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Abstract

Background: The deployment of Genome-wide association studies (GWASs) requires genomic information of a
large population to produce reliable results. This raises significant privacy concerns, making people hesitate to
contribute their genetic information to such studies.

Results: We propose two provably secure solutions to address this challenge: (1) a somewhat homomorphic
encryption (HE) approach, and (2) a secure multiparty computation (MPC) approach. Unlike previous work, our
approach does not rely on adding noise to the input data, nor does it reveal any information about the patients. Our
protocols aim to prevent data breaches by calculating the x? statistic in a privacy-preserving manner, without
revealing any information other than whether the statistic is significant or not. Specifically, our protocols compute the
x? statistic, but only return a yes/no answer, indicating significance. By not revealing the statistic value itself but only
the significance, our approach thwarts attacks exploiting statistic values. We significantly increased the efficiency of

determining significance.

our HE protocols by introducing a new masking technique to perform the secure comparison that is necessary for

Conclusions: We show that full-scale privacy-preserving GWAS is practical, as long as the statistics can be computed
by low degree polynomials. Our implementations demonstrated that both approaches are efficient. The secure
multiparty computation technique completes its execution in approximately 2 ms for data contributed by one million

subjects.
Keywords: Genome-wide association study (GWAS), Homomorphic encryption (HE), Secure multiparty computation
(MPQ)

Background has the particular disease. Each individual gives a sample

The goal of a genome-wide association study (GWAS) is
to identify genetic variants that are associated with traits.
Large-scale sequencing provides reliable information on
single nucleotide variants (SNVs). To date, researchers
worked mostly on identifying genetic alterations which
lead to classification of SN'Vs and SNPs (single nucleotide
polymorphims). Therefore, when we mention SNVs we
refer to both frequent SNPs, and less frequent SNVs. A
common approach is to divide the population into a dis-
ease, and a healthy group based on whether the individual
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DNA from which millions of genetic variants (i.e., SN'Vs)
are identified. If a variant is more frequent in individu-
als with the disease, it will likely be associated with the
specific genetic disorder and be classified as a potential
marker of the disease.

Motivation for the distributed setup with secure
computations

Having a large population size is crucial for GWAS,
because it allows to improve the accuracy of identified
associations, especially for rare genetic disorders. Two
recent developments result in a significant increase of the
available data for GWAS: First, the development of cheap
next generation sequencing (NGS). Second, the creation
of distributed genomic databases, which enable pooling
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of data from many hospitals, and research centers, fur-
ther increasing the population sizes of the studies by 10-50
times. Several such distributed databases have recently
been proposed, including NGS-Logistics [1], Elixir, and
GA4GH Beacon [2].

In studies like GWAS, which use personally identifi-
able genetic markers of the participants as input, the
privacy of the patients and protection of their sensitive
data becomes of great importance. It has been shown by
Malin et al. [3], that releasing the raw data even after
removal of explicit identifiers, does not protect an indi-
vidual from getting identified. The classical approach to
solve this privacy problem involves a trusted third party
who first collects both the SNV, and the trait data, then
carries out the statistical test, and finally either a) only
reveals the very few SN'Vs that have statistically significant
association or b) reveals all aggregate data on SN'Vs but
masks them with sufficient noise to guarantee differen-
tial privacy. For example, previous works by Uhlerop et al.
[4], and by Simmons and Berger [5] have focused on com-
puting a differentially private x? test. However, setting up
such a trusted third party has significant legal, and techni-
cal difficulties given the sensitive nature of the underlying
data.

The aforementioned privacy concerns make both indi-
viduals and medical centers hesitant to share this private
data. Hence, centralized (third party) datasets collected
for research purposes remain small. Our goal is to address
this challenge, in a way that the data can be shared with-
out trusting an external third party. In our setup, the
medical centers aggregate and encrypt or secret share
the patient data before sending it to a third party for
research purposes. This ensures the privacy of the input
data, because the only party with access to the raw input
data is the medical center which gathers it. Hence, our
distributed solution allows to combine input data from
different medical centers to construct a large dataset for
research, while eliminating the privacy implications. Our
solution can even scale up to millions of patients, and per-
form millions or tens of millions of hypothesis tests per day.
This enables the first step towards large-scale distributed
GWAS, where multiple medical centers contribute data,
without relying on a trusted third party. Such large data
collections would also allow association studies on rare
diseases.

Another reason to opt for our secure computation solu-
tion instead of the trusted third party one, is that the
latter does not provide defense against malicious agents
or operating system bugs, which might result in leakage
of information. In our case, such a mishap would reveal
encrypted values (or shares of a value, resp.), which essen-
tially provides no information to the adversary, as long as
the secret key is not comprimised (or the adversary has
fewer than # shares, resp.).
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Motivation for the yes/no response
Studies related to GWAS raised even more privacey con-
cerns. Research has brought to light that releasing aggre-
gated statistics related to GWASs leaks information in
an implicit way. Therefore, it is not enough to protect
only the input data; care has to be taken when releas-
ing aggregated results to the public, as well. The work of
Homer et al. [6] showed that the presence of an individual
in the case group can be determined from the aggre-
gated allele frequencies. One can argue that this attack
requires an adversary to have at least 10,000 SNVs from
the victim. However, we assume that with the current
sequencing techniques, this is no longer a challenge and
hence Homer’s attack is posing a real threat nowadays.
By computing with encrypted or secret shared data, and
only revealing a boolean value indicating significance, we
prevent adversaries from obtaining the aggregated allele
frequencies, thus protecting against Homer’s attack.
Shortly following Homer’s attack, Wang et al. [7]
reported an attack based on statistical values reported in
GWAS papers. Even though, the attack of Wang et al.
[7] requires more statistical data than what our solution
would reveal, such developments show that we need to
be careful with the amount of information we publish.
Our solution anticipates future statistical attacks, by not
publishing any statistic values at all.

