
SOFTWARE Open Access

PCAN: phenotype consensus analysis to
support disease-gene association
Patrice Godard1 and Matthew Page2*

Abstract

Background: Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more
effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known
gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and
biologically interpret genes underlying disease traits of interest.

Results: We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity
of phenotypes in a candidate gene’s signaling neighborhood. We demonstrate that significant phenotype
consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high
quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a
significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes.

Conclusions: We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene
association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN
to the community as an R package (http://bioconductor.org/packages/PCAN/) to allow flexible configuration,
extension and standalone use or integration to supplement existing gene prioritization workflows.
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Background
One of the most fundamental questions in biology and
biomedical research is how genotype gives rise to
phenotype. Unravelling the heterogeneous molecular
mechanisms that cause disease will provide the blueprint
for practicing precision medicine [1]. Rare human
diseases, that exhibit Mendelian inheritance, provide
strong links between genotype and phenotype and
although individually they affect only a small fraction of
the global population, together there are over 3,600
different rare Mendelian diseases associated with over
3,100 different genes. Therefore, a holistic view of
existing Mendelian disease genes will not only aid the
discovery of novel disorders and associated genes but
together resolve fundamental molecular mechanisms
that give rise to human phenotypic traits of broad
therapeutic potential [2, 3].

Trio whole exome sequencing (WES) has become a
routine tool in clinical genetics centers [4, 5] and public
research institutes [6] to fuel the rapid discovery of novel
Mendelian disease genes. However, even after excluding
variants under different models of inheritance from the
parents, there will remain a variable number of potential
disease causing variants that must be carefully evaluated
in order to arrive at a diagnosis. Numerous criteria are
considered when prioritizing causal variants, including:
control population frequency; predicted pathogenicity
[7] and gene-level measures of mutational intolerance
[8]. Nevertheless, the final diagnostic coup de grace
often comes down to whether other variants in the same
gene are known to cause a similar phenotype.
Development of the Human Phenotype Ontology and

its systematic use to describe known Mendelian diseases
[9] has enabled the automatic quantification of semantic
similarity between phenotypes to help diagnose diseases
[10] and prioritize disease genes. Similarly, CSI-OMIM
[11] allows enhanced querying of rare disease pheno-
types by ontological tagging and thematic clustering of
phenotype phrases through natural language processing
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of OMIM Clinical Synopsis entries. Regardless of the
approach, if there are no mutations in a candidate gene
already known to cause rare disease, then direct
phenotype-based approaches are of little use.
A gene’s biological function is the expression of a

highly coordinated sequence of interactions between the
gene product and other molecules that co-operate as a
functional module. Consideration of the signaling envir-
onment of a candidate gene can extend the scope of
phenotype-based methods to prioritize novel disease
genes. ExomeWalker is an indirect phenotype-based
method that prioritizes genes based on their network
proximity, in the human interactome, to genes that

cause similar diseases using a random walk [12]. More
recently, indirect phenotype-based approaches have been
extended to consider multiple biomedical domain ontol-
ogies [13] and incorporated, together with a broad range
of variant-level and gene-level properties, into integrated
variant prioritization pipelines [14] as shown in Table 1.
Pleiotropic genes may act at the nexus of different

functional modules, so that it is important when evaluat-
ing a candidate Mendelian disease gene, to be able to in-
tuitively relate certain traits to different network
neighbors or pathways; so called edgotypes [15].
Network exploration of rare disease traits may help de-
sign functional validation experiments and identify

Table 1 Comparison of PCAN to related methods

Software Application Approach Description Availability

PCAN Gene- phenotype
exploration

Indirect,
phenotype-based

Implements a readily interpreted, statistical
definition of phenotype consensus for
configurable lists of mechanistically-related
genes. Can be used for gene-prioritisation
and also versatile, trait-level exploration of
gene-phenotype relationships within pathways
and biological networks.

R package

CSI-OMIM [11] Disease diagnosis Direct, phenotype-
based

Improved phenotype searching of NLP processed
OMIM Clinical Synopsis descriptions. Phrases are
tagged with ontological terms (MESH, UMLS) and
clustered into groups of synonymous expressions.

Website

Phenomizer [10] Disease diagnosis Direct, phenotype-
based

Improved phenotype searching using semantic
similarity methods based on HPO annotations
for rare diseases.

