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Abstract

Background: Integrative analysis of multi-omics data is becoming increasingly important to unravel functional
mechanisms of complex diseases. However, the currently available multi-omics datasets inevitably suffer from
missing values due to technical limitations and various constrains in experiments. These missing values severely
hinder integrative analysis of multi-omics data. Current imputation methods mainly focus on using single omics
data while ignoring biological interconnections and information imbedded in multi-omics data sets.

Results: In this study, a novel multi-omics imputation method was proposed to integrate multiple correlated omics
datasets for improving the imputation accuracy. Our method was designed to: 1) combine the estimates of missing
value from individual omics data itself as well as from other omics, and 2) simultaneously impute multiple missing
omics datasets by an iterative algorithm. We compared our method with five imputation methods using single
omics data at different noise levels, sample sizes and data missing rates. The results demonstrated the advantage
and efficiency of our method, consistently in terms of the imputation error and the recovery of mRNA-miRNA
network structure.

Conclusions: We concluded that our proposed imputation method can utilize more biological information to
minimize the imputation error and thus can improve the performance of downstream analysis such as genetic
regulatory network construction.
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Background
Recent advances in high-throughput technologies
prompt the production of a variety of ‘omics’ data such
as transcriptomics, proteomics and metabolomics from
the same set of subject tissues/cells, facilitating the dis-
covery of various levels of risk genetic factors for the
analysis of human complex diseases. However, due to
technical limitations of these high throughput technolo-
gies and experimental designs, the presence of missing
values remains an inevitable and prevalent problem in
large-scale profiling experiments [1]. For example, prote-
omics data suffers significantly from missing values due
to the imperfect identification of coding sequences
within a genome and the limited sensitivity of current

peptide detection technologies [2–4]. Current technolo-
gies allow the detection of only one-third to one-half of
all coded proteins and thus leave a significant number of
proteins experimentally undetected [5–7]. In miRNA
array, it is often observed that a large portion of miR-
NAs are expressed below the detection limit, resulting in
missing data in the output [8, 9]. In general, there are
three types of missing mechanisms [10, 11]: the first one
is data missing completely at random (MCAR), where
data missing is due to some factors unrelated to the ex-
perimental questions. The causes of missing are usually
unobserved in the experiment. The second mechanism
is data missing at random (MAR), where missing de-
pends on some variables, which can be measured in the
experiment such as different slides, media or experimen-
tal conditions for assaying expression data. The last one
is missing not at random (MNAR) where data missing is
caused by some unobserved variables; they may be
highly related to the experiment, for instance, low-
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abundance expression may remain undetected due to
the detection bias of instruments.
A number of studies have indicated that missing

values in large-scale omics data can drastically hinder
downstream analyses, such as unsupervised clustering of
genes [12], detection of differentially expressed genes
[13], supervised classification of clinical samples [14],
construction of gene regulatory networks [15], genome
wide association studies [16] and detection of differen-
tially methylated regions [17]. Missing values in multi-
omics data can also obstruct integrative analysis of
multi-omics data, leading to difficulty in the interpret-
ation of complex diseases. Therefore, it is highly
demanded to impute the missing values before perform-
ing integrative analysis of multi-omics data.
However, most current imputation methods mainly

focus on single omics data as reviewed in [18], including
global methods such as Bayesian principle component
analysis (BPCA) [19], and singular value decomposition
imputation (SVDimpute) [20], local methods such as k
nearest neighbor imputation (KNNimpute) [20], local
least square imputation (LLS) [21] and iterative local
least square imputation (iLLS) [22], and hybrid methods
which combine both global and local methods such
Lincmb [23]. The main limitation of these imputation
methods is that they only focused on utilizing the infor-
mation from single omics data. Thus there is an increas-
ing interest in incorporating additional information for
the imputation, e.g., biological databases or other omics
data [24]. For transcriptomics datasets, a priori informa-
tion about the functional similarities in term of GO
(Gene Ontology) was used for missing value imputation,
based on the idea that functionally related genes tend to
express in a modular fashion [25]. Experimental results
indicated that the imputation accuracy can be enhanced
by incorporating GO information, even when the miss-
ing rate was large [26, 27]. Other knowledge based im-
pute methods such as integrative missing value
estimation method (iMISS) employed the information
from multiple external references data to find consistent
and reliable neighboring genes of a target missing gene
for better estimation [28]. Meta-data imputation method
combined multiple available microarray datasets of a
species to select top closest columns to impute missing
column in target missing matrix [29]. These knowledge-
based imputation methods usually require the features
(e.g., genes) correspond with each other across diverse
datasets and they still focus on one type of omics data.
There are some endeavors to incorporate the relation-
ships between diverse omics data into the imputation.
Nie et al. proposed a Zero-inflated Poisson regression
model to use the correlation between transcriptomics
and proteomics datasets for imputing the missing prote-
omics data [30]. Torres-Garcia et al. published a