Additional properties of the our setup
Our proposal consists of a cryptographic approach, where
the trusted third party performing research is replaced
by a privacy-preserving system, which receives the input
in encrypted (protected) form from a set of distributed
parties (e.g., hospitals), performs the x? test, and only
publicly discloses whether the current test is significant or
not. Since nothing except the final answer is revealed dur-
ing the execution of our protocols, the proposed system
enjoys various security guarantees, even against mali-
cious agents who gain access to the servers executing the
system.

Even though the aforementioned attacks show it is not
a good idea to reveal the x2 value, the value itself would
be highly interesting for research purposes. Therefore, it
is worth mentioning that our current system can be eas-
ily adapted to return the significance value itself. However,
since revealing the values can cause privacy issues, we
suggest to incorperate an authentication process to the
system if the x? value should be revealed. This way the
access to the actual x?2 values can be restricted to authen-
ticated users. As such, the researchers can have access
to the actual result, while it stays hidden from the pub-
lic and therefore cannot be abused in an attack like the
aforementioned ones.

By only revealing the yes/no answer, our system indi-
cates whether the SNV is a possible marker. To determine
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whether or not this SNV is actually causally linked to
the disease more statistics need to be computed. There-
fore, we assume that for the selected SNVs —indicated by
our system— the researcher would request specific patient
data from the different centers for further analysis. We
assume this will happen with the current techniques for
requesting data for GWASs. However, we expect patients
to be more inclined to share their data for research,
even despite the potential privacy concerns, when the
researchers explain to them, with the aid of the public
tables, that their data is highly relevant for the study of a
specific disease.

Additionally, it is common practice in GWASs, and
more general bioinformatics studies to publish only when
significant results are found. This means that all the
insignificant (yet identified) results are not published,
despite the fact that they could also contribute in finding,
or eliminating interesting correlations. In fact, a non-
significant correlation between a genotype and a pheno-
type can serve as a proof that a certain mutation is not
related to a disease. Our solution comes to bridge this gap,
as we aim to construct a public table, listing all possible
mutations, versus all possible phenotypes, and indicating
whether the initial relationship between them (indicated
by the x? test) is significant or not. By publishing also
the insignificant results in our public table, mutations not
related to phenotypes can be immediately shown, allow-
ing the researchers to discard them, and focus only on the
significant ones.

To allow for a privacy-preserving system addressing
our challenges, we propose two secure approaches: one
based on homomorphic encryption (HE), and one based
on multiparty computation (MPC). We also compare their
security guarantees, and their efficiency in terms of exe-
cution time of practical implementations. Homomorphic
encryption refers to a set of cryptographic tools that
allow certain computations to take place in the encrypted
domain, while the resulting ciphertext, when decrypted, is
the expected (correct) result of operations on the plaintext
data. Secure multiparty computation aims at allowing a
similar functionality, amongst several mutually distrusting
parties, who wish to compute a function without revealing
their private inputs. With the latter approach, communi-
cation between the computing parties is required for the
execution of the cryptographic protocols.

In the MPC setting, there are two main security mod-
els used, offering passive, or active security, respectively.
Passive security, also known as security in the semi-honest
model, assumes that the protocol participants are honest-
but-curious. This means that they are trying to collect as
much information as possible from the protocol execu-
tion, but they do follow the protocol instructions honestly.
Active security, also known as malicious security, offers
stronger security guarantees, assuming that adversaries
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or corrupted protocol participants may arbitrarily deviate
from the protocol instructions. In both security models,
we can build protocols assuming an honest majority of
the protocol participants, or a dishonest majority. Our
solution with MPC offers the highest security guaran-
tees being built in the malicious model, with dishonest
majority.
Specifically, we make the following contributions:

e e propose the first somewhat homomorphic
encryption approach to withstand GWAS attacks
such as the ones described by Homer et al. [6].

e We develop a multiparty computation solution for
GWAS that is efficient for realistic sample sizes.

e We propose a new masking technique to allow
efficient secure comparisons.

e We compare the security, and efficiency of HE and
MPC on a real-life application.

e We demonstrate the practicality of our solutions,
based on their short running times, which are in the
range of 1.9-2.4 ms for the MPC approach.

e We show that our solution scales logarithmically in
the number of subjects contributing their genetic
information, allowing us to treat current population
sizes, and being able to scale to larger (future)

GW ASs for millions of people.