Website

PhenoDigm [29] Disease-gene
prioritisation

Direct, phenotype-
based

Gene prioritisation based on phenotype comparison
across model organisms. Model organism trait
ontologies (e.g. HPO and MPO) are cross-linked and
semantic similarity is computed using the OWLSim
algorithm.

Website

Exomewalker [12] Disease-gene
prioritisation

Indirect,
phenotype-based

Performs a random walk of the STRING protein-
interaction network, seeded with genes linked to
diseases with a high semantic similarity to the
disorder under investigation. Genes are prioritised
based on the random walk score and variant-level
criteria combined using a linear model.

Website and command line
(via Exomiser)

Syndrome to Gene [32] Disease-gene
prioritisation

Indirect, ontology-
based

Use CSI-OMIM to identify genes that cause similar
diseases. Quantify gene-relatedness by comparing
information vectors derived from 18 source databases
using a Jaccard similarity coefficient. Genes are
prioritised if they are related to genes that cause
similar phenotypes.

Website

OVA [13] Variant
prioritisation

Indirect, ontology-
based

Generates extensive, gene-level, multi-ontology
annotation profiles for candidate variants and a
query phenotype. Direct gene annotations are
supplemented with inferred annotations from
model organism orthologues and network neighbours.
Annotation vectors are compared by computing
domain-specific semantic similarities and combined
using a Random Forest model to rank variants.

Website

Exomiser [14] Variant
prioritisation

Pipeline Variant ranking is based on both variant-level
properties (allele frequency, pathogenicity) and
gene-level semantic similarities for directly linked
human diseases, model organism phenotypes as
well as network proximity to similar phenotypes
using ExomeWalker.

Website and command line
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therapeutic points of intervention in the pathogenic
process. Furthermore, methods such as ExomeWalker
are developed and optimized specifically for prioritizing
gene variants causing Mendelian disorders. They are not
easily customized to address the same kind of issue for
model organisms, consider datasets that speak to
different genetic architectures such as Genome Wide
Association Studies (GWAS), or allow flexible definition
of related genes sets (e.g. gene family members).
Here we report Phenotype Consensus Analysis

(PCAN); an indirect phenotype-based method that
quantifies the consensus similarity of genetic disorders
linked to the mechanism of a putative disease causing
gene. PCAN makes use of widely adopted knowledge
resources for protein-protein interactions (STRING [16])
and signaling pathways (Reactome [17]) and the compre-
hensive HPO annotation resource [9]. Our approach al-
lows support for the discovery of novel disease genes
and naturally lends itself to the mechanistic deconvolu-
tion of diverse phenotypes. We validate our method
using all existing rare diseases of known genetic etiology
present in OMIM. We provide PCAN to the community
as an R package, available to download from Bioconduc-
tor, to allow integration into existing rare disease variant
prioritization workflows and support extensive
customization and versatile exploration of the molecular
etiology of disease.

Implementation
PCAN workflow
Here we present the PCAN workflow which can be
applied to assess how likely it is that mutation of a
candidate gene causes a particular disease phenotype
under investigation (Fig. 1). Firstly, genes that are
mechanistically related to the gene candidate are identified
using a reference set of canonical pathways or a protein-
protein interaction network (step 1). PCAN also allows
specification of custom related gene sets or flexible exten-
sion of existing gene sets. Each gene in the related gene
set is linked to phenotypic traits that describe the Mendel-
ian diseases they are known to cause (step 2). If a gene in
the related gene set is not known to cause human Men-
delian disease, it is not considered further in the analysis.
For each remaining gene, semantic similarity is computed
between gene-linked phenotypes and the phenotype of
interest (step 3). Finally a one-sided Mann-Whitney U test
is applied to determine if members of the related gene set
demonstrate a consensus phenotype with respect to the
disease under analysis (step 4). If there are multiple candi-
date genes, the workflow can be repeated for each gene.

