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Abstract

Background: Extensive studies have shown that gene expression levels are strongly affected by chromatin mark
combinations via at least two mechanisms, i.e., activation or repression. But their combinatorial patterns are still
unclear. To further understand the relationship between histone modifications and gene expression levels, here in this
paper, we introduce a purely geometric higher-order representation, tensor (also called multidimensional array),
which might borrow more unknown interactions in chromatin states to predicting gene expression levels.

Results: The prediction models were learned from regions around upstream 10k base pairs and downstream 10k
base pairs of the transcriptional start sites (TSSs) on three species (i.e., Human, Rhesus Macaque, and Chimpanzee)
with five histone modifications (i.e., H3K4me1, H3K4me3, H3K27ac, H3K27me3, and Pol II). Experimental results
demonstrate that the proposed method is more powerful to predicting gene expression levels than several other
popular methods. Specifically, our method enable to get more powerful performance on both commonly used
criteria, R and RMSE, as high as 1.7% and 11%, respectively.

Conclusions: The overall aim of this work is to show that the higher-order representation is able to include more
unknown interaction information between histone modifications across different species.

Keywords: Higher-order partial least squares, Chromatin states, Tensor decomposition, Gene expression levels,
Histone modification

Background
In epigenetics, histone modifications like methylation,
acetylation, and phosphorylation play critical roles in
transcriptional regulation process [1]. Specifically, during
gene expression process, each unit of chromatin like
beads wrapping around DNA subsequences (about 147
base pairs) is highly impact the process of gene expression
by chemical modification of chromatin condensation
and DNA accessibility when genetic information are
converted into gene products [2]. These modifications
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are shown to regulate gene transcription with active or
repressive manners [3]. For example, tri-methylation
on K4 of histone H3 (i.e., H3K4me3) is primarily
associated with transcriptional activation [4, 5], while tri-
methylation on K27 of histone H3 (i.e., H3K27me3) are
primarily associated with transcriptional repression [6, 7].

One of challenges in this study is to discover or char-
acterize what chromatin mark combinatorial patterns can
affect the process of gene expression, further revealing
complex gene expression mechanisms in downstream
analysis [8–13]. This topic have attracted extensive
attentions [14–16], however, up to now it is still limited
knowledge to understand the degree of complexity of
“histone code”. Recent studies have shown that machine
learning-based methods can statistically offer higher
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prediction power to predict gene expression levels, and
it can be considered as a promising way to reveal some
interesting results in many cases ([17, 18], Devadas L, Yen
A, Kellis M. Various localized epigenetic marks.predict
expression across 54 samples and reveal underlying
chromatin state enrichments. 2015; bioRxiv 030478,
unpublished). For example, Chen et al., utilized support
vector machine to train a prediction model for each
bin. The results demonstrated that all bins are useful to
predict gene expression levels, but they are not equally
informative. In order to investigate the higher-order
interactive relationship between chromatin features, they
modeled an interaction model y ∼ ∑

i xi + ∑
i<j xixj to

predict gene expression levels, where the expression level
y as a linear combinations of the interactions between
individual histone modification features xi and their prod-
ucts xixj [19]; Dong et al., established a two-step model
using linear regression model and random forest method
to reveal the relationship between chromatin features and
gene expression levels across various cellular contexts.
The best bin was selected to represent the remaining sig-
nals for each histone modification. The predictor matrix
was formed from the best bin for each histone and the
whole gene expression levels [20]; Zhou et al., developed
a linear mixed model to evaluate the association of each
and joint contribution of the five marks with gene expres-
sion levels. The marginal effects of each mark are the
summation of all window size. The higher-order interac-
tions between markers were also studied by considering
them as the covariates in linear mixed model [21].

To naturally characterize higher-order interactions
between different markers, tensor representation (also
called multilinear or N-way) are frequently introduced
to model higher-order interactions in different research
fields [22, 23]. More recent studies ([24], Khan SA,
Ammad-ud-din M. tensorBF: an R package for Bayesian
tensor factorization. 2016; bioRxiv 097048, unpublished)
leveraged tensor representation to integrate different
omics, environmental, and phenotypic data sets to
uncover unclear biological problems; Also, our previous
work [25] used tensor representation to identify transcrip-
tion factor binding sites. All results from these applica-
tions are demonstrated that tensor representation enable
to achieve a powerful performance.