Related work

Homomorphic encryption approach

There has already been some work on using homomor-
phic encryption to preserve the privacy of the patients
while performing statistics on genome data. Kim et al.
[8] present the computation of minor allele frequencies,
and the x? statistic with the use of the homomorphic
BGV and YASHE encryption schemes. They use a spe-
cific encoding technique to improve on the work of Lauter
et al. [9]. However, they only compute the allele counts
homomorphically, and execute the other operations on
the decrypted data. Another work on GWASs using fully
homomorphic encryption was published by Lu et al.
[10]. They also start from encrypted genotype/phenotype
information that is uploaded to a cloud for each per-
son separately. Then they perform the minimal operations
necessary to provide someone with access to the decryp-
tion key with the necessary values to construct the con-
tingency table for the requested case based on the data
present on the cloud. Hence, when performing a request,
the scientist gets three encrypted values, and based on
those he can, after decryption, reconstruct the contin-
gency table, and compute the x? statistic in the clear.
These solutions are not resistant to attacks like the one
described by Homer et al. [6]. Our solution improves on
these previous works by performing the x? computation
in the encrypted domain, and revealing only whether or



Bonte et al. BMC Bioinformatics (2018) 19:537

not the x? value is significant for this case, which makes
the previously mentioned attacks impossible.

Sadat et al. [11] propose a hybrid system called SAFETY,
to compute various statistical values over genomic data.
This hybrid system consists of a combination of the
partially homomorphic Paillier scheme with the secure
hardware component of Intel Software Guard Extensions
(Intel SGX) to ensure both high efficiency, and privacy.
With this hybrid system they propose a more efficient
way to get the total counts of all patients for a specific
case. By using the additive property of the homomorphic
Paillier scheme, they reduce the computational overhead
of decrypting all individual encrypted outputs received
from the different servers. Afterwards it uses the Intel
SGX component to perform the x? computations. Even
though, the results of this system scale well for increasing
number of servers that provide data for the computation,
the system does not provide the same functionality as
our solution. Sadat et al. [11] mention that the only pri-
vacy guarantee for the final computation result against the
attack described by Homer et al. [6] is the assumption that
the researcher decrypting the result is semi-honest. This is
the main difference with our work: with our solution only
the significance of the test will be made public. As men-
tioned before, the current system can be easily adapted
to return the x? value itself but due to known attacks
we want to avoid making these values public. Hence, we
believe that if our system is adapted to reveal the 2 val-
ues, it should only reveal these values after authentication
of the requesting party.

Zhang et al. [12], construct an algorithm, which per-
forms the whole x 2 statistic in the homomorphic domain.
To compute the division, they construct a lookup table in
which they link the result of their computation with the
nominator and denominator of the corresponding, simpli-
fied fraction. Therefore, an authenticated user can look up
the correct fraction in the lookup table after decrypting
the result, and hence recover the result of the x?2 statis-
tic. Even though their strategy performs well, it does not
scale enough to treat the large datasets we envision in
our application. Increasing the number of patients in the
study would increase the circuit depth significantly, which
comes with several disadvantages including increasing the
parameter sizes, and hence the key size, and ciphertexts
size, as well as the computation time.

Secure multiparty computation approach

Kamm et al. [13] propose a solution to address the pri-
vacy challenges in genome-wide association studies. Their
application scenarios, much like ours, focus on large data
collections from several biobanks, and their solutions are
based on the same fundamental techniques as ours. How-
ever, the setting of Kamm et al. [13] requires all raw
genotype, phenotype, and clinical data to be entered to
the secure shared database. To the contrary, our setting
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assumes that only the aggregate values, necessary to iden-
tify the significance of a gene-disease relationship (i.e.,
the contingency tables recording the counts of genotypes
vs. phenotypes), are contributed by each biobank. This
is a simpler, and more realistic setting, which not only
is likely to be implemented in the near future, but also
alleviates the computational cost of the proposed solu-
tions. Unlike the approach of Kamm et al. [13], and the
alternatives that they suggest, our solution achieves active
security with dishonest majority (contrary to the semi-
honest security suggested). This means that our protocols
tolerate dishonest behavior by the majority of the comput-
ing parties, while preserving privacy, and still guarantee
the correctness of accepted results. Kamm et al’s proto-
cols assume that the computing parties —the biobanks—
cannot be corrupted, which we consider to be a strong
assumption.

Independent and concurrent work by Cho et al. [14]
tries to address the same problem as we do in our work,
using multiparty computation techniques. They focus on
amethod that enables the identification and correction for
population biases before computing the statistics. How-
ever, just like the work of Kamm et al. [13], they make the
strong assumption of semi-honest security. In practice,
the semi-honest security is not a sufficient security guar-
antee for GWAS, as attackers who have obtained access to
the systems are likely to employ active measures to obtain
the data.

Constable et al. [15] present a garbled-circuit based
MPC approach to perform GWAS. Their solution can
compute in a privacy-preserving manner the minor allele
frequency (MAF), and the x? statistic. Similarly to the
work of Kamm et al. [13], the framework of Consta-
ble et al. [15] requires the raw genotype, and phenotype
data, increasing the workload of the proposed privacy-
preserving system. In contrast to our solution, which can
scale to hundreds of medical centers contributing data to
the GWAS, the solution of Constable et al. [15] only works
for two medical centers. Despite the strong security guar-
antees that our approach offers, which generally presents
itself as a tradeoff to efficiency, our proposal is faster than
that of Constable et al. [15]. This is also due to the fact
that we have optimized the computations of the x? statis-
tic, in such a way that the expensive computations in the
privacy-preserving domain, are avoided to the maximum
extent possible.

