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Abstract

Background: High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in
quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize
the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and
diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a
comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking.

Results: In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships
with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in
feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements
of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-
supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite
programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector
machine are compared and evaluated with hypertension and two cancer data sets in our study.
In general, kernel-based algorithms create more complex models and require longer computation time, but they tend
to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of
being faster computationally.

Conclusions: The empirical results demonstrate that composite association network, relevance vector machine, and
Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm
for integrating data from multiple sources.

Keywords: Bayesian network, Relevance vector machine, Graph-based semi-supervised learning, Semi-definite
programming (SDP)-support vector machine, Multiple data sources, Classification

Background
Recent advancements in –omics technologies have given
us an unprecedented opportunity to understand the role
of genomic, epigenetic, transcriptomic features in human
health and complex diseases. With the lowering of
sequencing cost and the availability of different sources
of –omics data, more thorough and comprehensive ana-
lysis of complex phenotypes can be achieved by integrat-
ing these diverse data sources, as a single data source is
unlikely to provide a full and clear picture of human

diseases. Data integration may allow us to identify pat-
terns that become evident across different experiments,
such as the identification of disease-gene association by
integrating different gene networks (i.e. functional inter-
action network, cancer module network and gene chem-
ical network) using gene prioritization methods [1].
Thus, there is a great need to develop powerful data
integration methodologies to fully harness the potential
of these high-throughput data.
The ability to integrate multiple data sources can bet-

ter inform researchers about the nature of the gene net-
works and biological interactions involved in disease.
Each genomic data source used in an integrative method
gives information on a different aspect of biology, such
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as mutation, regulation, and expression. For now, pub-
lished results have shown that the results of integrated
data set can outperform individual data source. For ex-
ample, Taskesen et al. [2] have shown that prediction of
known molecular subtype of acute myeloid leukemia
could be further improved by integrating gene expres-
sion and DNA-methylation profiles. Ma et al. [3] have
proposed an effective method for the integrative analysis
of DNA-methylation and gene expression in epigenetic
modules. Graph and kernel methods are common ways
for integrating multiple data sources for the classifica-
tion of binary traits. The raw data are first mapped using
graph or kernel methods to form relationships between
samples before the data integration step. Graph is a nat-
ural way to depict relationships among samples with
subjects denoted by nodes and their relationships de-
noted by edges. Multiple graph- and kernel-based data
integration algorithms have been proposed, making the
selection of appropriate tools difficult. Recently, there
has been a community effort to identify top data integra-
tion algorithms for predicting a continuous outcome such
as drug sensitivity in human breast cancer cell lines [4].
However, up till now and to the best of our knowledge,
there has not been reviews comparing the performance of
these algorithms for binary outcomes. There is a lack of
empirical studies on how the graph- and kernel-based
data integration algorithms perform on real data. There-
fore, our study aims to fill this gap by providing a compre-
hensive comparison of their performance, in terms of
various measures of classification accuracy and computa-
tion time. We want to emphasize that the purpose of this
paper is not to identify the best performing algorithm
based on different combinations of data sources, but to
compare the performance of data integration algorithms
given a fixed number of data sources at hand.

We consider seven data integration algorithms, includ-
ing graph-based semi-supervised learning [5], graph
sharpening integration [6], composite association network
[7, 8], Bayesian network [9], semi-definite programming
(SDP)-support vector machine [10, 11], relevance vector
machine [12, 13], and boosted relevance vector machine
[14]. Figure 1 provides an overview of these seven data in-
tegration algorithms. We will briefly review these graph-
and kernel-based –omics data integration algorithms. The
practical usability of these tools is important, so we
provide insights as to how one may choose the tuning
parameters for algorithms that require them.

Methods
Graph-based algorithms
We first introduce the graph-based semi-supervised
learning for a single network [15]. Assume a network G
with n indexed nodes (1, 2, ⋯, n), where the first p
nodes are labelled as binary (known status), y1, y2, ⋯,
yp and yi ∈ {−1, 1}, and the remaining n − p unlabelled
nodes will be assigned as 0 (unknown status). The main
task of graph-based semi-supervised learning is to clas-
sify these unlabelled nodes utilizing the network struc-
ture related to these nodes. The symmetric weight
matrix W, represents the connection strength between
these nodes. The elements of W are non-negative (wij ≥ 0)
which represents the degree of association, and wij = 0
means that there is no edge between node i and node j.
The algorithm will generate an output function score f
= (f1, f2,⋯, fn)

T with two assumptions, (i) the score fi
should be similar with the labelled node yi, and (ii) the
score fi should be close to the score of its neighbour
nodes. Then f can be inferred from the following objective
function:

Fig. 1 Data integration algorithms compared
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min
f