Prior knowledge resources (step 1 and 2)
Two resources were used to enable genes to be linked
to phenotypic abnormalities based on the clinical

symptomatology of the genetic disorders each gene is
known to cause (Fig. 2).
The Human Phenotype Ontology (HPO) [9] (build

#1529) is used to formally describe phenotypes, as sets
of human phenotype (HP) terms, to enable their inter-
comparison. We only consider HP terms descended
from the “Phenotypic abnormality” (HP:0000118) branch
of the HPO. The phenotype annotation resource (build
#1039) provided by the HPO was used to list HP terms
assigned to each OMIM disorder.
The ClinVar database [18] (version of May 2015) was

used to identify genes (using Entrez Gene [19] identi-
fiers) causally linked to Mendelian diseases. Here we
focused on diseases reported within OMIM and linked
variants with a pathogenic clinical status and one of the
following origins: germline, de novo, inherited, maternal,
paternal, biparental or uniparental. In summary 3,181
human genes were associated to 3,656 diseases to which
at least one HP term descendant of “Phenotypic abnor-
mality” is related (4,549 associations in total).
Pathway and biological network resources were used to

identify mechanistically related genes in order to assess
phenotype consensus. Two pathway resources were used
to identify genes that encode proteins, which function in
common signaling pathways: Reactome and Thomson-
Reuters’ Metabase. Reactome [17] is a free, open-
source, curated and peer reviewed pathway database.
Here we used version v52 to associate 7,580 human
genes to 1,345 individual pathways. Metabase (http://
thomsonreuters.com/en/products-services/pharma-life-

Fig. 1 PCAN workflow. The typical PCAN workflow followed to
assess the relationship between a candidate gene and a disease of
interest based on genes mechanistically related to the candidate
(from pathways or protein-protein interaction networks) and the
Mendelian disorders they are known cause. Green boxes indicate user
provided inputs to the method
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sciences/pharmaceutical-research/metabase.html) is a
comprehensive manually curated database of mamma-
lian biology and medicinal chemistry data. Here we
used version 6.20.66604, which includes 6,978 human
genes within 1,465 pathways.
To identify gene neighbors, two biological network

databases were used: the STRING database and once
again Metabase. STRING [16] is a database of known
and computationally predicted protein interactions.
Interactions include both direct (physical) and indirect
(functional) associations. We focused on the 1,249,080
direct interactions involving 17,114 human genes,
within STRING version 10. STRING also provides a
measure of confidence for each interaction as a score
ranging from 0 to 1,000. In the following analyses we
consider either the whole STRING network or only a
high quality (HQ) subnetwork involving interactions
with a score [20] greater than or equal to 0.5
(507,298 interactions between 13,712 genes). Add-
itionally, 862,660 interactions, involving 23,136 genes,
were extracted from Metabase. Among these interac-
tions, 238,171 (involving 17,265 genes) are assigned
a high trust and form the Metabase high quality
(HQ) subnetwork.

Phenotype comparison using semantic similarity (step 3)
The semantic similarity between two HP terms was
computed as described by Köhler et al. [10]. First an
information content (IC) was computed for each HP

term as a measure of its specificity: ICp ¼ − ln pj j
jΩj

� �

where |p| is the number of genes directly associated to
the HP term or one of its descendants [21] and |Ω| is
the total number of genes linked to Mendelian diseases.
Then we used the Resnik method to measure the

semantic similarity between two HP terms t1 and t2

(SSt1,t2) as the IC of the most informative common
ancestor (MICA) [22].
We finally use the same symmetric similarity measure

used by Köhler et al. [10] to compare two sets of HP
terms corresponding to two disease phenotypes:

sim Q→Dð Þ ¼
X

t1∈Q
maxt2∈DSSt1;t2

Qj j

simsymmetric D;Qð Þ ¼ sim D→Qð Þ þ sim Q→Dð Þ
2

Briefly, for each query HP term (Q) the best match
among disease HP terms (D) is identified and the average
of the best match scores for all the query terms is com-
puted. The same calculus is applied with disease terms
compared to query terms (sim(D→Q)). The symmetric
semantic similarity is the average of these two scores.

