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Abstract

Background: In bioinformatics community, many tasks associate with matching a set of protein query sequences in
large sequence datasets. To conduct multiple queries in the database, a common used method is to run BLAST on
each original querey or on the concatenated queries. It is inefficient since it doesn’t exploit the common
subsequences shared by queries.

Results: We propose a compression and cluster based BLASTP (C2-BLASTP) algorithm to further exploit the joint
information among the query sequences and the database. Firstly, the queries and database are compressed in turn
by procedures of redundancy analysis, redundancy removal and distinction record. Secondly, the database is
clustered according to Hamming distance among the subsequences. To improve the sensitivity and selectivity of
sequence alignments, ten groups of reduced amino acid alphabets are used. Following this, the hits finding operator
is implemented on the clustered database. Furthermore, an execution database is constructed based on the found
potential hits, with the objective of mitigating the effect of increasing scale of the sequence database. Finally, the
homology search is performed in the execution database. Experiments on NCBI NR database demonstrate the
effectiveness of the proposed C2-BLASTP for batch searching of homology in sequence database. The results are
evaluated in terms of homology accuracy, search speed and memory usage.

Conclusions: It can be seen that the C2-BLASTP achieves competitive results as compared with some state-of-the-art
methods.
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Background
The task of batch searching for protein homology often
arise in the field of bioinformatics. As the exponential
growth [1, 2] of protein databases, searching for homologs
often become ineffective due to the intensive compu-
tational efforts involved [3]. For example, in order to
investigate the homology of a new protein sequence set,
a cross-species protein identification method needs to
search millions of sequences in the NR database. More-
over, since the public databases (such as PDB [4], NR [5],
and SWISSPORT [6]) are continuously updated, the task
of homology search is becoming more computationally
expensive and redundant. With the increasingly number
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of the users and queries being accessible to the public
databases, the query tasks are becoming heavy and heavy.
Thus effective algorithms that match sets of protein query
sequences in large-scale sequence datasets are always in
demand.
BLAST [7] will take a longer time when the scale of

query set is getting larger since it evaluates a single query
once. It alternatively employs a brute force approach to
compare query sequence and database sequence. More
specially, the BLAST searches for short fixed-length word
pairs in the sequences and then extends them to higher-
scoring regions. For each query sequence, the algorithm
scans the entire database and compare database sequence
with the querying one to find the subsequences. The
BLAST maybe conduct reduplicative scans to find com-
mon subsequences. Thus, there is an urgent need for
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a tool that can significantly speed up batch homology
searching.
There are many efforts that develop relative techniques

for efficient homology searching. MegaBLAST [8] is a
greedy sequence alignment algorithm. It is faster than
basic BLAST, but it is less effective for aligning highly
similar sequences with larger size. MPBLAST [9] con-
catenates queries by grouping them into a single query,
with the objective of reducing times of database access-
ing. BLAST++ [10] transforms a collection of queries into
a single virtual query, which guarantees the seed searching
process to be performed once for common subsequences.
However, it does not take the redundancy of database into
consideration, and will get inefficiency when applied in
large-scale database. The BLAST+ [11] is developed based
on the advanced results from MPBLAST, BLAST++,
miBLAST [12], BLAT [13]. However, its performance is
unsatisfactory for batch queries when applied to search
on large-scale dataset. MpiBLAST [14] speeds up homol-
ogy search by using parallel processing technique on a
cluster of machines. CUDA-BLASTP [15] utilize GPU to
speed up searching, however, it is not suitable for sup-
porting large-scale databases due to the limit of memory
size. Following the mechanism of CUDA-BLASTP, sev-
eral homology search tools have been developed, such
as RAPSearch [16] and GHOSTZ [17]. However, these
methods require more space to retain relative informa-
tion of sequences, which incurs excessive memory and
storage cost. So, the problem of batch searching for pro-
tein homology still remains challenging and there remains
much room for researchers to improve their algorithms.
In this paper, we conduct studies with the objective of

improving the performance of batch homology search,
and a fast compression and clustering based BLASTP
(C2-BLASTP) algorithm for large-scale protein homol-
ogy search is proposed. Firstly, the query set and the
database are compressed to reduce sequence redundancy.
Then a new database is clustered according to the Ham-
ming distance of similar subsequences. The objective is to
minimize the computation time on ungapped extensions.
Furthermore, an execution database is constructed, on
which the homology search is performed. The execution
database is considered as a collection of all the potential
homologous sequences.