stochastic Gradient Boosted Trees (GBT) approach to
uncover possible nonlinear relationships between tran-
scriptomics and proteomics data. GBT was used to pre-
dict those protein abundance not experimentally
detected based on the predictors such as mRNA abun-
dance, cellular role, molecular weight, sequence length,
protein length, GC content and triplet codon counts
[4, 31]. Histone acetylation information was combined
into KNNimpute and LLS to improve the missing value
estimation of gene expression data [32]. Artificial neural
network approach was also applied to impute the missing
values of the proteins using the relations between tran-
scriptomics and proteomics data in the study [33].
By extending these methods to incorporate inform-

ative features from other types of omics data for the im-
putation, we developed an ensemble learning based
algorithm to deal with missing values. Our multi-omics
imputation method takes advantage of the correlation
across different omics data with the assumption that the
missing feature from one type of omics data can be ex-
plained by its neighboring features from the same omics
data as well as the features from other omics data. Some
prior biological knowledge about interactions among dif-
ferent levels of omics data (e.g., GO, protein-protein
interaction database) can also be incorporated. In
addition, to account for the situation that there are mul-
tiple omics data having missing values, we extended our
multi-omics imputation method to simultaneously im-
pute multiple missing omics data. We compared our
method with five single omics data imputation methods
with respect to different noise levels, sample sizes and
missing rates. Moreover, we further evaluated the impact
of different imputation methods on downstream ana-
lysis, e.g., mRNA-miRNA network reconstruction. The
results consistently confirmed the advantage and effi-
ciency of our multi-omics imputation method in terms
of the imputation error and the recovery of mRNA-
miRNA network.

Methods
In this study, we take three kinds of omics data (e.g.,
mRNA, microRNA and DNA methylation) as an ex-
ample to elaborate our method. For each omics data, it
is represented by a matrix Gi∈Rpi�n; i ¼ 1; 2; ::;m, where
i indicates the type of omics data, pi is the number of
rows of each matrix corresponding to different types of
features (e.g., gene expression) and n is the number of
columns corresponding to different subjects. The miss-
ing point at the m-th feature on the l-th subject is de-
noted by Gi

m,l, m = 1, 2,…, pi, l = 1, 2,…, n. In the
following, we first introduce diverse single omics imput-
ation methods, and then propose multi-omics data im-
putation and its extension to more general case.
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Single omics imputation
For each single omics data matrix, global methods (e.g.,
BPCA and SVDimpute) and local methods (e.g.,
KNNimpute, LLS and iLLS) were developed to explore
neighboring global or local features to impute missing
features, please refer to Additional file 1 A for details.
Without the loss of generality, we assume that the target
gene gt ∈ R

n in G1∈Rp1�n contains missing values located
in the first s subjects. Hence,

gt ¼ gmiss
t ; gct

� � ð1Þ

where gt
miss ∈ R1 × s is the missing vector in the target

gene and gt
c ∈ R1 × (n − s) is complete vector containing

non-missing values. To estimate the missing vector gt
miss,

firstly, we compute the distance (Euclidean distance) dt, j
between the target gene t and other gene j (or eigengene
j [20]); secondly, top k close genes (or eigengenes), de-
noted by Gk = [Gkmiss,Gkc] ∈ Rk × n are used for imput-
ation. Specifically, KNNimpute estimates gt