Zhang et al. [16] propose a secret-sharing based MPC
approach to solve the same GWAS problem as Consta-
ble et al. [15]. Although Zhang et al’s solution can scale
to more than two medical centers contributing data to
the GWAS, the approach has the same inherent limita-
tions (e.g., requiring raw genomic data as input) that their
application scenario incurs. The works of Zhang et al.
[16], Constable et al. [15], and Cho et al. [14] have not
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considered protecting the aggregate statistic result of the
private computation, which —as Homer et al. [6] showed—
can be used to breach an individual’s privacy. We addi-
tionally protect the aggregate statistic result, while at the
same time allowing for a public list to be created, showing
which SN'Vs are significant for a certain disease.

Methods

Distributed GWAS scenario

In this paper we aim at identifying which mutations are
linked to which phenotypes, without compromising the
privacy of the patients. Specifically, there are K centers
(hospitals) who each have genotype (SNV), and pheno-
type (trait) data. For a single genotype-phenotype pair a
center k has a 2 x 2 contingency table! of the counts
of patients for all 4 possible combinations of genotype,
and phenotype (see Table 1). The goal is to perform
a privacy-preserving computation that adds together all
contingency tables from individual centers, then com-
putes the Pearson’s x 2 test statistic [17], and finally reveals
a boolean value indicating whether the computed statis-
tic is larger than a predetermined significance threshold ¢.
This threshold is chosen based on the p-value, and the cor-
rection for multiple hypothesis testing. For example, using
significance level 0.01 with Bonferroni correction for 10
million tests results in ¢ = 37.3, and for 100 million tests
t=41.8.

We propose two different methods for carrying out
the x? test without disclosing the input, and intermedi-
ate values. The first method performs all computations
on homomorphically encrypted data, while the second
applies techniques of secure multiparty computation to
achieve the same goal. Both methods follow the same gen-
eral outline, presented below. The first step is to encrypt
(or secret share) all the input tables from the centers, and
securely compute the aggregate contingency table

K
0= OE,-](), (1)
k=1

where Ol(.{() is the data from k-th center. This step is
straightforward in both methods.

Next to determine the significance of the relation
between a mutation, and a phenotype, we calculate the

Table 1 Representation of a contingency table containing the
number of observed genotypes i per phenotype j noted by O;

phenotype —phenotype
genotype 01, O RT1 =011+ 012
—genotype O 0y RT; =01+ 0y
Ch=01140y1 ChHh=012+0,, N=Chh+CTl,=RT1+RT,

In the table we also calculate the Row Totals (RT;), Column Totals (CT)), as well as the
grand total (N)
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Pearson’s x2 test statistic [17] on the aggregated con-
tingency table O, and check whether this value is above
the threshold ¢. The Pearson’s 2 statistic is given by the
following formula:

xXX= >

ije{l,2}

(Oij — modeli,')2 :
model;; ’ @
where model;; = (RT,' . CT,) /N with RT; = O;1 + O;2
being the row total, CT; = O;; + O, being the column
total, and N the total number of patients.

Since division is a costly operation in both the homo-
morphic domain, and secret shared domain, we will
rewrite the formula of the x?2 statistic as follows:

2 2
o RT1-CTy - (N - 099 —RT - CT3)” RTy-CTy-(N-0z1 —RTy-CTy)
N -RTy-RTy - CT7 - CT N -RTy-RTy - CT7 - CTy
_RTy-CTy - (N 015 —RTy -CTy)*  RTy-CT- (N-O11 — RTy - CTy)?
" N-RTy-RT-CT; -CTy N -RTy -RTy - CT; - CT, '

®3)

As a final step, we need to compare whether x2 > ¢. To
do that, we calculate the numerator, and denominator of
the fraction in Eq. (3), separately. Subsequently, we mul-
tiply the denominator of the fraction with the threshold
value ¢, and finally check inequality (4), without revealing
any of the private inputs in the contingency tables.

RTy-CTy- (N Oy —RTy - CTo)’ + RTy - CTy - (N - Op1 — RTy - CTy)’
+RTy-CTy - (N-O12 —RTy - CTy)* + RT3 - CTz - (N - O11 — RTy - CT1)°

?
>t-(N-RT,-RT, -CTy - CTy).
(4)

This computation is repeated for every phenotype-
genotype pair, and the results are aggregated in a public
table indicating whether a mutation is significant for a
particular phenotype, or not. Since the price of DNA
sequencing has decreased a lot, we assume new data
will keep becoming available. Taking this new data into
account for the computation of our public table, requires
running our protocols anew, and it will change the table
results. Therefore, we propose to make the table dynamic.
There will be a fixed time interval, which allows the cen-
ters to gather more data and include this data in their
contingency tables. The new table values will then be
encrypted/secret shared and the computation of the fresh
public table will be executed, after which the new results
will be published.