Methods
An effective strategy to improve the efficiency of batch
query is to reduce the redundant sequences in query
set and the database. The underlying mechanism works
by finding representative sequences to express the infor-
mation throughout the sequence sets. To guarantee the
search precision and speed, the representative sequences
are expected to be non-redundant as well as to express
complete information. The proposed fast batch homology

search algorithm (C2-BLASTP) has three major compo-
nents, i.e., the compression, the clustering, and the batch
searching. In the compression process, the database and
the query set are compressed by removing the subse-
quences with high similarity, and leaving the represen-
tative subsequences remained. In the clustering process,
the subsequences in the compressed database is further
grouped based on their similarities, and the potential hits
will be obtained. In the batch searching process, a small
scale executable database is constructed by the potential
homology hits, and the homology search is performed in
the execution database. The details above three compo-
nents are presented in the following subsections.

Compression
In the phase of compressing, the associations among
potential highly similar subsequences are setup by a map-
ping between seeds and subsequences, where seed refers
to a segment of protein sequence with five amino acids,
and subsequence refers to a fraction of protein sequence.
The similarity among the subsequences that point to
the same seed is evaluated by Needleman-Wunsch [18].
The highly similar subsequences are grouped into one
cluster, with one appropriate subsequence being retained
as its representation. By applying this mechanism, the
data redundancies can be reduced. Meanwhile, the query
sequence and database can be compressed.
More specifically, the compression process for query set

and protein database is executed as follows.

1. An initial key-entry pair map structure is
constructed. Each key in the map is a segment of
protein sequence with five amino acids, and it is also
called a seed. The attributes of the key include an
index number in the database (also referred as
sequence number), a starting amino acid position,
and a link to the next subsequence. By scanning the
protein sequence from left to right, a key is created
using every five amino acids. Figure 1 shows an
example of the key entry pair map structure.

2. Each sequence in the query set or the protein
database is compared with the existing keys in the
current map. By scanning the input protein sequence
from left to right, the keys are compared with every
five successive amino acids. If the compared segment
matches one of the existing keys, the Needle man
Wunsch algorithm is carried out, the segment will be
truncated starting from the current position, and will
be connected with other segments that are linked by
the matched key. Otherwise, a new key will be added,
and its corresponding entry attributes will be added
to the current map.

3. Redundant segments in sequences are compressed.
Similarity can be computed according to the
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Fig. 1 Structure of key-entry pair map. This is an example of the key-entry pair map structure. Each key in the map is a segment of protein sequence
with five amino acids, and it is also called a seed. Each entry has three attributes, i.e., sequence number, starting amino acid position, and the link to
the next sequence. The algorithm scans the first protein sequence from left to right and groups every five amino acids into a key

alignment result using BLOSUM62 [19]. When the
similarity is higher than a given threshold (80%), the
referred subsequence is considered to be redundant.
So the subsequence is deleted, meanwhile, a new link
to the current key is added and the difference between
the two subsequences is recorded in a special script.

4. A final non-redundant segment pool is created. The
new database consists of non-redundant segments of

protein sequence and the corresponding sequence
information.

The above compression process includes redundancy
analysis, redundancy removal and distinction record. The
redundancy analysis is implemented using the key-entry
pair map and the alignments. Figure 2 presents an exam-
ple of redundancy removal. Q1 to Q6 are six sequences.
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Fig. 2 An example for redundancy removal. This is an example for redundancy removal. Q1 to Q6 are six sequences in query set or database. The red
shadow segments are subsequences with more than 80% similarity. By conducting redundancy removal, Q2’ is generated by deleting similar
segment b2 in the rear of Q2; Q3’ is generated by concatenating a3 and c3 as well as deleting similar segment b3; Q4’ is generated by deleting
similar segment b4 in the front of Q4; Q5 is completely removed; Q6 is completely reserved
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The red shadow segments are subsequences with more
than 80% similarity. By conducting redundancy removal,
Q2’ is obtained by deleting similar segment b2; Q3’ is
obtained by concatenating a3 and c3 as well as deleting
similar segment b3; Q4’ is obtained by deleting similar
segment b4; Q5 is completely removed; Q6 is completely
reserved.
To keep the completeness of the sequence information,