Computing phenotype consensus (step 4)
The aim of our method is to compare a phenotype of
interest with Mendelian diseases caused by a set of genes
mechanistically related to a candidate causal gene.
Candidate-related genes can belong to the same pathway
(here from Reactome or Thomson-Reuters’ Metabase) or
encode neighbors in a molecular network (here from
STRING or Thomson-Reuters’ Metabase). Each know-
ledge resource for identifying candidate-related genes
can be considered a different approach for sampling mo-
lecular mechanism. If genes in a mechanism sub-sample
tend to have a greater semantic similarity than all
disease-associated genes, the candidate gene is assigned
a significant phenotype consensus. Specifically, the sym-
metric semantic similarity of the query HP terms is
computed for all the genes with at least one linked HP
term. Finally, a one-sided Mann-Whitney U test is ap-
plied to determine whether the symmetric semantic

Fig. 2 PCAN prior knowledge resources. Public resources used to link genes to phenotypic abnormalities based on the genetic diseases each
gene causes. The HPO phenotype annotation resource (build #1039) was used to link HP terms to OMIM disorders and ClinVar (version of May
2015) was used to retrieve genes that cause OMIM disorders. Total counts of each distinct entity type in the resultant gene-trait resource
are provided
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similarities for candidate-related genes are significantly
greater than values for all other disease-associated genes.

Software availability
The method is implemented in a Bioconductor [23]
package (http://bioconductor.org/packages/PCAN/).

Results
Rationale and workflow
The aim of the PCAN method is to assess the likelihood
that a gene will cause an observed set of phenotypes, by
quantifying the consensus phenotype similarity to
described disorders in the gene’s signaling neighborhood.
To achieve this goal, first all Mendelian disease genes
are annotated with standardized trait labels (HP terms)
from the Human Phenotype Ontology (HPO) [9] accord-
ing to the genetic disease or diseases they cause. Gene-
linked HP terms are compared to HP terms that
describe the query phenotype by computing a symmetric
semantic similarity score. Different knowledge resources
such as biological pathways or protein association
networks are used to identify genes mechanistically
related to the candidate gene. Finally a one-sided Mann-
Whitney U test is applied to determine if the symmetric
semantic similarity scores of genes that are part of a
related molecular mechanism tend to be greater than all
other genes annotated with HP terms (Fig. 3).
PCAN allows the user to prioritize putative disease

causing genes but importantly, it also enables granular,
biological interpretation of the output to relate high-
scoring, matching traits to specific sub-processes and
interactions. To illustrate this we took Joubert syndrome
[24] as an example. Joubert syndrome is a genetically
heterogeneous group of disorders first described in 1969

and characterized by atrophy of the cerebellar vermis
and malformation of the brain stem leading to physical,
mental and sometimes visual impairment that can vary
in severity. Joubert syndrome 9 [25] was linked to 8 HP
terms using the phenotype annotation resource of the
HPO: “Astigmatism” (HP:0000483), “Retinitis pigmentosa”
(HP:0000510), “Cataract” (HP:0000518), “Nystagmus” (HP
:0000639), “Intellectual disability” (HP:0001249), “Seizures”
(HP:0001259), “Ventriculomegaly” (HP:0002119) and
“Molar tooth sign on MRI” (HP:0002419). Joubert syn-
drome 9 describes a genetically defined subset of Joubert
syndrome caused by different recessive mutations in
CC2D2A [26–28]. CC2D2A encodes a coiled-coil and
calcium domain binding protein that belongs to the “An-
choring of the basal body to the plasma membrane” Reac-
tome [17] pathway; a process involved in the assembly of
the primary cilium. Among the 88 genes belonging to this
pathway, 39 were associated to at least one genetic disease
and could therefore be associated to at least one HP term.
Figure 4a shows that the symmetric semantic similarity
scores of these genes are, as a population, significantly
higher than the scores of all remaining 3143 disease-
associated genes (p-value < 10−8). Figure 4b and c illustrate
how genes belonging to the same pathway and hence
mechanism as CC2D2A cause similar diseases to Joubert
syndrome by showing both their symmetric semantic
similarity scores and detailing the contributing query HP
term best matches. 8 of the 39 pathway genes have a score
higher than 95% of all the genes for which a score could be
calculated and correspond to genes in the same OMIM
Phenotypic Series. As expected, the majority of these genes
show consistently high similarity for many of the HP terms
of interest, especially “Molar tooth sign on MRI”; one of the
defining hallmarks of Joubert syndrome [24].