Xn
i¼1

f i−yið Þ2 þ c
Xn
i;j¼1

wij f i−f j
� �2

ð1Þ

The first term,
Pn

i¼1 f i−yið Þ2 , corresponds to the
squared loss function that measures the sum of
squared differences between the true value yi and the

function score fi; the second term,
Pn

i;j¼1wij f i−f j
� �2

,

corresponds to the smoothness assumption. Here, c is
a trade-off parameter which controls the importance
of the smoothness versus loss. This objective function
can be rewritten as,

min
f

f −yð ÞT f −yð Þ þ cf TLf ð2Þ

where y = (y1, y2,⋯, yn)
T, and L is defined as the

Laplacian matrix of network G, L =D −W, D = diag(di),
and di = ∑jwij. The optimal solution can be obtained
by f = (I + cL)−1y. Then we will predict the unlabelled
nodes by the median cut-off. Node will be classified
as yi = 1 when its function score fi is closer to the
median function scores of nodes labelled as 1, other-
wise, node will be classified as yi = − 1.
Computation can be time-consuming and memory

intensive when the dimension of L gets large. In reality,
L can be very sparse, which makes it possible for the
graph-based semi-supervised learning to be applied in
large scaled networks.

Graph-based semi-supervised learning
Given a group of nodes, different data sources may have
different network structures and connection strengths
among these nodes. Integrating different data sources by
utilizing their network structure is an intuitive way for
addressing the classification problem. Based on the con-
cept of a single network graph-based algorithm, an
extension using convex optimization model can be used
to combine multiple data sources [5].
Assume that we have multiple network structures for

a given set of nodes, the Laplacian matrices are repre-
sented as L1, L2, ⋯, Lm, then this integration problem
can be formulated as below:

min
f ;γ

f −yð ÞT f −yð Þ þ cγ f TLk f ≤γ; k ¼ 1;⋯;m: ð3Þ

where γ is the upper bound of the smoothness function
fTLkf over all networks.
By performing Lagrange multipliers (αk, η ≥ 0), this

objective function can be rewritten as following:

max
α;η

min
f ;γ

f −yð ÞT f −yð Þ þ cγ þ
Xm
k¼1

αk f TLk f −γ
� �

−ηγ

ð4Þ
Note that Li is symmetric. This new objective

function will achieve its optimal when the derivative of
f equals to zero. Function scores can be solved by

using f ¼ I þPm
k¼1αkLk

� �−1
y.

Obviously, the function score f is formulated in terms
of Lagrange multipliers, and the sum of all Lagrange
multipliers will be constrained by parameter c. To solve
this problem, substitute f in the objective function above,
the convex optimization problem will be equivalent to a
minimization problem:

min
α

yT I þ
Xm
k¼1

αkLk

 !−1

y

s:t:
Xm
k¼1

αk≤c

ð5Þ

αk is treated as the weight of the network structure Gk.
The optimal function score can be obtained after solving
this convex optimization problem. Network structures
with zero weights will be considered as redundant,
which has no contribution to the optimal function score.
The prediction process will be the same as the single
network using a cut-off by median.

Graph sharpening integration
In reality, the Laplacian matrix can be very dense and
high-dimensional occasionally, which will result in
longer computation time when graph-based semi-
supervised learning is performed. In order to reduce the
computation time and maintain or increase the current
performance of graph-based semi-supervised learning,
Shin et al. [6] proposed the graph sharpening integration
method that reduces the complexity of the weight matrix
in the graph-based learning algorithm. The relationship
among labelled and unlabelled points described by
weight matrix W is symmetric while it is not desirable to
be all symmetric. That is, some edges may carry more
useful information in one direction than in the opposite
direction. Therefore, edges between opposite labelled
points maybe unnecessary. Removing some edges in a
graph structure will yield a sparser and more parsimoni-
ous graph and reduce some computational burden.
Suppose a network structure with weight matrix W, and
wij represents the edge strength from node j to node i.
Firstly, edges from unlabelled nodes to labelled nodes
will be removed, then edges between opposite labelled
nodes will also be removed. That is, wij = 0 if node i is
labelled and node j is unlabelled or nodes i, j have
opposite labels. The original dense W is forced to stay
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sparse by cutting these unhelpful edges. Even after the
removal of these unnecessary edges in graph sharpening
algorithm, it still preserves sufficient information of the
original network structure. First, no information will be
lost on the labelled nodes, their influence to neighbour
nodes still exists. Second, the connection information of
unlabelled nodes is also preserved. So the performance
should be reasonable when compared to graph-based
semi-supervised learning, this can be illustrated by the
results shown in Shin et al. [6].
In contrast to the graph-based semi-supervised learn-

ing, the weight matrix W in graph sharpening integra-
tion is no longer symmetric. The Laplacian matrix L
becomes asymmetric. Considering the objective function
in graph-based integration algorithm, the optimal solu-
tion can be written as

f ¼ I þ 1
2

Xm
k¼1

αk Lk þ LT
k

� �2
4

3
5
−1

y ð6Þ

Similar to graph-based semi-supervised learning, α,
the weights of the different network structures can be
obtained easily from the convex optimization problem
by substituting f in the objective function. The predic-
tion is once again based on the median cut-off.
The algorithms we have described so far involve a

tuning parameter c, which is a trade-off between loss of
information and smoothness. This value will be deter-
mined by repeated k-fold cross-validation using the
training set through a search based on the following
values.

c∈ 0:001; 0:005; 0:01; 0:05; 0:1; 0:25; 0:5; 1; 1:5; 5; 10; 25; 50; 100f g

Composite association network
It is obvious that the weights assigned to the different
networks in graph-based semi-supervised learning and
graph sharpening integration are determined by solving
a convex optimization problem. The computation will
be very costly unless L is very sparse. The composite
association network approach [7] addresses this limita-
tion by using linear regression to obtain the weights of
different data sources.
Assume that m associated networks with symmetric

weight matrices Wi and that the elements of Wi

which indicate the edge strengths are all non-
negative. Let y = (y1, y2,⋯, yn)

T be the label vector of
nodes in the networks and element yi be a binary
variable, yi ∈ {−1, 1}. The target network T is defined
as the functional relationships of y. Tij will take one
of three values.