the small differences (less than 20%) among the simi-
lar subsequences are recorded using a script. Figure 3
presents an illustrative example of compression. Seq a and
seq b are sequences taken from the original sequence set
which include the same key ’SERGK’. After the key, the
similarity of their two subsequences is more than 80%. So
seq b is compressed by removing the similar counterparts.
To avoid losing pseudo redundancy in the remaining
segment, a script is employed to record the small differ-
ences. The contents of the record include pairs of position
information and distinction information. For example, a
section of ‘a, 15, 43’ indicates the representative sequence
is seq a, and the compressed segment starts at the 15th
residues and ends at the 43rd residues. A section of
‘r6L, r8A, r3V, i5D’ indicates the small differences com-
pared with the representative sequence. The lower-case
letters r, i, and d denote the three operations of replace-
ment, insertion and deletion, respectively. The digit either
denotes the distance between the current mismatching
residue and its nearest mismatching predecessor, or the
distance between the first mismatching residue and the
initial position of the key. The capital letter denotes the
actual residue in the compressed redundant subsequence.
Thereafter, the original sequence can be recovered using
the information in the difference script. Besides, the com-
pressed sequence database is written in FASTA format.
Algorithm 1 gives the pseudo-code of compression.

Clustering
By conducting the compression process, the redundancy
in the query set and the protein database can be reduced.
However, since the compressed protein database is still
large as the fast growing of protein sequences, the online
running of BLASTP is still time consuming. Moreover,
the traditional BLASTP takes much time extending align-
ments without gaps because of the large number of seeds
(including 3 amino acids). The C2-BLASTP further con-
duct clustering on the compressed database. Following
this, the process of hits finding is implemented on the
representative seed of each cluster.
To further improve the sensitivity and selectivity of pair-

wise sequence alignments, ten groups of reduced amino
acid alphabets (A, {K, R}, {E, D, N, Q}, C, G, H, {I, L, V,
M}, {F, Y, W}, P, {S,T}) that are statistically derived based
on the BLOSUM62matrix are used. In essence, the similar
amino acids are implicitly grouped together. The clustered

Algorithm 1 Compressing
1: Q lllllll ♦ One sequence from query set or database
2: Tullllll ♦ The threshold of ungapped alignment
3: Tg llllll ♦ The threshold of gapped alignment
4: Tt llllll ♦ The threshold of total alignment
5: Map lll ♦ The Key-Entry map
6: Ps ← 0 llll ♦ The star t position pointer
7: Pe ← 4 llll ♦ The end position pointer
8: S llllll ♦ The similarity of alignment
9: for Pe < Q.length do
10: if Q[Ps,Pe] is not a Key in Map then
11: Construct a new Key Q[Ps ,Pe]
12: Set value, pos and next (null)
13: end if
14: ifMap have Key Q[Ps ,Pe] then
15: for Entry pointed by Key in Map do
16: Entry.seq and Entry.pos locate Q′
17: while S > Tu do
18: S ← UnGapAlignment(Q[Pe ,Pe + 5] ,Q′)
19: Pe ← Pe + 5
20: end while
21: while S > Tg do
22: GapAlignment(Q[Pe ,Pe + 20] ,Q′)
23: Pe ← Pe + 20
24: end while
25: Tt ← Alignment(Q[Ps ,Pe] ,Q′)
26: if Pe − Ps < 40 and Tt < 80% then
27: Retain Q[Ps,Pe]
28: Then do next loop
29: else
30: Cut Q[Ps ,Pe] and link Q′
31: Break out from the loop
32: end if
33: end for
34: end if
35: Ps ← Pe + 1
36: Pe ← Ps + 5
37: end for

database is obtained by the processes of key finding, seed
generation, and clustering, which is illustrated in Fig. 4.
How to determine the key length is crucial in key find-

ing task. In fact, the short subsequences of the same length
tend to appear with different frequencies in the database
because of the composition bias in biology. It has been val-
idated that the keys with 6-9 amino acids tend to appear
with higher efficiency [16]. So, the lengths of keys are
automatically selected in the range of 6-9 amino acids
based on the sum of the match scores of the short subse-
quences. The match score is obtained by the BLOSUM62
score matrix and is taken by the highest score in each
group of amino acids. To avoid insignificant short seg-
ments, the threshold T is taken empirically with value 39.
When the sum of match scores for short subsequences
exceeds T, the subsequence is considered as a key. For
example, the subsequence ‘YKWVN’ is not used as a key
because its score sum is less than 39, while ‘YKWVNK’ is
used as a key because its score higher than 39. If a key is
obtained, then a key-entry map is created and extended
by following a similar procedure in compression process.
Finally, a complete key-entry map (Map1) for all of the
keys can be obtained.
Next, seeds can be generated from keys. The seeds