Fig. 3 Assessing a gene's relevance for a condition by applying a pathway consensus approach. a Each gene, which is known to be involved in
at least one genetic disorder, is associated to the corresponding HP terms. These HP terms are compared to those related to the disease of
interest by computing a symmetric semantic similarity score. b The scores of all genes related to the gene of interest are compared to scores for
all known Mendelian disease genes. Here the gene candidate is in yellow and its direct neighbors are in blue. Nodes surrounded in red
correspond to genes with a high semantic similarity score for the disease under focus
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Validation and performance
Our method is founded on the assumption that mechan-
istically related genes will cause diseases that have simi-
lar traits; our concept of phenotype consensus. To test
this assumption, we exhaustively attempt to rediscover
known rare disease genes within OMIM, when the exist-
ing gene-disease link and therefore HP term annotations
for the true causal gene have been specifically removed
from our reference data. We apply the PCAN method
for each of the 4,549 known gene-disease associations,
in each case removing HP annotations for the true
causal gene. We assess whether PCAN assigns a signifi-
cant phenotype consensus to the true causal genes and
simultaneously apply the same approach to 100 ran-
domly selected genes among those not associated to the
disease of interest to enable us to evaluate specificity.
The performance of the method was assessed using

three different measures. The potential of the method
indicates the proportion of gene-disease associations for
which a score can be computed. If there are no known
interaction partners of a gene of interest, then the PCAN
method cannot be applied. The area under the Receiver
Operating Characteristic (ROC) curve (AUC) measures
the accuracy of the method. Finally the average rank of
the candidate among the 100 negative control genes
assesses the efficacy of the method.

This validation scheme and the different derived mea-
sures of performance enabled us to evaluate different con-
figurations of the PCAN method concerning approaches
to sample mechanistically related genes. Genes mechanis-
tically related to the gene candidate were identified using
different protein interaction and pathway resources. Both
Reactome and Thomson-Reuters’ Metabase were used to
identify genes belonging to the same pathway(s) as the
candidate gene. When the gene candidate belongs to
several pathways we report the result for the pathway
most significantly associated to the query HP terms. The
STRING database and Metabase were used to find inter-
action neighbors for the candidate gene of interest. Both
networks contain directional interactions, so we were able
to consider either all interaction neighbors or only down-
stream or upstream sub-sets. We also filtered the neigh-
bors according to the quality of the relationship as
captured by the alternative network resources.
Table 2 compares the performance of the different

options (ROC curves are provided in Additional file 1:
Figure S2). When using the whole network from Meta-
base, the phenotype consensus method could provide a
score for 96% of the cases (potential = 96%). However
the corresponding AUC is only 68% with the correct
candidate found in the top 22% of the analyzed genes
(median occurrence). In contrast, using only upstream

Fig. 4 Comparing the genes belonging to the “Anchoring of the basal body to the plasma membrane” pathway to the HP terms related to
Joubert syndrome. a Distribution of symmetric semantic similarity scores of genes for the 8 HP terms related to Joubert syndrome. The red bars
correspond to the distribution of the scores of genes belonging to the pathway of interest. The grey bars correspond to the distribution of the
scores for all the other genes. (The density of scores equal to 0 is truncated; its actual value is 12.8) b Symmetric semantic similarity scores of
genes belonging to the pathway of interest. The gene candidate, CC2D2A, is highlighted. Dashed red lines show the value of three specific
quantiles: 50, 75 and 95%. c Heatmap showing the best semantic similarity between each gene in the pathway of interest (columns) and each HP
term under focus (rows). The red intensity of each square corresponds to the highest semantic similarity score between the HP term of interest
and the gene associated HP terms (white: 0 and red: 5.2). The gene candidate, CC2D2A, is highlighted. In figures (b) and (c), only the top 10
genes are shown. Additional file 3: Figure S1 shows results for all the genes in the pathway
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neighbors in the high quality (HQ) STRING network
produces an AUC of 75% with a higher median occur-
rence of 14% of the analyzed genes. However, the poten-
tial of the method with such on option is only of 40%. In
general, accuracy of the method increases when using a
HQ network whereas its potential decreases.
This led us to assess the performance of combined

results from the PCAN method configured to use differ-
ent network neighbor and pathway knowledge resources.
Different combinations of HQ network and pathway
were considered and summarization simply involved
taking the lowest p-value from either PCAN alternative.
As shown in Table 2, such combinations produce an im-
provement both in terms of potential and accuracy. For
example, a score can be computed for 77% of the cases
when combining pathways from Metabase and neighbors
from the HQ STRING network. Furthermore this com-
bination is performant, with an AUC of 76% and a me-
dian rank of 14% of the analyzed genes.
Finally, to further assess the ability of PCAN to predict

