particles are labeled as follows: Green, True Positive (TP); red, False Negative (FN); orange, False Positive (FP). h The particle picking results of the
second Apoferritin cryo-EM image using AutoCryoPicker. The particles are labeled as follows: Green, True Positive (TP); red, False Negative (FN);
orange, False Positive (FP). i The first original KLH cryo-EM image. (j) The ground truth (manually particle picking labels) of the first KLH cryo-EM
image where each particle is marked by a yellow circle on top of each particle. k The particle picking results of the first KLH image using EMAN2.
The particles are labeled as follows: Green, True Positive (TP); red, False Negative (FN). l The particle picking results of the first KLH cryo-EM image
using AutoCryoPicker. The particles are labeled as follows: Green, True Positive (TP); red, False Negative (FN). m The second original KLH cryo-EM
image which has top-view particle shapes only. n The ground truth (manually particle picking labels) of the second KLH cryo-EM image where
each particle is marked by a yellow circle on top of each particle. o The particle picking results of the second KLH cryo-EM image using EMAN2.
The particles are labeled as follows: Green, True Positive (TP); red, False Negative (FN). p The particle picking results of the second KLH cryo-EM
image using AutoCryoPicker. The particles are labeled as follows: Green, True Positive (TP); red, False Negative (FN)

Table 3 Statistical evaluation AutoCryoPicker and EMAN2
performance using the Apoferritin and KLH images

Cryo-EM
images

Particle
Shape

Total
Particles
Number

AutoCryoPicker EMAN2

TP FN FP TP FN FP

Apoferritin
Image 1

Top-View 151 148 3 2 84 67 0

Apoferritin
Image 2

Top-View 160 159 1 5 83 76 1

KLH image 1 Top-View 17 14 3 0 8 9 11

KLH image 2 Top-View 7 7 0 0 3 4 10

KLH image 1 Side-View 24 8 15 0 N/A N/A N/A

KLH image 2 Side-View 14 6 8 0 N/A N/A N/A

The table reports TP: True Positive picking results where the correct particles
are picked, FN: False Negative picking results where some good particles are
missed, FP: False Positive picking results where the incorrect particles (other
objects such as background or artificial objects) are picked as particles

Table 4 Evaluation of particle picking on Apoferritin images

Measures AutoCryoPicker EMAN2

Sensitivity/Recall (%) 98.70 53.92

Precision (%) 97.81 99.41

Misclassification Rate (%) 1.31 46.09

F1 Score (%) 98.25 69.90

Accuracy (%) 96.55 53.76

DICE Score (%) 98.24 69.90
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Table 4 illustrates the evaluation of different single
particle picking methods by reporting the average per-
formance results using images form the Apoferritin
dataset. AutoCryoPicker achieves a higher recall (98.70)
and accuracy (96.55) compared to EMAN2 (53.92 and
53.76, respectively). Also, AutoCryoPicker achieved a
higher f1 score (98.25) and dice score (98.24), as well as
a low false negative rate (1.31).
Finally, Table 5 shows the performance results of dif-

ferent particle picking methods using KLH images. The
performance results in Table 5 have been calculated
based on the circular particle detection only (top-view
particles) since EMAN2 was challenged in detecting two
different particle shape in the same image at the same
time as shown in Table 3. In this case, AutoCryoPicker
achieves higher recall (90.87), precision (98.48), F1 score
(94.24), accuracy (89.36), dice score (94.24) and low miss
classification rate (9.14).

Conclusions
Accurate particle picking in cryo-EM images still re-
quires substantial human intervention and, therefore,
can be labor-intensive and time-consuming. To address
this challenge, we develop AutoCryoPicker – a fully au-
tomated particle picking approach based on image pre-
processing, unsupervised clustering and shape detection.
Our experiments show that the approach can signifi-
cantly improve signal to noise ratio in cryo-EM images
and pick particles rather accurately. Therefore, the auto-
mated method can relieve scientists from the laborious
work of picking cryo-EM particles and help improve the
efficiency and effectiveness of cryo-EM based protein
structure determination. We conclude that AutoCryo-
Picker has the potential for being incorporated into the
particle picking pipelines of other cryo-EM image pro-
cessing software.
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