are composed of ten residues, with the first five residues
being extended forward from the starting point of the
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Fig. 3 Illustration of compression process. This is an illustration of compression process. Seq a and seq b are sequences taken from the original
sequence set which include the same key ‘SERGK’ with their subsequences similarity being more than 80%. Seq b is compressed by removing the
similar counterparts. To keep the completeness of seq b, a script is employed to record the differences between seq a and the compressed seq b,
where ‘a, 15, 43’ records the site of the removed segment, ‘r6L, r8A, r3V, i5D’ records the small differences compared with the representative sequence

key, and the remaining residues being taken from the
first five residues of the key. Finally, the seeds produced
from the same key are clustered according to Hamming
distance, respectively. The seeds will be group into one
cluster if their similarity exceeds a given threshold (90%).
Each cluster has one representative seed, with other seeds
being linked to. Meanwhile, two association diagrams are
created. The first diagram is the seed-entry map for the
representative seed (Map2), and its entry includes the
cluster ID and the location of representative seed. The
other diagram is the clustering map (Map3). As shown in
Fig. 4c, the diagram describes the cluster ID and the loca-
tion of its cluster member. The above procedure acceler-
ates the search speed since it groups similar subsequences
together.

Batch searching
The clustered database is constructed offline by imple-
menting the operators of compression and clustering. It
needs to be updated regularly as the database expanses.
For given query sequences, the objectives lie with find-
ing enough information for homology from the clustered
database, and creating a smaller scale execution database.
The execution database is a collection of all the potential
homologous sequences with which the homology search
can be performed.
Since hits associate with potential homologous

sequences, how to find hits from the clustered database
plays an important role in constructing the execution
database. Hits are the set of results obtained by searching

the clustered database using compressed query set as
index. To compare query sequences with the clustered
database that is described by three maps in “Clustering”
section, we construct the seed-entry map for query set
and keep their format being consistent. More specif-
ically, the query sequences are firstly re-expressed by
the reduced amino acid alphabets, and then every ten
adjacent residues are taken as a seed in the query set
directly. Thereafter, we compare each seed in query set
with the representative seeds in Map2. If they are identi-
cal, the corresponding original fragments (non-reduced
amino acid alphabets) can be recovered according to their
entries in maps. So, the similarity between the fragment
of query sequences and the cluster representative can
be calculated. If the similarity exceeds a given threshold
(80%), all the members in the cluster can be obtained by
the cluster ID. Then we conduct gapped and ungapped
extensions to obtain hits.
When the similarity is less than the threshold, the query

seed may still be of highly similar with other elements
of the cluster due to the existing differences between the
cluster representative and its members. In this case, the
compensation analysis is further conducted by employing
triangle inequality [17], so that the search accuracy can be
improved. The formulation is as follows.

d(Sq, Sm) ≥ d(Sq, Sr) − d(Sr , Sm) (1)

Where Sq, Sm and Sr are the query seed, the cluster
member, and the cluster representative, respectively.
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Fig. 4 Generation process of clustered database. This figure shows the clustering process. In the key finding process, the key-entry map is created by
conducting compress operation on the database. The length of the key is automatically selected based on the BLOSUM62 matrix. In the seed
generation process, the seeds are generated by extending from the keys and the seed-entry map is created. And in the clustering process, a
representative seed is selected for each cluster, to which other seeds are linked, and the clustering map is created

d(S1, S2) is the distance between seed S1 and seed
S2. In particular, the maximum value of d(Sr , Sm) is 1
because the cluster threshold Tc is taken as 90%. So,
the lower bound of distance between Sq and Sm can be
obtained. If the lower bound is less than or equal to the
distance calculated from similarity threshold Ts, then the
query seed may be highly similar to the member seed.
Therefore, we conduct gapped and ungapped extension
to get hits.
The hit set is composed of non-redundancy subse-

quences in the compressed database. Further, by utiliz-
ing the scripts of the compressed database, all the key
related redundancy sequences from the original dataset
can be assembled to form a final execution database.
Finally, batch searching for protein homology can be
conducted between the original query set and the exe-
cution database using BLASTP. In summary, the frame-
work of the proposed C2-BLASTP algorithm is shown
in Fig. 5.