Tij ¼
nþ=nð Þ2 yi ¼ yj ¼ −1

n−=nð Þ2 yi ¼ yj ¼ 1

nþn−=n2ð Þ yi ≠ yj

8><
>: ð7Þ

where n+/n− is the total number of positives/negatives in
label vector. The target is to integrate the m associated
networks with weights α = (α1, α2,⋯, αm)

T, and the com-
posite weight matrix is W ¼Pm

i¼1αiW i . Intuitively, in a
target network T, pairs of positive/negative labelled
nodes will have high similarity whereas pairs with a posi-
tive node and a negative node will have low similarity.
The values of T will influence the weights of the com-
posite association networks. The objective function will
minimize the least squares error between target network
T and composite weight matrix W .

min
α

trace W −T
� �T

W −T
� �� �

ð8Þ

Note that trace(AB) = vec(A)Tvec(B), the objective func-
tion can be rewritten as below

min
α

Ωα−vec Tð Þð ÞT Ωα−vec Tð Þð Þ
Ω ¼ vec W 1ð Þ;⋯; vec Wmð Þ½ �

ð9Þ

The optimal solution can be obtained by setting the
derivative of α equal to zero.

α ¼ ΩTΩ
� �−1 ΩTvec Tð Þ� � ð10Þ

As we mentioned above, the target network T only
takes three values, that is vec(T) can be treated as pair-
specific covariates. In our case, we specified three cat-
egorical variables: positive-positive, negative-negative
and positive-negative [7]. Different from the graph based
semi-supervised learning, the weight obtained with com-
posite association network may be negative. To avoid
this situation, αi will be set to zero when it is negative.
Average weights αi = 1/m will overwrite the original
weights when αi ≤ 0 for all i for the association networks.
In practice, a bias weight α0 will be added in α and the
first column of Ω will be filled by one. α0 will be dis-
carded when integrating the weight matrices of the asso-
ciation networks.
Once we obtain the composite weight matrix W , we

will employ the graph-based semi-supervised learning
for a single network. The function scores can be solved
by the formula f = (I + cL)−1y, where L is the Laplacian
matrix related to weight matrix W . c will be set to 1 for
the composite association network as in the original
paper by Mostafavi et al. [8].

Bayesian network
Bayesian network [9] is a probabilistic directed acyclic
graphical model that composed of a set of random
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variables and their conditional dependencies. Nodes in a
Bayesian network represent different variables and their
conditional dependencies are specified via directed
edges. Each node is associated with a probability func-
tion that takes a particular set of values of its parent var-
iables as input and gives the probability of the variable
represented by this node as output. The main idea of
this approach is that it involves Bayesian inference, that
is, the posterior probability can be computed as the
product of prior probability and likelihood probability.
Now we will describe the use of Bayesian network for
data integration.
Suppose we have n samples with m variables v1, v2, ⋯,

vm, which are classified into two groups and labelled as
y, where y ∈ {−1, 1}, and the first k variables v1, v2, ⋯, vk
are conditionally dependent and the remaining variables
are conditionally independent given y. With the given
samples, the prior probability p(y) and the likelihood
probability p(v1, v2, ⋯, vm| y) can be obtained directly.
Then the posterior probability of y, denoted as p(y| v1,
v2, ⋯, vm) can be expressed as

p yjv1; v2;⋯; vmð Þp v1; v2;⋯; vmð Þ
¼ p v1; v2;⋯; vmjyð Þp yð Þ

ð11Þ

As the computation of p(v1, v2,⋯, vm) can be cumber-
some, an intuitive way is to use the posterior odds ratio
rather than the posterior probability. Posterior odds ratio
can be computed by the likelihood odds ratio and the
prior odds ratio. That is,

Oddpost ¼ p y ¼ 1jv1; v2;⋯; vmð Þ
p y ¼ −1jv1; v2;⋯; vmð Þ

¼ p v1; v2;⋯; vmjy ¼ 1ð Þp y ¼ 1ð Þ
p v1; v2;⋯; vmjy ¼ −1ð Þp y ¼ −1ð Þ

ð12Þ

p y¼1ð Þ
p y¼−1ð Þ can be represented as prior odds ratio Oddproir,

which explains the proportion of the two groups in the
sample set. Further, considering the conditional depend-
encies of these variables in the structure of Bayesian
network, the likelihood function can be rewritten as.