Efficient masking-based comparison

To the best of our knowledge the state-of-the-art tech-
niques to perform secure comparisons, both in the homo-
morphic, and in the secret shared domain, require bitwise
operations on the secret inputs, which have a high total
cost. To allow for a practically efficient implementation of
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our solution, we consider a masking technique to perform
the comparison instead of the bit-decomposition of our
inputs. By masking the values we need to compare, we can
later securely reveal the masked result upon decryption,
since the mask will hide the original secret value. Hence,
masking allows us to perform the comparison without
revealing the values we want to keep secret. Comparing
two values x and y can be done by comparing their differ-
ence with zero. Our mask for the value x — y consists of
multiplying this value with a positive random number. We
require the multiplier to be positive to preserve the origi-
nal relation of our difference x — y with zero. The second
step is adding another random number (different than the
previous one) to the already multiplied result. We require
this random number to be smaller than the first one, again
to preserve the original relation with zero. Let us denote
the masked difference with x/;\y, then for two positive
random numbers r and 7/, with 7 in the range [1,7), our
proposed masking is given by x/—\y =r-(x—y»+r.In
our setup we are working with homomorphic (or secret
shared) values, so this masking has to be performed on
encrypted (or secret shared) values. For an integer x, we
denote [«] either the homomorphic encryption of x or
its secret shared value. Masking in the homomorphic or
secret shared domain will then be computed as [[x/—\y]] =
[7]-[x — ] +0 71, with » and ¥’ random numbers satis-
fying the following condition: 7 is selected to be a positive
integer number (bounded properly so as to fit the largest
possible input sizes our framework can handle), and then
v’ is randomly selected in the range [L,7) (i.e., such that
v < r) . Afterwards the masked value is revealed by
respectively decrypting or opening the calculated value.
Depending on the sign of (x — y) we can deduce the rela-
tionship between x and y (i.e., if (x/—\y) > 0 then x > y,
otherwise x < ).

Given properly selected r, and 7/, the correctness of this
masking-based comparison is straightforward. To ensure
preservation of the security and correctness of the mask-
ing, we require one of the medical centers to properly
select r, and v within suitable bounds. Note that this
requirement does not increase the level of trust we need
to put in the medical centers (nor does it reduce the secu-
rity of the system). We already trust the medical centers to
provide our privacy-preserving system with their correct
inputs. Upon selection of the values r, and 7/, the med-
ical center in question homomorphically encrypts these
values, or secret shares them to the computation servers,
along with its own contributed inputs.

The proposed type of masking, which allows us to per-
form the comparison, could leak information about the
secret input to the inequality, which in our case is the dif-
ference x — y, when the system is queried multiple times
with the same input. However, in our scenario, the pro-
posed system cannot be queried at will. We suggest the
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calculation of a table listing all possible phenotypes, and
all possible mutation positions, which will become public.
This table will be computed on updated input data after a
fixed time interval. While constructing the table we select
r and 7’ at random for each contingency table, thus the
random values r and r’ will only be used once with certain
input values. After the fixed time interval, we expect the
input values to be changed, so we repeat the whole setup
and select new random values for each contingency table.
Hence, by recomputing the table at fixed times and not
allowing users to query, we ensure that no information is
leaked by our system.

Let us for completeness briefly discuss the leakage that
occurs if a party observing the masked result of the
inequality check can submit multiple queries on the same
inputs and obtain the masked values for these queries.
If this would be possible, an adversary would be able to
approximate the value of x — y from the obtained list of
masked values. The maximum of this observed list will
be close to the bound set for the randomness r times the
difference x—y. Hence, by deduction, if we divide the max-
imum observed masked value by the upper bound on r, we
will get a good approximation of the value x — y.

In the event of a malicious party being able to observe
the intermediate values revealed by our approach (i.e.,
the value of the masked difference), and given that this
malicious party can trigger multiple computations of the
same table entry, one can prevent the aforementioned
leakage by selecting the random values » and ' once
per table entry, and keep them thereafter fixed, until the
actual inputs to the protocol (contributed by each medical
center) change.

Our general approach that applies both to the HE, and
the MPC setting is detailed in Algorithm 1. For the tech-
nical details on the HE, and MPC methods used, as well
as the implementation details of our proposal, we refer the
reader to the full version of our paper [18]. For the MPC
setting we performed experiments both with the pro-
posed masking-based comparison, and with the standard,
bit-decomposition based comparison, as implemented in
SPDZ-2 [19]. Our experiments showed that for the online
MPC protocol, the performance difference between the
secure comparison, and the masking-based comparison
is negligible (i.e., 0.6 ms CPU time difference, and ~5kB
communication cost difference). Thus, we opted for the
slightly less efficient bit-decomposition based compari-
son, since it is available in SPDZ-2.