In this paper, we leverage tensor representation, which
intuitively involves more interaction information for chro-
matin features, to predict gene expression levels. The
predictors for each gene were represented by a matrix
as input(rather than a vector), in which each row indi-
cates histone markers while each column represents the
bin we combined (see Fig. 1). To make the proposed
method scalable, three popular machine learning-based
methods, including linear regression, random forest [26]
and support vector regression [27], were conducted on

a series of simulation and real data sets. The results
demonstrate that the proposed method gave a statistically
significant improvement compared with other prediction
models.

Methods
Data sets and pre-processing
In this study, we used the real data sets which are
from lymphoblastoid cell lines (LCLs) over three species,
namely Human (GSE47991 and GSE19480), Rhesus
Macaque (GSE60269), and Chimpanzee (GSE60269), and
these data set are all available in Gene Expression
Omnibus (GEO). For each species, eight individuals were
considered, and for each individual, 26,115 genes were
considered in our experiments.

The preprocessing workflow of real data was completely
consistent with the previous work [21]. Five histone marks
were queried to contribution in gene expression lev-
els: promoter marks (H3K4me1, H3K4me3, H3K27ac),
repressor mark (H3K27me3), and Pol II mark. The rea-
son we choose these five marks not only because their
molecular functions have been relatively well studied, but
also because they represent a wide variety of transcrip-
tion initiation regulators. H3K4me1 mark presents at both
active and poised enhancers; H3K4me3 mark actives tran-
scription start sites; H3K27ac mark actives enhancers and
promoters; H3K27me3 mark represses genomic regions;
Pol II directly interacts with chromatin remodeling factors
and catalyzes the transcription of mRNA. The actual gene
expression levels are measured by RNAseq and quantified
as RPKM (reads per kilobases per million mapped reads).
We also normalized the real data set with two steps for
each species:

(i) We used COVERAGEBED tool [28] to convert the
reads into the given window for each mark and each
individual, and then we normalized the peak read
counts for each individual of each mark by
subtracting the number of mapped reads divided by
total number of mapped reads and input reads
divided by total number of input reads (the detailed
procedure see the reference [21]);

(ii) We used logarithmic transformation log 2 (x + θ) to
normalize the data. In order to obtain the optimal
parameter θ in prediction phrase, we divided the
whole data set into two parts. One-third of data set
was used to optimize the parameters θ , then the
optimized θ∗ was added to the same modification of
the remaining two-thirds of data set to train the
prediction model and test their performance.

High-order representation
In this section, we give more detailed description how
the original data were represented by a higher-order
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Fig. 1 The process of constructing the tensor data X from the peak reads enrichments near TSSs

representation. The first step is to divide the each gene
body, which flanking TSSs both sides with 10k base pairs,
into different bins for each individual and each mark (the
first two steps of Fig. 1). For each gene, the data for each
bin and each histone marker was reformulated into a
three-dimension data structure (genes × marks × bins),
therefore, each gene was represented by a matrix instead
of a vector. The gene expression levels were used the aver-
aged values across 8 individuals. The detailed process to
form tensor data is showed in Fig. 1.

As shown in Fig. 1, the first step is to show the differ-
ent signal patterns near the TSSs over different marks.
The histone marks H3K4me3 and Pol II show more infor-
mative, while H3K27me3 and H3K3me1 show weaker
informative. Each mark was represented by multiple bins
(e.g., 41 bins). Therefore, we first combined the five marks
into a matrix for each gene. In third step (Fig. 1), we used
the contour of distribution of each gene to represent its
signals. Assume we have 26115 genes. Finally, we collected
all genes to form a tensor data X .

High-order model and algorithm
Higher-order partial least squares (or N-way partial least
squares, NPLS) was proposed by Bro et al. [29]. It is
adapted to high-order data X ∈ RI1×I2×...×IN . Here, N is
the number of order for high-order data X (in our case,
N = 3), and the variable Ii represents the dimensionality
of the mode i. The response variable Y ∈ RI1 is the aver-
aged gene expression levels across eight individuals for all
marks.