p v1; v2⋯; vmjyð Þ ¼ p v1; v2⋯; vk jyð Þ � p vkþ1; vkþ2⋯; vmjyð Þ

¼ p v1; v2⋯; vk jyð Þ �
Ym

i¼kþ1

p vijyð Þ
ð13Þ

Obviously, samples with Oddpost > 1 will be classified
as 1, otherwise −1. The larger the posterior odds ratio is,
the more likely y will be classified as 1.
In our study, important SNPs/genes will be filtered

from different data sources in the first step based on the
process described by Klein et al. [16]. Briefly for each
SNP/gene, its association with the dichotomized label

will be tested and the filtered SNPs/genes that pass the
Bonferroni corrected P-values will be included. Scores
will be assigned to patients based on these filtered
SNPs/genes. We discretize the scores into several bins
based on their respective quartiles. Edges will be added
between two nodes when their conditional correlation
coefficients exceeded the threshold of 0.3. Both simple
Bayesian networks and structured Bayesian networks are
considered in our study. Illustrations of the four graph-
based learning algorithms can be found in Additional
file 1: Section A.

Kernel-based algorithms
Semi-definite programming SVM
Support vector machine is a well-known kernel-based al-
gorithm that can create hyperplane classifier by solving a
quadratic program based on the kernel function and la-
bels. The use of kernel functions provides a powerful
approach to detect the nonlinear relationships in the fea-
ture space, i.e. a high-dimensional representation of
numerical output variables. Its main goal is to search a lin-
ear classifier in the feature space that has the maximum
margin distance between two groups. Semi-definite pro-
gramming SVM [10, 11] that combines semi-definite pro-
gramming framework with SVM, extends the quadratic
program to multiple kernels. It is readily applicable to
multiple kernel learning and makes it possible to integrate
different data sources with different kernel functions.
Consider a set of kernels obtained from different data

sources κ = {K1, K2,⋯, Km}, and K ¼Pm
i¼1μiK i with

embedding function Φ(x), represented as linear combin-
ation of these kernels, the combined kernel K is positive
semidefinite if μi ≥ 0 for i ∈ {1, 2,⋯,m}. Thus, the μi can
be considered as the linear weights of kernel Ki. Given a
set of training data x = (x1, x2,⋯, xn) with corresponding
labels y = (y1, y2,⋯, yn)

T, where yi ∈ {−1, 1}. The objective
hyperplane is wTΦ(x) + b = 0, where w is the linear com-
bination of kernel function corresponding to xi. The 1-
norm soft margin SVM optimization problem can be de-
scribed as follows.

min wk k2 þ C
Xn
i¼1

ξ i

s:t: yi w
TΦ xið Þ þ bð Þ≥1−ξ i

ξ i≥0; i ¼ 1;⋯; n

ð14Þ

where C is a penalty parameter that trades-off between
margin and loss. By considering its corresponding dual
problem, Schölkopf and Smola [17] proved that the weight
vector could be represented as w ¼Pn

i¼1αiΦ xið Þ , where
support vector α could be solved from the following
equation.
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min
μi

max
α

2αTe−αT diag yð Þ
Xm
i¼1

μiK i

 !
diag yð Þα

s:t: trace
Xm
i¼1

μiK i

 !
¼ c

Xm
i¼1

μiK i≽0

αTy ¼ 0
0≤α≤C

ð15Þ

Here c is a regularization parameter that controls the
linear weights of the kernels and e is a vector of ones.
This convex problem can be reformulated as a quadrati-
cally constrained quadratic program (QCQP) after con-
sidering its Lagrange dual problem.

max
α;t

2αTe−ct

s:t: t≥
1
ri
αT diag yð ÞKi diag yð Þα

ri ¼
Xm
j¼1

Ki½ �jj

αTy ¼ 0
0≤α≤C

ð16Þ

This QCQP is a special form of semi-definite pro-
gramming that can be solved efficiently with interior
point methods [18]. The computational complexity of
solving this SDP can be O(mn3) in the worst case. Solv-
ing this problem results in the optimal solution for α
and the optimal values for its dual variables μi. Finally,
the hyperplane classifier f =wTx + b will be calculated via
formula w ¼Pn

i¼1αiK xi; xð Þ where K ¼Pm
i¼1μiK i ,

and b ¼ −maxi;yi¼−1wTxiþmaxi;yi¼1wTxi
2 . An unclassified x will

be classified as 1 when f is positive, otherwise will be
classified as −1.
In our study, c is set to be the training set sample size

that ensures the sum of the weights equals to one and C
is determined by grid search.

Relevance vector machine
Relevance Vector Machine (RVM) is a machine learning
technique with an identical functional form to support
vector machine (SVM), but employs Bayesian inference to
obtain probabilistic results [12, 13]. Given a set of input

samples xnf gNn¼1 with the corresponding output ynf gNn¼1 ,
where xn ∈ R

d and yn ∈ {−1, 1}. The RVM classification

model can be written as a linear combination of kernel
functions k

Y x;wð Þ ¼
XN
i¼1

wik x; xið Þ ¼ WTK ð17Þ

where W = [w1,w2,⋯,wN] and K = [k(x, x1), k(x, x2),⋯,
k(x, xN)].
Finally, m samples will be reserved as relevance points.