Mendelian diseases in the future, we extended our ana-
lysis to consider 759 novel genetics findings published in
clinVar between May 2015 and August 2016, applying
an identical validation procedure with the same prior
knowledge resources. Observed AUCs for the newly re-
ported genetic findings tend to be lower than their
equivalent measures from the retrospective validation
(obtained with clinVar from 2015) for the different

pathway and network resources considered. This empha-
sizes the sensitivity of the method to the current level of
biological understanding of genetic disorders and the
importance of being able to flexibly explore different re-
lated gene sets from numerous sources (Additional file
2: Table S1).
Nevertheless, the results from this retrospective valid-

ation do support the underlying assumption that mech-
anistically related genes produce similar diseases when
their function is impacted. Therefore, PCAN will help
quantify the biological relevance of candidate genes to
the observed phenotype in a way that will improve deci-
sion making and is applicable to the discovery of novel
disease genes.

Discussion
Here we describe PCAN, a novel, indirect phenotype-
based method to support the identification of disease
genes by evaluating whether similar phenotypes are
linked to genes in the same signaling neighborhood.
Phenotype consensus can be considered as a proxy for
the biological relevance of a candidate gene’s function to
an observed phenotype. PCAN exploits the wealth of
available prior knowledge from reported Mendelian
disease genes and the molecular interactions and bio-
logical pathways in which genes are involved. Here we
validate the underlying assumption that genetic perturb-
ation of members of the same molecular mechanism

Table 2 Performance of the pathway consensus approach depending on the prior knowledge used to identify genes related to the
candidate under focus

Type of knowledge Resource Number of results Potential AUC Median rank

Pathways MetaBase 2355 52% 74% 19%

Pathways Reactome 2669 59% 73% 20%

Neighbors Metabase 4367 96% 68% 22%

Neighbors MetaBase HQa 3623 80% 73% 16%

Neighbors STRING 3705 81% 71% 19%

Neighbors STRING HQa 3247 71% 74% 14%

Upstream neighbors Metabase 4362 96% 65% 27%

Upstream neighbors MetaBase HQa 3399 75% 70% 20%

Upstream neighbors STRING 2158 47% 73% 16%

Upstream neighbors STRING HQa 1825 40% 75% 14%

Downstream neighbors Metabase 3352 74% 74% 16%

Downstream neighbors MetaBase HQa 2600 57% 74% 15%

Downstream neighbors STRING 2069 45% 73% 18%

Downstream neighbors STRING HQa 1722 38% 74% 15%

Pathways + Neighbors Metabase + MetaBase HQa 3746 82% 75% 15%

Pathways + Neighbors Reactome +MetaBase HQa 3861 85% 75% 16%

Pathways + Neighbors MetaBase + STRING HQa 3515 77% 76% 14%

Pathways + Neighbors Reactome + STRING HQa 3617 80% 76% 15%
aHQ corresponds to high quality network as described in material and methods
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produces a consensus phenotype. Specifically, we test if
PCAN can accurately rediscover known disease genes
when the equivalent gene-disease links are excluded
from the method’s reference data. During validation we
consider different options for supplying molecular
network and pathway information. Combining different
sources of molecular interaction information increased
both the number of cases that could be evaluated and
the accuracy of the results.
Both direct [10, 27] and in-direct [12] phenotype-

based methods have been developed to prioritize vari-
ants from WES of patients with Mendelian diseases (see
Table 1). These approaches all make use of genotype-
phenotype links provided by reported human Mendelian
diseases. In contrast, PhenoDigm compares human dis-
ease phenotypes to mouse genetic models in an analo-
gous direct semantic similarity methodology [29]. This is
enabled by cross-referencing the HPO with the equiva-
lent Mammalian Phenotype Ontology [30]. A recently
published method termed Ontology Variant Analysis,
combines phenotype level annotation sets from numer-
ous biomedical ontologies with network sampling as part
of an integrated scoring scheme [13]. However the
extensive ontology cross-referencing that forms a funda-
mental part of this method may unwittingly incur infor-
mation leakage that is difficult to account for during
validation.
PCAN is a gene prioritization method that can also be