Setup and security assumptions

Homomorphic encryption approach

To solve the problem described in our application scenario
with homomorphic encryption we need multiple parties,
as indicated in Fig. 1. The steps of the process depicted
in Fig. 1 are as follows. In the first step the decryptor will
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Algorithm 1 v <« Chi-squaredTest(Nc, N[ Nc], [ O[ 4]
[Nl 1,6 070, 17T)

1: Input: Nc: number of centers contributing data,

2: N[ Nc]: a table of size Nc containing the total sample
size Nj; of every center i,

3: [O[4] [Nc]]: homorphically encrypted, or secret
shared observed values of the 2 x 2 contingency table
(mutation vs. phenotype), contributed by each of the
Nc centers,

4: t: x? threshold value for the significance test,

5. [ 7], [ 7']: homorphically encrypted, or secret shared
random values

6: Output: v = 0 or 1; 0 — non-significant relationship
between mutation, and phenotype, 1 — significant
relationship between mutation, and phenotype

7: for all medical centers C; do

8 [0kl <IN Ouslli kb =1,230=1,2

9: end for

10: N < Y M N;

11: [RT] «<[0;1+ 0;2l,i=1,2

122 [CTi]l <[ O1,i+ O21,i=1,2

13: [ modely ;]| <[ RTy - CT(],k=1,2,0i=1,2

14: [ square] <[ (N - O1,1 — modely 1)?]

15: [ U] <[ square - model; )] ,i =1,2;j = 1,2

16: [ numerator]) <[ 21‘2'31,;:1 |

17: [ denominator] <— N-[ modely,1 - models ;]

18: [ difference] <[ numerator]] —t-[ denominator]
19: [ MaskedDifference] <[ difference - r + ']

20: MaskedDifference <— Open([[ MaskedDifference]| )
21: if MaskedDifference > 0 then

22:  returnl

23: else

24:  return0

25: end if

select the secret key, and associated public key for the
homomorphic encryption, and make the public key avail-
able to all medical centers. Then all the medical centers
will encrypt their contingency tables with the given public
key, and send these encryptions to the computation server.
Upon receiving all encrypted contingency table values, the
computation server will first add them to construct the
aggregated contingency table, and subsequently perform
the operations of the Pearson x? test. Then, the computa-
tion server will send the result, which is masked with the
technique we introduced in the “Efficient masking-based
comparison” section, to the decryptor, who uses the
secret key to decrypt the masked value, and performs the
comparison.

It is important to note that in this model we trust the
decryptor to decrypt the masked values, and post the
corresponding correct yes/no value into the public table.
Since the decryptor only decrypts masked values, the
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decryptor can only deduce the yes/no answer which will
become public, anyway. No other information about the
x2 value is revealed to the decryptor. If the system would
be adapted to reveal the actual x? value, the party receiv-
ing the encrypted result would first have to authenticate
itself to make sure that it is a trusted entity (like a medical
doctor, for example). If this authentication is considered
insufficient by the medical centers contributing their data,
they could still prevent the authenticated party from being
a single point of trust by introducing a multiparty com-
putation to perform the decryption based on a secret
shared decryption key. The solution based on homomor-
phic encryption does rely on the following two security
assumptions:

e The computation server is honest but curious: It will
follow the stated protocol to provide the desired
functionality, and will not deviate, nor fail to return
the results. The computation server can however
monitor the result of every operation it performs.
This assumption is reasonable for an economically
motivated cloud service provider. The cloud is
motivated to provide excellent service, yet it would
take advantage of extra available information.

e e want the decryptor to only decrypt the result of
the masked comparison. He should not be allowed to
see the input values, since he has the key to decrypt
them. Therefore, we presume that the
communication between the centers, and the
computation server is hidden from the decryptor.
This can be achieved by performing the
communication over authenticated, secure channels.
An alternative way to solve this is by introducing the
multiparty computation for the decryptor. Each party
only has a part of the decryption key, and hence will
never be able to decrypt the values of the encrypted
contingency table.

For the homomorphic evaluation of the x? statistic we
use the FV scheme, introduced by Fan and Vercauteren
[20]. Moreover, we base our implementation on the FV-
NFLIib software library [21] in which the FV homomor-
phic encryption scheme is implemented using the NFLIlib
software library developed for performing polynomial
arithmetic computations (as described by Melchor et al.
[22], and released in [23].

Secure multiparty computation approach

To address the challenge of disease gene identification
using secure multiparty computation techniques, in the
setting described in our application scenario, we deploy
MASCOT [24]. We selected MASCOT [24] as the most
suitable multiparty computation solution, because it is
currently the most efficient proposal, offering malicious



Bonte et al. BMC Bioinformatics (2018) 19:537

Page 8 of 12

Medical
center 1

position 1 significant
position 2
non-significant

Position 3.000.000.000

D— 9
ekl B Send pk to the med:
il *2 = edical cent
Medical ers ® Send
center 2 ® Perform encrypted Yes/No
> computation answer
@ Send >
Encrypted contingency = @ Send intermediate result
tables

r

(el

o e
Medical

centern

Decryptor
(sk, pk)

Fig. 1 A schematic representation of the homomorphic scenario. Before the execution of the protocol, the decryptor generates a valid public and
secret key pair for the homomorphic encryption scheme. Step (D of the protocol is to send the generated public key pk to all participating medical
centers. Then, the medical centers compute their local contingency tables, encrypt them with the received public key, and send them to
computation server in step ). Step (3) is the actual secure computation of the encrypted, and masked x? value, which is then sent to the decryptor
in step @. By decrypting the masked x 2 value (using the secret key sk), the decryptor can only determine whether the result is significant or not,

which is published in a public table in step &

static security with a dishonest majority. This means that
any number of the computing parties may deviate from
the protocol execution, and this will be detected without
leaking information, other than what the correct protocol
execution would reveal. Corruption may only occur prior
to the beginning of the protocol execution, affecting up to
n — 1 (out of the 1) computing parties.