The probability is calculated by the following sigmoid
function:

P yi ¼ 1jWð Þ ¼ 1
1þ e−Y x;wð Þ ð18Þ

The performance of RVM can be very similar to SVM,
but RVM is more competitive than SVM in the follow-
ing aspects. (i) The result of RVM is sparser than SVM
and the kernel computation time can be largely reduced;
(ii) RVM can provide probabilistic prediction for classifi-
cation problems by returning the class probabilities; (iii)
RVM does not require the specification of a loss param-
eter; and (iv) Kernel function in RVM is more flexible
without the Mercer’s condition [19] restriction.
Assume that k different associate data sources with a

corresponding outcome Y, where Y = (y1, y2,⋯, yn)
T

and yi ∈ {−1, 1}. For each data source, an individual RVM
model will be generated with the corresponding kernel
matrix, i.e. radial basis function kernel. Denote P1, P2,
⋯, Pk as the k sets of probability prediction results from
multiple RVM models, where Pi is an n × 1 vector. The
final probability is given by

P ¼ P1 þ P2 þ⋯þ Pkð Þ=k
¼ p1; p2;⋯; pnð ÞT ð19Þ

Note that pi is the probability of yi = 1. The cut-off
point should be 0.5, which means sample will be classi-
fied as 1 when pi > 0.5. The greater pi is, the higher the
chance that yi will be classified as 1.

Ada-boost RVM
Ada-Boost is a machine learning algorithm that can
combine different types of learners to improve the final
performance. The final classifier is the weighted sum of
many weak learners. When combined with RVM [14], it
will follow the following steps. Assume a set of training

samples xnf gNn¼1 with the corresponding output ynf gNn¼1

, where xn ∈ R
d and yn ∈ {−1, 1}. Let wi = 1/N denote the

weights of the training samples. First, train an RVM
learner on n random samples selected from the training
set without replacement, denoted as RVMt, then calcu-
late the weighted error for misclassification on the train-

ing samples in the tth iteration by formula εt ¼
PN

i¼1wi .
If εt ≥ 0.5, jump to the next iteration; otherwise, set the
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weight of this learner RVMt equal to αt ¼ 1
2 ln

1−εt
εt

� �
,

then the final model will update as RVMfinal = RVMfinal

+ αtRVMt. The weights of samples will be updated as

wi ¼ wieαt if RVMt xið Þ≠yi
wie−αt if RVMt xið Þ ¼ yi

�
ð20Þ

The new weights wi should be normalized such thatPN
i¼1wi ¼ 1 before moving to the next iteration. After

T iterations, the final model can be represented
as RVMfinal = ∑jαjRVMj, where εj < 0.5 .
As RVM is computationally intensive, using Ada-boost

for RVM could address the problem of large-scale learn-
ing and lower the computational cost. Its main concept
is to sample many small training sets from the original
training set and then each model is trained with a
smaller training set and thus lowering the computational
cost. As a sufficient number of base models are gener-
ated, most of the distinct aspects of the complete train-
ing set can be captured and represented in the final
combined model. It is necessary to determine an appro-
priate resampling size and the maximum number of iter-
ations when utilizing the Ada-boost RVM algorithm. A
range of values for resampling size and the number of it-
erations are evaluated by 5-fold cross validation. We
search the appropriate resampling size and maximum it-
eration number from a search over.

resampling size∈ 0:2N ; 0:4N ; 0:6N ; 0:8Nf g;
iteration∈ 1; 5; 10; 20; 30:f g

where N is the training set sample size. The pseudo code
for Ada-boost RVM can be found in Additional file 1:
Section B.

Performance measure
To evaluate the performance of different data integration
algorithms, we employ three measurements in our study:
accuracy rate, F1 score (also called the F-measure) and
the Area Under the receiver operating characteristic
(ROC) Curve (AUC). Accuracy rate measures the
percentage of entities which are correctly classified. F1
score combines the precision and recall rates in classifi-
cation problems, and can be calculated as the harmonic
mean of precision and recall rates. Given a binary classi-
fication problem with P positive and N negative entities,
the predicted and true labels can form a 2 × 2 confusion
matrix. Four different values: true positive tp, false posi-
tive fp, false negative fn and true negative tn, can be
calculated from this table. Sensitivity and specificity are
defined as

sensitivity ¼ tp
P
; specificity ¼ tn

N
;

the accuracy rate and F1 score can be calculated as

accuracy ¼ tpþ tn
tpþ fpþ tnþ fn

; F1 ¼ 2tp
2tpþ fpþ fn

:

ROC curve captures the sensitivity as a function of
(1-specificity). It illustrates the overall performance of a
binary classifier by varying the discrimination threshold.
The AUC has a value between 0 and 1. A value of 1 im-
plies that the algorithm has a perfect classification while
a value of 0.5 suggests that the algorithm is no better
than a random guess.
These three performance measures are determined

over 200 runs. 95% confidence intervals, calculated
based on percentile bootstrap, are used to assess the
variability of the algorithms. Computation time will also
be considered as an evaluation factor in our study. It is
clocked based a desktop running with R version 3.2.3
using an Intel Core i7 3.60 GHz PC with 16 GByte of
memory. The computation time is based on integration
of three different data sources that only include the
model training session. Computation time of calculating
the weight matrix and kernel matrix, and the filtering of
SNPs/genes in the Bayesian network model are
excluded.