applied to prioritize variants from WES, using readily
configurable and updateable prior knowledge of gene-
phenotype links and mechanistically related genes. Here
we demonstrate the capabilities of the method using
ClinVar and HPO to link genes to phenotypic traits and
different network and pathway resources. Within the
Bioconductor R package, we provide tools to maintain
local, up-to-date copies of ClinVar and HPO that are
easy to use with PCAN. The package also facilitates
addition of new resources linking genes to phenotype
and different phenotype ontologies, for example from
model organisms. We use two approaches for sampling
the molecular mechanism of a gene: a nearest neighbor
network derived from the interactome and curated, ca-
nonical pathways. Different pathway resources and any
other lists of functionally related genes could be consid-
ered, including: community partitions of the human in-
teractome; gene-family members and Gene Ontology
(GO) Biological Process sets.
As well as configurability, another key advantage of

our tool is the ability to identify phenotype traits linked
to neighboring genes, which are contributing highly to
the observed phenotype semantic similarity. Ease of
deconvolution is of particular importance when consid-
ering pleiotropic causal genes where subcategories of
traits may relate to particular subsets of interaction

partners or a particular signaling axis within a pathway.
A firmer grasp on the molecular mechanism underlying
the condition will support the definition of experiments
to validate and elaborate the causal hypothesis and help
identify druggable points of therapeutic intervention.
PCAN is a standalone gene-phenotype exploration tool

which can be used in broader contexts than variant
prioritization from WES data. For example, the prio-
ritization of genes in the same linkage disequilibrium block
as single nucleotide polymorphism (SNP) disease associa-
tions from genome wide association studies (GWAS). Each
co-segregating gene may harbor the true causal variant,
which PCAN can be used to highlight if the signaling envir-
onment of the gene is linked to similar diseases. In this con-
text, extension of the HPO annotation to common diseases
will be particularly useful [31].

Conclusions
PCAN is a modular and flexible toolkit to support gene
prioritization according to phenotype similarity. It takes
advantage of the knowledge related to known molecular
partners of the gene candidates. Compared to other
available methods, PCAN can be easily customized and
used with different knowledge resources. The method
supports deconvolution of the final score to provide an
intuitive understanding of the results in terms of con-
tributory gene-trait links. We provide PCAN to the
community as an R package, available to download from
Bioconductor (http://bioconductor.org/packages/PCAN/),
to facilitate flexible integration into any genetics analysis
pipeline. We feel this is an appropriate compromise be-
tween ease of use, methodological transparency and ana-
lytical flexibility.

Additional files

Additional file 1: Figure S2. ROC curves comparing sensitivities and
specificities of different pathway consensus approaches. Numbers along
the ROC curve indicate representative p-value thresholds. Confidence
intervals are based on specificity measures. (PDF 67 kb)

Additional file 2: Table S1. Performance of the pathway consensus
approach on 759 new genetics findings published in clinVar between
May 2015 and August 2016 depending on the prior knowledge used to
identify genes related to the candidate gene of interest. HQ corresponds to
high quality network as described in material and methods. (XLSX 12 kb)

Additional file 3: Figure S1. Comparison of genes within the
“Anchoring of the basal body to the plasma membrane” pathway to HP
terms describing Joubert syndrome. (a) Distribution of symmetric semantic
similarity scores of genes for the 8 HP terms related to Joubert syndrome.
The red bars correspond to the distribution of the scores of genes belonging
to the pathway of interest. The grey bars correspond to the distribution
of the scores for all the other genes. (The density of scores equal to 0 is
truncated; its actual value is 12.8). (b) Symmetric semantic similarity scores of
genes belonging to the pathway of interest. The gene candidate, CC2D2A, is
highlighted. In the supplementary figure, the solid red line corresponds to
the quantiles of the scores of all the genes. Dashed red lines show the value
of three specific quantiles: 50, 75 and 95%. (c) Heatmap showing the best
semantic similarity between each gene in the pathway of interest (columns)
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and each HP term under focus (rows). The red intensity of each square
corresponds to the highest semantic similarity score between the HP term of
interest and the gene associated HP terms (white: 0 and red: 5.2). The gene
candidate, CC2D2A, is highlighted. (PPTX 198 kb)
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