Results and discussion
Experimental datasets and settings
In this section, experiments are conducted to evaluate the
performance of the proposed C2-BLASTP. In the exper-
iments, the NR database built on June 2013 is taken
as benchmarks. The database has 26.7 million protein
sequences, including a total of 9.3 billion amino acids.
We randomly select a certain number of sequences from
the Saccharomyces Genome Database (SGD) and the
ENV_NRDatabase as query sequences. The SGD contains
the proteomes of 21 strains of yeast [20]. The ENV_NR
contains some translations from the ENV.NT (nucleotide)
database, and the ENV.NT contains DNA sequences from
the environment directly. The organization of the datasets
indicates the varieties of their organisms. The proteins
from environmental projects are presented in either the
NR or the ENV_NR database, depending upon whether
that sequence has been identified as a particular organ-
ism (NR), or the organism is unknown (ENV_NR). All the
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Fig. 5 The framework of C2-BLASTP. This figure shows the framework of the C2-BLASTP. In the offline processing step, the original database is
compressed, and further grouped into clusters. In the online searching step, the input query set is compressed, then the hits set is obtained by
running BLASTP on the compressed query set and the compressed database. Following this, the hits related redundancy sequences are assembled
to form an execution database. Finally, batch searching is conducted between the original query set and the execution database using BLASTP

experiments are carried out on a work station with dual
4-core Intel Xeon E-2609 processor, 32 GB memory and
using Centos Linux.

Existing algorithms for comparison
For the purpose of comparison, we select the following
classical or state-of-the-art batch searching algorithms.

1. BLASTP (BLAST+ version 2.2.31): BLASTP (Basic
Local Alignment Search Tool for Protein) can be
used to infer functional and evolutionary
relationships among sequences. The executing
process include word matching, ungapped extension,
and gapped extension. The algorithm can be used to
compare protein sequences with sequence databases
and to calculate the statistical significance of
matches, and it also can be used to infer functional
and evolutionary relationships among sequences.

2. CaBLASTP [21] (Version 1.0.3): CaBLASTP
introduces compression strategy and achieves a faster
speed than BLAST by searching in the compressed
database. It firstly searches the protein homology in a

coarse database where the redundant subsequences
are removed, and then uses the obtained initial results
to search the original database for similar sequences.

3. GHOSTZ [17] (Version 1.0.0): GHOSTZ uses the
strategy of clustering database subsequence and
filters out the non-representative seeds within these
clusters to minimize the computation time spent on
ungapped extensions.

Effects of compression
In this section, to test the compression performance of the
C2-BLASTP, we conduct experiments on the NR database
and the Saccharomyces Genome Database. The compres-
sion threshold Tt is an important parameter in the process
of compressing redundant segments in query set. In the
experiment, we set the threshold Tt empirically. The algo-
rithm is executed repeatedly, with Tt value taken as 40%,
60%, 80% and 100%, respectively. On the other hand, the
compression threshold for the segments in the retrieved
NR database is empirically taken as 80%. The query set
is composed of 100 randomly selected protein sequences
from SGD, and the searching for protein homology in the
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NR database is conducted by using C2-BLASTP. The algo-
rithm is repeated 10 times independently and the average
results are presented in Table 1. In Table 1, the number
of the amino acids after compressing, the running time
(s), true positive rate (TPR), false positive rate (FPR), the
acceleration ratio (AR) and the compression ratio (CR) are
presented. The TPR reflects the hits found by both the
C2-BLASTP and the BLASTP. The FPR reflects the hits
found by C2-BLASTP but not found by BLASTP. Because
we search for the protein homology between the origi-
nal query set and the execution database using BLASTP,
the false positives with respect to the original BLASTP
are zero. From Table 1, it can be seen that the number
of amino acids in the uncompressed query set is 53978,
whereas the number of their compressed counterparts
is 38549, 36508 and 31572 by taking the compression
thresholds as 80%, 60% and 40%, respectively. And the
corresponding compression ratio is 0.71, 0.68 and 0.59,
respectively. The number of the amino acids in the origi-
nal NR database is 9.4 billion, whereas their counterpart is
3.6 billion in the compressed database, which is only 38%
of the original scale. The high compression ratio for the
NR database is caused by the local similarity, even though
there is no high redundancy of the global sequence-
identity. So, the computation time can be reduced. It can
be seen that the acceleration ratio is 12.6 when only the
NR database is compressed. Moreover, the acceleration
ratio reaches 13.1, 14.1 and 16.6 when the query set is
compressed with different threshold Tt . Meanwhile, we
can achieve high TPR values with respect to BLASTP.