Data sets
Data from hypertension and cancer are used to evaluate
and compare the seven data integration algorithms.
Hypertension is known as the leading cause of cardio-
vascular mortality in the world [20]. Moreover, cancer
and heart disease are the leading causes of death. Our
understanding of these complex diseases from different
angles of biology can be improved with the availability
of multi-omics data integration algorithms. The Genetic
Analysis Workshop (GAW) 19 data set was evaluated in
our study, which includes data on genotypes, gene
expression, and clinical data (including blood pressure
and covariates such as smoking status and age). For this
family data, there are 312 patients with normal blood
pressure, and 305 pre-hypertension and hypertension
subjects from 17 families.
Ovarian cancer and breast cancer are the two cancers

evaluated in our study, which can be available from The
Cancer Genome Atlas (TCGA) project [21, 22]. Four dif-
ferent data sources in the ovarian cancer data set,
including gene expression, miRNA expression, protein
expression, and methylation, are included in our
analysis. There are 85 patients with lymphatic invasion
and 50 without lymphatic invasion outcomes which
characterize the aggressiveness of ovarian cancer. Four
different data sources in the breast cancer data set,
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including RNASeq, miRNA expression, protein expres-
sion, and methylation, are included in our analysis. There
are 351 patients with positive ER status and 102 subjects
with negative ER status. The GAW 19 and TCGA are two
of the largest publicly available heart disease and cancer
databases with the availability of multi-omics data. Table 1
describes the data sets considered in our study.
The impact of imbalance data sets on the performance

of the seven algorithms compared has also been investi-
gated by real data simulation. In this simulation, we con-
sider three additional situations, a more imbalanced and a
more balanced breast cancer data sets by sampling with-
out replacement, resulting in positive ER status against
negative ER status ratios of 5:1 and 5:2, respectively. The
breast cancer data set is chosen because it is the most im-
balanced and has a relatively large sample size.

Results
In this section, we present the empirical assessment of
the seven data integration algorithms. The results com-
pared in the following section are based on (1) Pearson
correlation matrix; (2) simple Bayesian network and (3)
radial basis function kernel with a scaling parameter
sigma that is determined by grid search using 5-fold
cross validation in the training set. The reasons are as
following: In our study (1) Spearman’s rank correlation
matrix and Pearson correlation matrix are used as
weight matrix in graph-based semi-supervised learning,
graph sharpening integration, and composite association
network, the negative elements in the two correlation

matrix will set to zero as weight matrix should be non--
negative. The performance of Spearman’s rank correl-
ation matrix is only slightly better than Pearson
correlation matrix in most cases for the graph-based
algorithms while its computational complexity is O(n2

log n), which may become prohibitive for larger sample
sizes; (2) Simple Bayesian network and structured
Bayesian network are compared in our study. The per-
formance of simple Bayesian network and structured
Bayesian network are similar but structured Bayesian
network leads to infinite odds ratio frequently due to
small sample size; (3) Linear kernel and radial basis
function kernel are tested in kernel based algorithms.
Radial basis function kernel performs better than linear
kernel in kernel-based algorithms in the three data sets
investigated.

Performance comparisons
For the two cancer data sets, we separate the data into
training and testing samples, where 75% samples are
randomly selected as the training set and the remaining
25% are used to evaluate the performance of the seven
algorithms. For the GAW 19 data set, “Leave-cluster-out
cross-validation” [23] was employed. At each iteration,
12 families will be selected as the training set and the
remaining 5 families will be used as the test set. We re-
peat this 200 times. Figures 2, 3 and 4 show the mean
accuracy, mean F1 score and mean AUC of different
integration algorithms with GAW 19, ovarian and breast
cancer data sets.

Graph-based algorithms
First, we present the results of four graph-based
algorithms. As described in the materials and methods
section, the difference between graph-based semi-
supervised learning and graph sharpening integration is
the sparseness of the weight matrix. Compared to
graph-based semi-supervised learning, the graph sharp-
ening integration still performs reasonably well with
sparser weight matrices obtained from the removal of
undesirable edges in network structures. However, the
performance of graph sharpening integration may not be
as stable which is illustrated with the three data sets.
Graph sharpening performs better than graph-based
semi-supervised learning with the GAW 19 data set
(62.1% mean accuracy rate against 60.0%) while it per-
forms slightly worse than graph-based semi-supervised
learning with ovarian and breast data set (63.3% mean
accuracy rate compared to 66.7% in ovarian and 77.5%
mean accuracy rate compared to 84.1% in breast). For
Fig. 2, we can observe that the confidence interval of
simple Bayesian network is slightly wider than other
graph-based algorithms even though the mean accuracy
rates of the various graph-based algorithms are similar