miss by
averaging the weighted values of neighboring genes or
eigengenes while the other methods tend to use linear
regression as in (2)

gemiss

t ¼
Xk

j¼1
Gkmiss

j =dt;jXk

j¼1
1=dt;j

or gemiss
t ¼ Gkmiss � β ð2Þ

where Gkmiss ∈ Rk × s is the submatrix of Gk correspond-
ing to the missing location in the target gene; and β is
the coefficient vector to weight the contribution of
neighboring genes/eigengenes, which can be estimated
by the following least square minimization:

argminβ gct−Gk
c � β

�� ��2
2

ð3Þ

Therefore, the missing values can be approximated by
β = (Gkc)†gt

c, where (Gkc)† is the pseudo inverse of Gkc.

Multi-omics data imputation
Instead of imputing each omics data separately, we pro-
posed to combine multiple information from various
omics data such as microRNA (G1), mRNA (G2) and
DNA methylation (G3), which have been identified to be
correlated with each other in their elements or compo-
nents [34, 35]. As shown in Fig. 1, we built an integrative
model based on ensemble learning [36, 37], which gener-
ally consisted of three steps: the first step was ensemble
learning which generated a set of basic models; the sec-
ond was the ensemble pruning, where models were
pruned to remove some models with little contributions;
the final step was the integration of multiple models into
a new prediction model. In this study, we built a predict-
ive model on a set of basic models for missing value esti-
mation, as shown in Fig. 1. Multiple constraints were

imposed on each basic model (e.g., non-negativity con-
straint) to reduce the overfitting as well as the influence
of those basic models with little contribution.
The basic models were generated based on three types

of imputations, i.e., self-imputation and cross imputation
by G2 and G3 respectively. The self-imputation was to im-
pute G1 by itself using single-omics imputation method as
mentioned in the section of “Single omics imputation”.
The cross-imputation was to impute G1 by other omics
data, i.e., G2. Because of the scale difference among differ-
ent types of omics data, we intended to impute each miss-
ing feature in G1 individually by exploiting the correlated
information from G2. For each target gene gt = [gt

miss, gt
c] in

G1, it was combined with correlated features in G2 to be a
new missing matrix H. Matrix H was then imputed by
self-imputation methods to estimate gt

miss. Eventually, we
obtained three imputation outputs for all missing values
in G1 by different omics data, denoted by G1← 1, G1← 2

and G1← 3 respectively. Moreover, prior knowledge from
accessible databases can also provide extra information
(e.g. protein-protein interactions (PPI), co-expressed
genes) to improve the imputation accuracy. In this study,
we took advantage of information from PPI to partially
avoid the overfitting for LLS and iLLS in G2. For example,
to impute the expression data of target gene gt by other
genes in G2, we collected those genes that had STRING
scores > 0.9 [38, 39] with gt in STRING database and had
significant correlation (p < 0.05) in G2. We keep these
genes in the prediction model for LLS and iLLS during
the feature selection procedure. This partially decreased
the selection of genes which had random correlations with
target gene in G2. To further improve the accuracy of pre-
diction, we considered the generation of heterogeneous
learning algorithms that can ensure a level of diversity
among the basic models. Diverse models can provide dif-
ferent predictions, which can be combined for better per-
formance. We subsampled features in omics data and re-
run the imputation B times to get multiple imputed matri-
ces, {G1← 1,b,G1← 2,b,G1← 3,b}, b = 1, 2,…, B.
To integrate multiple imputation models, we used a

least square regression model to combine the outputs
from diverse models as

min
X
j

�
Gj

1−
X
i;b

β1←i;bG
j
1←1;b

�2

s:t:
X
i;b

β1←i;b ¼ 1; β1←i;b≥0; i ¼ 1; 2;…;m; b ¼ 1; 2;…;B
ð4Þ

where β1← i,b, i = 1, 2,…,m, b = 1, 2,…, B are the weights
for different basic imputation models, and j indicates
missing location in target gene. Since all these models
aim to impute the same missing values, their outputs are
highly correlated. Instead of using ridge regression, we
imposed non-negative regularization on the coefficients
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to handle the high multi-colinearity among variables in
the model, which has been found to be more reliable
and consistent [37]. To avoid the over-fitting issue, we
adopted bootstrapping to randomly generate faking
missing values at the locations which were not over-
lapped with true missing locations. The weights were es-
timated by (4) based on the imputed and true values on
the faking missing points (Additional file 1 B). The aver-
aged value of each weight on T times bootstrapping was
used for prediction. We set T to be 30 in the following
experiments.