For our multiparty computation approach, we first
need to determine the number of computation servers
n (n > 2) that we have at our disposal. Given that the
underlying protocol offers security against any coalition
of n — 1 computation servers, we consider the security of
the whole system to increase as the number of computa-
tion servers increases. However, the number of computa-
tion servers is inversely proportional to the efficiency of
the solution. Therefore, we consider that three computa-
tion servers is an adequate number of servers, both from
an efficiency/plausibility perspective, and from a security
perspective. If any two of the three computation servers
that we assume get compromised, or otherwise behave
dishonestly, or even collude, the solution still guarantees
input privacy, and does not accept incorrect results.

We assume a preprocessing phase that can take place
offline, at any moment prior to the actual protocol exe-
cution. This is to create the necessary randomness for

the medical centers to contribute their inputs in a secret
shared manner to the computation servers. In addition,
the preprocessing phase creates authenticated random-
ness to be used in the online phase, so as to boost the
efficiency of computing multiplications on the shares,
which requires interaction amongst the servers.

The medical centers that wish to contribute their pri-
vate inputs, first need to agree on a common format for
this data (e.g., what is the order of sending the contingency
tables). Then, they need to secret share their contingency
tables to the three computation servers, which can also
be pushed to an offline, preprocessing phase. Given that
all contributing medical centers have shared their private
contingency tables to the computation servers, the online
phase starts. During the online phase the servers per-
form both local, and interactive secure computations, and
they finally reveal per contingency table whether the rela-
tionship between a mutation at a certain DNA position,
and a phenotype is significant or not, without disclosing
further information on the underlying data. A schematic
representation of this approach is presented in Fig. 2.
Our protocol calculates the units of inequality (4), as well
as the inequality check itself, using MASCOT [24], and
its implementation of standard (bit-decomposition based)
comparison.
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In our setting, we consider the computing parties
that actually execute our protocol (i.e., the computa-
tion servers), different from the parties contributing their
inputs (i.e., the medical centers), as shown in Fig. 2. For
the offline phase, together with the preparation of the ran-
domness necessary for the execution of the online phase
of the MPC protocol, we wish to perform the required pre-
processing that will allow the medical centers to correctly
contribute their inputs, without compromising privacy. To
allow the medical centers to correctly and securely con-
tribute their inputs, we use the Output Delivery, and Input
Supply protocols proposed by Damgard et al. [25].

Results

Implementation and performance analysis

For both approaches, namely the homomorphic encryp-
tion approach, and the multiparty computation approach,
we executed the program 10 times per case, and calculated
the average execution time for our timing results. To eval-
uate the scalability of our protocols, we have considered
the cases where our system receives data from 20, 40, 60,
80, and 100 medical centers, respectively. We assume each
medical center to contribute data of 10000 subjects (i.e.,
the total number of subjects per case is 200000, 400000,

600000, 800000, and 1000000, respectively). Our timing
results represent one SNP-phenotype combination (i.e.,
the computations needed for a single contingency table),
and the proposed solutions scale linearly in the number of
SNP-phenotype combinations.

Homomorphic encryption approach

In order to assess the practical performance, and verify the
correctness of the selected parameters of the homomor-
phic scenario, we implemented the privacy-preserving x2
computation. Our presented timings are obtained by run-
ning the implementation on a computer equipped with an
Intel Core i5-4590 CPU, running at 3.30 GHz.

The encryption time does not depend on the number
of centers, since the centers can perform the encryption
in parallel. The measured encryption time for one contin-
gency table is 17.1 ms. The time to decrypt the result will
also not depend on the number of centers participating in
the computation. The measured decryption time is 21.1
ms. The timings for the computation server are listed in
Table 2, since these timings are dependent on the num-
ber of medical centers participating. These timings do not
increase significantly for an increasing number of cen-
ters. Hence, we can conclude that considering CPU time,
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Table 2 CPU time of the computation server for analyzing one
SNP with the homomorphic solution using 1 CPU core

Centers Patients CPU time computation server
20 200,000 148s
40 400,000 1.52s
60 600,000 1.53s
80 800,000 1.56's
100 1,000,000 1.57s

our solution scales really well for increasing number of
medical centers participating in the computation.

For the homomorphic setup, there is no communica-
tion cost during the computations. The communication
cost comes from sending values from each of the three
parties to the next. We have three points of communi-
cation: the public key has to be sent from the decryptor
to the medical centers; the encrypted values of the con-
tingency tables have to be sent from the medical centers
to the computation server; and the result has to be sent
from the computation server to the decryptor. The size
of the public key that needs to be sent to the different
medical centers is 186 kB. The data needed to send one
contingency table to the computation server is 2.1 MB.
The communication cost between the medical centers,
and the computation server is the number of centers par-
ticipating times the amount of data needed to send one
contingency table. So this communication cost increases
linearly with the number of centers contributing to the
computation. We only have to send the resulting value
from the computation server to the decryptor, which gives
a communication cost of 0.54 MB.