Table 1 Data sets used for evaluating the data integration
algorithms

Data
Set

Sample
Size

Data
Source

Platform Numbers
of Features

GAW
19

617 Genotypes lllumina Infinium
Beadchips

440,762

Gene
Expression

lllumina Sentrix Human-6
Expression BeadChips

20,634

Clinical
Covariates

Clinical Data 2

Ovarian 135 Gene
Expression

Agilent G4502A 17,814

miRNA
Expression

Agilent Human
miRNA 8x15K

799

Protein
Expression

Reverse phase
protein array

176

Methylation HumanMethylation 27 24,981

Breast 453 RNA SeqV2 Illumina HiSeq 20,531

miRNA
Expression

Agilent Human
miRNA 8x15K

1046

Protein
Expression

Reverse phase
protein array

166

Methylation HumanMethylation 450 396,065
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for the GAW 19 data set. This indicates that simple
Bayesian network has a larger prediction variation than
other graph-based algorithms. Composite association
network usually performs better than all of the other
graph-based algorithms in terms of accuracy rate, F1
score and AUC with the advantage that it only requires
solving one linear regression problem. Meanwhile, it is
quite stable when considering the variability of these
graph-based algorithms.

Kernel-based algorithms
The performance of kernel-based algorithms is usually
better than graph-based algorithms, while the kernel-
based model is more complex and requires longer
computation time due to the need to generate the hyper-
plane classifier. In semi-definite programming SVM,
different combinations of the two tuning parameters c, C
may lead to long computation time in solving the
QCQP. In our study, we found that it is particularly true

Fig. 3 Mean F1 score of seven integration algorithms. BRCA represents breast cancer data set, GAW represents GAW 19 data set, and Ovarian represents
ovarian cancer data set. “95% LCL” is the abbreviation of “95% lower confidence limit” and “95% UCL” is the abbreviation of “95% upper confidence limit”

Fig. 2 Mean accuracy of seven integration algorithms. BRCA represents breast cancer data set, GAW represents GAW 19 data set, and Ovarian represents
ovarian cancer data set. “95% LCL” is the abbreviation of “95% lower confidence limit” and “95% UCL” is the abbreviation of “95% upper confidence limit”
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when C is less than one. RVM and Ada-boost RVM are
probabilistic models, which can return probability pre-
dictions but require longer computation time when
compared with semi-definite programming SVM. It is
observed that Ada-boost RVM can achieve good per-
formance with our data sets when resampling size is set
to 40% or 60% of the training sample size and maximum
iteration number is set to 5 or 10.
It can be seen that semi-definite programming SVM

has larger variation and lower performance when com-
pared to RVM and Ada-boost RVM. The performance of
RVM and Ada-boost RVM varies in the three data sets,
which make it difficult to compare these two algorithms.
But the difference of mean accuracy between RVM and
Ada-boost RVM is very small.

Imbalanced data simulation
Additional file 1: Section C presents the mean accuracy,
mean F1 score and mean AUC of different integration
algorithms in three simulated imbalanced data sets.
Among the four graph-based algorithms, the perform-
ance of composite association network and Bayesian net-
work is less influenced by imbalanced data. The
imbalanced data simulation also suggests that composite
association network usually outperforms Bayesian net-
work. The performance of RVM and Ada-boost RVM
are better and more stable in the imbalanced data simu-
lations comparing to other graph-based or kernel-based
algorithms. While for SDP-SVM, its performance is af-
fected by the imbalanced data sets.

Computation time
Table 2 compares the average computation time (in
seconds) in training the model of the seven integration
algorithms with three different data sources. The
sampling size of Ada-boost RVM in this part will be 40%
of training size and maximum iteration number set to
10. In general, the computation time of graph-based
algorithms is less than that of kernel-based algorithms in
our study. Although the computation time of Bayesian
network is the fastest, it requires a filtering step of
SNPs/genes that is computationally costly when number
of variables (i.e. SNPs/genes) gets larger. The second
fastest algorithm is composite association network that
only requires solving a linear regression problem.
Network structure sparsity through sharpening reduces
the computation time of graph sharpening integration

Table 2 Average computation time (in seconds) of different
integration algorithms with different training sizes

Integration Algorithms Training Size 100 Training Size 400

Graph-based semi-supervised
learning

0.127 4.148

Graph sharpening integration 0.052 1.943

Composite association network 0.007 0.052

Bayesian network 0.002 0.004

Semi-definite programming – SVM 12.553 28.186

Relevance vector machine 10.471 368.455

Ada-boost relevance vector
machine

23.190 306.172

Fig. 4 Mean AUC score of seven integration algorithms. BRCA represents breast cancer data set, GAW represents GAW 19 data set, and Ovarian represents
ovarian cancer data set. “95% LCL” is the abbreviation of “95% lower confidence limit” and “95% UCL” is the abbreviation of “95% upper confidence limit”
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by more than one-half of graph-based semi-supervised
learning. The computation time of semi-definite pro-
gramming SVM is highly dependent on the time needed
to solve the QCQP. It may require more than 20 min to
train the semi-definite programming SVM model in
some scenarios. Training time of RVM and Ada-boost
RVM is quite expensive as their computational complex-
ity is O(n3). Additional iterations of boosting procedure
in Ada-boost RVM requires more time than RVM when
sample size is small, 23.19 s for Ada-boost RVM against
10.47 s for RVM with 100 training samples. While the
computation time of Ada-boost RVM can be largely re-
duced as training sample size increases when compare
to RVM. It is nearly 1 minute less than RVM when sam-
ple size reaches 400.