Comparison with other methods and analysis
In this subsection, the results of the C2-BLASTP on the
NR database is presented. Single sequence, 30 sequences,
100 sequences, 200 sequences, 500 sequences and 1000
sequences that are randomly chosen from the ENV_NR
are taken as the query set. The results are compared
with BLASTP, CaBLASTP and GHOSTZ, respectively.
For each query, the experiment is repeated 10 times, and
the results are presented in Table 2.
The runtime listed in Table 2 refers to the online time for

homology search. So, the runtime for BLASTP includes
the time spent in the process of seed search and align-
ment. The runtime for the GHOSTZ includes the time

spent in the process of map creation and alignment. The
runtime for CaBLASTP includes the time spent in the
phases of coarse search, database reconstruction and fine
search.Whereas the runtime for C2-BLASTP includes the
time spent in the phases of hit finding, database recon-
struction and fine search. From Table 2, it can be seen that
GHOSTZ and C2-BLASTP are faster than the BLASTP
and the CaBLASTP. Moreover, the C2-BLASTP is faster
than GHOSTZ when the scale of query set is smaller
than 200 sequences. Figure 6 presents the average runtime
curves of the C2-BLASTP and the compared algorithms.
It can be seen that the search time increases as number
of query sequences increases for all the C2-BLASTP and
the compared algorithms, and the C2-BLASTP takes the
shortest search time when the number of query sequences
approximates 300.
The advantage of the GHOSTZ lies in performing seed

search in the offline process of database construction. And
the representative seeds further improve the search speed.
However, the GHOSTZ adopts the reduced amino acid
alphabets in the original database, so the more under-
lying matched seeds will result in the larger number of
alignments. When the query set is relatively small, the
number of seeds in BLASTP is not so large. In this case,
GHOSTZ does not have advantage over other algorithms
in terms of speed. Besides, GHOSTZ need more mem-
ory requirements during the process of creating clustered
database. The C2-BLASTP compress the original database
offline at one time, and further the representative seeds
are obtained by clustering. Due to such advantages, it out-
performs other algorithm with the small-scale query set
(<200 sequences) in terms of speed. With the increase of
the query sequences, C2-BLASTP spends much time in
reconstructing execution database.
Meanwhile, to find out the overlap elements, we com-

pare the homology sequences found by C2-BLASTP with
those identified by other algorithms. Table 2 lists the cor-
rect rate and alignment accuracy of the homology search
results obtained by different algorithms. The correct rate
reflects the proportion of identical sequences with the
highest score that obtained by BLASTP and other algo-
rithms. The alignment accuracy reflects the number of
correctly aligned positions that are obtained by both the
compared algorithms and the standard BLASTP. From

Table 1 Comparison results using different compression threshold for the C2-BLASTP

Tt for query set amino_acids time (s) TPR (%) FPR (%) AR CR

C2-BLASTP (40%) 31572 180.9 94.3 0 16.6 0.59

C2-BLASTP (60%) 36508 212.9 96.3 0 14.1 0.68

C2-BLASTP (80%) 38549 229.2 96.5 0 13.1 0.71

C2-BLASTP (100%) 53978 238.2 97.6 0 12.6 1.0

BLASTP 53978 2994.4 100 0 1.0 1.0
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Table 2 Comparative results of the C2-BLASTP with other algorithms

Query Seq

BLASTP CaBLASTP GHOSTZ C2-BLASTP

Time (s) Correct (%)
Alignment

Time (s) Correct (%)
Alignment

Time (s) Correct (%)
Alignment

Time (s)
accuracy (%) accuracy (%) accuracy (%)