The optimization model of NPLS is easily reformulated
from standard PLS model as:

max
{P(n)},q

[
cov

(
X ×(2) P(1)T ×(3) · · ·×(N) P(N−1)T , Yq

)]2

(1)

s.t. P(n)T P(n) = I, qT q = 1. (2)

To solve this model, we want to find the optimal p1 and
p2 such that:

X = t1 ⊗ p1 ⊗ p2 + E1



Sun et al. BMC Bioinformatics 2018, 19(Suppl 5):113 Page 50 of 87

Fig. 2 Schematic diagram of the process of data analysis in our paper

where the operation ⊗ is the outer product. The first
latent variable t1 ∈ RI1 is extracted from the tensor data
X to provide the maximum of covariance between t1 and
the response variable Y . The p1 ∈ RI2 and p2 ∈ RI3 is
the loading vector for mode 2 and 3, respectively and E
is the residual of data X after the first extraction. For the
given number of factors f, the predicted variable can be
estimated by the equation,

Ŷ = Tb

where T = (
t1, t2, · · · tf

)
, b is the regression coefficient

with respect to T . The MATLAB code of N-way partial
least squares is freely available at: http://www.models.life.
ku.dk/source/nwaytoolbox.

The workflow of our experiments was given in Fig. 2.
We first extended upstream region and downstream
region to 10k base pairs around TSSs, and then divided
into multiple bins (e.g., 41 bins if 500 base pairs for each
bin). Finally, gene expression levels were measured by
a 3-order tensor rather than a matrix, i.e., 26115 genes
×5 marks ×41 bins. The histone density in each bin was
logarithm-transformed by log 2 (x + θk) with respect to
the parameter θk (the parameter for kth bin). In order
to determine the optimal θ∗

k for each bin, we divided
the whole data into two parts: one-third of dataset was
used for finding the optimal parameter θ∗

k and then the
same θ∗

k was added to the corresponding bins in the
remaining data set. The gene expression levels Y was
also logarithm-scaled using the equation log 2(Y). A

http://www.models.life.ku.dk/source/nwaytoolbox
http://www.models.life.ku.dk/source/nwaytoolbox
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Fig. 3 Comparison of four algorithms for predicting gene expression level. The left figure demonstrates the averaged correlation coefficients with
varies parameter β over 10 random splitting replicates while the right figure shows the averaged root mean square error with varies parameters β

over 10 replicates. lr: linear regression; rf: random forest; svr: support vector regression; npls: N-way partial least squares

high-order multivariate regression model was developed
using the logarithm-scaled training data set and the 10-
fold cross validations was used to avoid the over-fitting
in training model phrase. Finally, the performance of
methods were measured by the Pearson’s correlation
coefficient (R) and root mean square error (RMSE).

Results
In our experiments, to avoid the risk of over-fitting to
training prediction model and obtain the reliable results,
we used 10-fold cross-validation (with 10 random split-
ting replicates) in which nine parts are used for training

the prediction model, while the remaining part for testing
the performance of learned model (similar to previous
study [30]).

We also compared with other three popular machine
learning-based methods, i.e., simple linear regression
(denoted as LR), random forest (denoted as RF), and sup-
port vector machine regression (denoted as SVR) to make
the proposed method scalable. All these methods were
implemented in R, and the parameter of random for-
est (the number of trees) was set as 500, and support
vector regression used default parameters in R. The per-
formance of each methods were evaluated by two criteria,

Fig. 4 The relationship between the numbers of factor and the performance on three species
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namely Pearson correlation coefficient (R) and root mean
square error (RMSE) which are formulated by the follow-
ing equations:

R =
∑I1

i=1 (Yi − μY)
(

Ŷi − μŶ

)

√∑I1
i=1 (Yi − μY)2

√
∑I1

i=1

(
Ŷi − μŶ

)2

RMSE =

√
√
√
√

∑
i

(
Yi − Ŷi

)2

I1

where Y is the real gene expression levels, while Ŷ is the
predicted the expression levels; I1 is the number of genes;
μY is the mean of gene expression levels Y.