Secure multiparty computation approach

We have built a proof of concept implementation of our
MPC approach using the platform provided by Keller
etal. [24] in SPDZ-2 [19]. We ran our experiments for tim-
ing the execution of our protocol on a desktop computer
equipped with an Intel(R) Core(TM) i5-3570K processor,
at 3.40GHz, with 16.00 GB RAM, and the Ubuntu 17.04
operating system.

We have only considered the online phase of the proto-
col, as the preprocessing is protocol-independent, and can
be executed at any moment, well before the execution of
the online phase. We note, however, that the offline phase
is also practically efficient, and we refer the reader to
Keller et al. [24] for more details on the throughput of the
offline phase. Every time we recorded timings, before the
execution of the online phase, we ran the setup script pro-
vided with the SPDZ-2 software. This script simulates the
offline phase, and creates all the necessary randomness
for the execution of the online phase. The fact that the
offline phase is simulated does not affect the performance,
or efficiency of the online phase.
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Our experiments were conducted on localhost with
three computation servers. Hence, we do not take the net-
work latency into account in the timing results we report.
We do present the size of the data that each server has to
send, as well as the communication rounds, and we con-
sider this information to be sufficient for the reader to
calculate the additional communication cost, based on the
available network bandwidth.

For all our timing results we have executed our proto-
col 10 times per case, and calculated the average execution
time. The communication cost of the protocol is con-
stant. For our experiments we have established that all
input data is shared by one of the computation servers
(namely Server 1), instead of the medical centers that
would contribute the data in a real setting.

In Table 3 we present the execution times of our
approach, as well as the data sent by Server 1, includ-
ing the sharing of the original inputs. Recall, however,
that the sharing of the inputs can be performed in a pre-
processing phase, prior to the actual protocol execution,
allowing the online phase to be less communication inten-
sive. The timings for Server 1 are presented separately,
because it has to do some extra tasks, such as sharing the
inputs, collect all the final results, and print them, which
is reflected in its execution times. The other two servers
are grouped together, as their execution times are simi-
lar. The communication cost for Server 1 is analyzed in
Table 3, while for the other two servers it is constant, and
equal to 4.2 kB. The protocol completes its execution in
10 communication rounds.

Discussion

From the setup description of both suggested techniques,
one can determine the first significant difference between
them: in the homomorphic setting, the medical centers
only have to encrypt, and send their data to one party,
namely the computation server; while for the multiparty
computation they have to secret share their data with two
or more computation servers. The execution times result-
ing from our experiments show that the MPC approach is
significantly faster than the homomorphic approach. Even
if we assume the encryption of the contingency tables by
the medical centers to be part of a preprocessing phase,

Table 3 Performance of the MPC approach for analyzing one
SNP using 1 CPU core (in each computation server)

Server 1 Server i, i # 1
Centers Patients CPU time Data sent CPU time
20 200,000 22 ms 12.7 kB 1.9ms
40 400,000 23 ms 17.8 kB 20ms
60 600,000 23ms 23.0kB 20ms
80 800,000 25ms 28.1kB 22ms
100 1,000,000 24 ms 33.2kB 2.1 ms
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the homomorphic approach will take more than a sec-
ond to complete its execution, while the computations
in the MPC setup take only a few milliseconds. In terms
of communication cost, the homomorphic setup has the
advantage that it needs no communication during the
computations. However, in terms of total amount of data
that has to be transferred between the different parties,
the MPC setup outperforms the homomorphic setup once
more. We therefore recommend the MPC approach, as it
is the most efficient out of the two approaches, and it does
not rely on the strong assumption of semi-honest parties
participating in the protocol.

Having compared the HE, and MPC approaches in a
setting addressing the exact same problem, we have estab-
lished that MPC can provide more efficient solutions
with more relaxed security assumptions. Thus, we plan
to proceed with future work on computing state-of-the-
art statistics used in GWASs (instead of the more simple
x? test) in a privacy-preserving way, using MPC. To this
end, we consider an interesting first step to study how we
can express, or approximate logistic regression with low
degree polynomials. Then, we can deploy MPC for com-
puting them securely, which will yield solutions efficient
enough to be used in practice.

Conclusions

Our work shows that, as long as we can express the
statistics to be calculated with low-degree polynomi-
als, privacy-preserving GWAS has become practical. We
made the first step to efficient privacy-preserving GWAS
with the secure calculation of the x? test. Our solu-
tions provide provable security guarantees, while being
efficient for realistic sample sizes, and number of med-
ical centers contributing data to the studies. Interest-
ingly, our solutions scale logarithmically in the number
of subjects contributing data to the study, which means
that as GWAS population sizes grow, our approach will
remain suitable. We also propose a new masking-based
comparison method, and show that in certain applica-
tion scenarios, such as the GWAS scenario at hand,
comparisons can be executed efficiently even in the HE
setting, without leaking useful information about the
underlying data.

Endnote
'Our method can be also extended to contingency
tables of larger size.
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