Discussion
In this paper, we conducted a comprehensive compari-
son study of seven graph- and kernel-based data integra-
tion algorithms of subject classification using GAW 19,
ovarian cancer and breast cancer data sets. From the
results, we observed that the kernel-based algorithms
usually perform better than graph-based algorithms, but
require longer computation time. On the other hand,
the graph-based algorithms require less computation
time, while the performance is not as good overall.
Graph-based semi-supervised learning and graph

sharpening integration involve some tuning parameters,
which can be selected via k-fold cross validation in the
training sample. In our study, we observed that graph
sharpening integration could lead to average weights
frequently and more variable results since the sharpen-
ing may also remove important information. Moreover,
in our study, graph sharpening integration tend to have
a higher mean AUC score than graph-based semi-
supervised learning even though the mean accuracy rate
is lower, this indicates that the prediction can be im-
proved for non-median cut-off. Bayesian network is very
sensitive to noise, inappropriate bins setting and small
sample size will result in infinite odds ratio. To avoid
these situations, one should adjust the bin selection to
make sure that sufficient samples are contained in each
bin and using simple Bayesian network instead of struc-
tured model when sample size is small. The performance
of composite association network is in general very good
and stable. It assigns weights to different data sources by
minimizing the least square error between target net-
work and composite weight matrix, then predict via the
combined weight matrix. This unique feature makes its
training process simpler than other graph-based algo-
rithms. We can conclude that employing the composite
association network may be a good choice to integration
different data sources when considering among graph-
based algorithms.

Kernel-based algorithms may have better performance
than graph-based algorithms, but they usually require
longer training time. In our study, we observe that the
semi-definite programming SVM is very sensitive to out-
liers which leads to larger variations than RVM and Ada--
boost RVM. The computation time for solving QCQP is
largely dependent on the penalty and regularization pa-
rameters. This explains both the computationally intensive
nature as well as the large variation seen in running the
semi-definite programming SVM. RVM performs well and
can return with a probabilistic prediction result but gener-
ally requires longer computation time as training sample
grows. Ada-boost RVM also requires the determination of
an appropriate resampling size and the number of itera-
tions. Table 3 gives a brief summary of the different inte-
gration algorithms.
The rationale for choosing these seven algorithms

in our study is that these algorithms preserve data
specific properties and can integrate data of different
scales. Each data source will be transformed into an
intermediate form, like a graph or kernel matrix.
Graph-based integration, is a natural way to reveal
the relationship among samples and it is less compu-
tationally intensive. For kernel-based integration, it is
good at detecting nonlinear relationships between
samples. There are other categories of integration al-
gorithms such as the concatenation-based integration
that combines multiple data sources as one large in-
put matrix before analysis. The algorithms for this
type of integration include LASSO regression and,
elastic-net regression [24].

Table 3 Comparison of different data integration algorithms

Integration
Algorithms

Computation
Time

Stability Characteristics

Graph-based
semi-supervised
learning

Low Medium Tuning parameter;
performance can be
poor sometimes

Graph
sharpening
integration

Low Low Tuning parameter; average
weights frequently occur

Composite
association
network

Low High Average weights occur
when all weights are
negative

Bayesian network Low Low Bins selection and training
sample size affect
performance

Semi-definite
programming
SVM

Medium Low Two tuning parameters;
C is very sensitive to
outliers

Relevance vector
machine

High High Long training time;
Probabilistic result

Ada-boost
relevance vector
machine

High Medium Resampling size and
iteration can be hard
to determine
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Conclusions
From the analysis of the seven integration algorithms
with three different data sets, the empirical results dem-
onstrate that composite association network, relevance
vector machine and Ada-boost RVM are the better per-
formers and are less influenced by imbalanced data. No
tuning parameters are required for composite associ-
ation network while bins setting are needed for Bayesian
network. The impact of imbalanced data on graph-based
semi-supervised learning and graph sharpening integra-
tion is more obvious, especially for graph sharpening.
While there is no clear indication as to which integra-
tion algorithm is superior in every situation, graph-based
composite association network, relevance vector ma-
chine, and Ada-boost RVM are the better algorithms
relative to other data integration algorithms in its class.
They are comparable in accuracy rates but differ in com-
putation time and form of prediction result. If time is
the key issue, we would recommend composite associ-
ation network, which can provide a reasonable data inte-
gration prediction in a timely manner. If someone wants
a probabilistic prediction result, we would recommend
relevance vector machine for small sample size and
Ada-boost relevance vector machine for large sample
size, for example exceeding 300 samples when setting re-
sampling size to 40% of the training size and maximum
iteration number to 10. Our recommendation can be
illustrated in a decision tree in Fig. 5. In future studies,
researchers may develop an ensemble classifier by utiliz-
ing a combination of the compared algorithms as this
may lead to more accurate results.

Additional file

Additional file 1: Section A. Graph-based integration algorithms.
Section B. Pseudo Code for Ada-boost RVM. Section C. Imbalanced
Data Simulation. (PDF 500 kb)
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