Experiments on simulation data sets
Our first experiments were conducted on a series of sim-
ulation data sets. Interestingly, we found that the distri-
bution of each mark is similar to the normal distribution
but does not exactly the same as it. Therefore, in this
simulation experiments, we simulated the five different
histone marks according to their expression levels, which
are described the height h of their distributions, h =
3, 2, 1, 0.5, 0.4. 10,000 genes were simulated and the dis-
tributions of expression levels for each gene were divided
into 100 bins to represent the expression levels of corre-
sponding simulated histone. Similar to the PLS model, we
also introduced a latent variable Z to simulate the data in
simulation experiments.

Suppose the latent variable Z ∼ N(0, β), then

y = Z + εy and log
(
σ 2

i
) = Z × hi + εσ

i

where εy ∼ N (0, 0.2) and εσ
i ∼ N (0, γi) , i = 1, 2, 3, 4, 5.

The simulation data X with 100 bins can be obtained by
partitioning the density function N

(
0, σ 2

i
)

into 100 inter-
vals and calculating their area of corresponding intervals
for each mark.

Figure 3 shows the prediction of four methods with
respect to varies parameters β . As shown in Fig. 3, our
method (npls) steadily outperforms others on both cri-
teria, i.e., R (left) and RMSE (right). The second-best
performance is achieved by random forest regression.
Compared with other three methods, linear regression
method linearly increases on RMSE.

Experiments on real data sets
Our second experiments were conducted on real data
sets. In this section, we investigated the relationship
between gene expression level and chromatin features
based on three species (Humans, Chimpanzees, and Rhe-
sus Macaques). The results from the previous work [21]
have shown that five marks are significantly enrich near
TSSs regardless of species, and the enrichments pattern
is robust with respect to the choice of the size of the TSS
regions.

Herein, we considered the DNA regions around (10k)
at the upstream and downstream regions of the TSSs in
current study. In our model, the number of factors is
an important parameter to affect the performance. To
investigate how this parameter affect the performance of
proposed method, we check it under two criteria (R and
RMSE) with the varies of factors (see Fig. 4). We can see
that the performances are robust when the number of
factors is larger than 4.

The comparison of the results of four regression models
over three species were summarized in Table 1. As shown
in Table 1, our method is steadily better than others with
respect to both averaged R and averaged RMSE on three
species. For the performance on R, the proposed method
improved roughly 1.2%, 1.7%, and 1.3% on Hum, Chi, and
Rhe data sets, respectively, while RMSE was improved
roughly 11%, 8%, and 8% on Hum, Chi, and Rhe data sets,
respectively. For other methods, random forest regression
outperforms other two methods on Hum and Chi data
sets while support vector machine outperforms other two
methods on Rhe data set.

Discussion and conclusion
In this paper, we proposed a higher-order representa-
tion method for predicting gene expression levels from
chromatin state enrichments. The effectiveness of pro-
posed method was validated by a series of simula-
tion and real data sets. Our method can outperforms
others, most likely because higher-order representation
method can integrate more unknown interaction informa-
tion than standard representation method. These results
again demonstrate that the gene expression levels are
strongly correlated with the combination of chromatin
markers.

Table 1 The performance of different models on three species data sets

Linear model Random forest Support vector machine NPLS(41bins) NPLS(21bins)

Hum 0.769(2.43) 0.775(2.46) 0.774(2.46) 0.784(2.37) 0.787(2.35)

Chi 0.756(2.52) 0.767(2.47) 0.765(2.53) 0.780(2.41) 0.784(2.39)

Rhe 0.760(2.52) 0.761(2.51) 0.765(2.54) 0.774(2.46) 0.778(2.43)

Note: The number in bracket following the average R represents averaged RMSE over 10-flod cross validation (with 10 random splitting replicates). Hum: Human data set, Chi:
Chimpanzee data set, and Rhe: Rhesus Macaque data set
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Each chromatin state shows specific functional and
annotation. Our study provides a way to study genomic
annotation via chromatin mark combinations, which can
extend the epigenetic functional interpretation of the
human genome. Therefore, our further work is to incorpo-
rate epigenetic factors into the downstream analysis, such
as gene expression analysis [9, 31], GO ontologies [32, 33],
and disease-related ncRNAs [34].
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