Single 300.9 100 100 219.7 100 100 448.2 100 100 78.1

30 448.3 100 100 472.8 100 96.7 464.2 100 100 89.3

100 2271.9 100 100 1373.1 98.0 93.9 492.9 99.0 100 149.7

200 4167.4 100 100 2292.5 96.5 95.3 514.6 98.0 100 271.6

500 9028.2 99.2 100 5674.9 83.6 86.4 593.5 95.1 100 1551.4

1000 18016.2 99.0 100 11340.5 77.8 84.6 915.3 94.6 100 2562.1

Table 2, it can be seen that the correct overlap of sequence
hits is more than 94% and the alignments is 100% by using
our C2-BLASTP. In other words, when a hit is found,
the alignment perfectly matches the standard BLASTP
alignment. To better investigate the impact of E-value on
accuracy, more tests about a series of comparison with
different E-value thresholds are carried out. We perform
batch searching of homology on the NR database, and 100,
200, 500 and 1000 sequences are randomly chosen from
the ENV NR as the query set. The results are presented
in Figs. 7, 8, 9, and 10. From the tables, it can be seen
that when the E-value is below 1.0E−5, the C2BLASTP
obtains almost the same results with CaBLASTP, and
obtains better results than GHOSTZ. In particular, the
results are significant better than those of GHOSTZ when
the number of query 500 and 1000.

Analysis of memory and disk cost
With the exponential growth of protein sequence
databases, the storage performance becomes an important

factor when designing the protein homology search
algorithms. The processing capacity of most of personal
computers is difficult to keep up with the growing speed.
So, some homology search tools provide the corre-
sponding processed sequence database for users, such
as CaBLASTP. When the original database is updated,
users can add new sequences to the downloaded database
by means of a provided function. So, for PC users, the
PC memory needs to satisfy the requirements of con-
structing the database. Besides, the storage capacity of
hard disk should be enough to handle the volume of
database and the related information. In the proposed
C2-BLASTP, the memory requirements mainly incurred
in the process of compression and clustering. Due to
the reduction of the local redundancy in compression
process, C2-BLASTP reduces working memory and disk
requirements. GHOSTZ needs more space to retain
relative information of sequences based on the original
database, while the clustering process of C2-BLASTP
only needs to retain the useful information of the

Fig. 6 Runtime curves obtained by different algorithms. This figure presents the average runtime curves of the C2-BLASTP and the compared
algorithms
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Fig. 7 Search accuracy of different methods for 100 query sequences against the NR database

Fig. 8 Search accuracy of different methods for 200 query sequences against the NR database

Fig. 9 Search accuracy of different methods for 500 query sequences against the NR database
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Fig. 10 Search accuracy of different methods for 1000 query sequences against the NR database

non-redundancy database. Therefore, using this tech-
nique, C2-BLASTP requires less memory than GHOSTZ
(512 M per chunk). When we use the ENV_NR(1.9 GB)
as the appended database (query sequence database), as
shown in Table 3, C2-BLASTP requires 12.1GB memory
and 5.3 GB disk for constructing the database. In contrast,
CaBLASTP requires 12.4 GB memory and 2.7 GB disk
and GHOSTZ requires 25.3 GB and 9.5 GB disk.

Conclusions
The rapid growth of the protein sequences in databases
makes batch homology search challenging. The proposed
C2-BLASTP fully exploits the joint information among
the query sequences and the database. To recude redun-
dancies, the queries set and database are compressed
based on the Needleman-Wunsch algorithm. And the
database is further clustered to reduce the computa-
tion time incurred by ungapped extensions. Finally, the
homology search is conducted in a constructed execu-
tion database, which is considered as a collection of all
the potential homologous sequences. In conclusion, C2-
BLASTP can be implemented as an extension of the NCBI
BLAST+, and can be easily interfaced with other pro-
grams that use protein BLAST as search tools. Numerical
Experiments on NCBI NR database show that the C2-
BLASTP for batch searching of homology in sequence
database is effective. C2-BLASTP can also be integrated
with different BLAST tools to improve the search speed
by replacing BLASTP in the fine BLASTP process.

Table 3 Costs of memory and disk for appended sequence set
using different algorithms

Algorithm Memory size (GB) Disk size (GB)

C2-BLASTP 12.1 5.3

CaBLASTP 12.4 2.7

GHOSTZ (512MB) 25.3 9.5

The future perspectives of this paper are twofold.

1. The current C2-BLASTP will be extended by
adapting with high performance hardware such as
GPU to accelerate searching speed.

2. As the current C2-BLASTP only realized the high
speed batch searching of protein sequence, it will be
extended to a wider varieties of toolbox similar to
BLAST.
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