Extension of multi-omics data imputation
For integrative analysis of multi-omics data, there are
usually missing values on each individual omics data. To
handle this situation, we extended our multi-omics im-
putation method by incorporating an iterative method to
simultaneously impute each omics data. The iterative
procedure is shown in Table 1. There are two parts in
our iterative multi-omics imputation algorithm. The first
one is updating each omics data sequentially within the
iteration and second one is an iterative procedure.
Within each iteration, we impute each missing omics
data separately but following a specific order of the
number of missing genes from smallest to the largest
(i.e. miRNA to mRNA), similar to sequential KNN [40]
or sequential LLS impute [41] methods. This is expected
to control the propagation of imputation errors from
smallest to largest. After one omics data is imputed, the
new completed matrix can be used for other omics data
imputation to reduce the error. When all of omics data
are imputed once, they can be reused to refine the pre-
diction of missing values, as suggested in iterative LLS,
iterative KNN [42] and iterative biclustering imputation
methods [43].

In the simple case that only one omics data contains
missing values, there is only one step in the iteration. In
the case of missing values in multiple omics data, com-
pared with performing single omics imputation separ-
ately, the advantage of our extended multi-omics
imputation is its ability of reusing data in both self-
imputation and cross-imputation processes. In current
single-omics imputation methods, most of them use row
average to impute missing value initially for deriving the
neighboring gene/eigengene only once, which can cause
biases in the final imputation. Instead of using one-time
row average initialization, in each iteration, the self-
imputation (e.g., G1← 2

(h) ) is implemented based on the
completed matrix from the previous iteration G1← 2

(h − 1),
which is updated iteratively to reduce the bias. In
addition, information from other omics data will be in-
corporated by the cross-imputation, which can further

Table 1 Algorithm for iterative multi-omics imputation

A: Initialize with replacing all missing values in all matrices Gi, i = 1, 2, 3
by self-imputation methods to obtain complete matrices {Gi

(0)}.

B: for each iteration h,

(1).

a. Self-impute G1 based on G1
(h − 1); Cross-impute G1 by G2

(h − 1), G3
h − 1

using multi-omics imputation method to obtain G1
(h).

b. Self-impute G2 based on G2
(h − 1); Cross-impute G2 by G1

(h), using
multi-omics imputation method to obtain G2

(h).

c. Self-impute G3 based on G3
(h − 1); Cross-impute G3 by G1

(h), G2
(h)

using multi-omics imputation method to obtain G3
(h).

(2). Determine the sum of square of difference on the missing
locations j between {Gi

(h − 1)} and {Gi
(h)}:

δh ¼
X
j

X
i

ðGj;ðh−1Þ
i −Gj;ðhÞ

i Þ2

C. If δh≤ τ, the iteration is stopped and output {Gi
(h)}; otherwise go to

Step 2 to continue the iteration until the convergence criteria τ is
reached.

Fig. 1 Schematic representation of multi-omics imputation method
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improve the imputation accuracy, especially when large
missing data exist in G1← 2

(h) .

Evaluation metric
We compared the performance of our proposed multi-
omics-based imputation with single-omics-based imput-
ation methods. The performance was evaluated by the
normalized root mean squared error (NRMSE) as
follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i

X
j

Gj
i−Ĝ

j
i

� 	

var Gj
i

� 	
vuuuut ð5Þ

where Gi
j and Ĝi

j are the true and imputed value of
the j-th missing point in the i-th omics data respect-
ively; and N is the number of missing points in all
datasets. In addition, we performed a paired t-test for
each factor exploration, measuring the significance of
NRMSE difference between the methods along with
each simulation.

Results
Simulation scheme
We performed simulation analysis to evaluate the per-
formance of our proposed methods based on the MCAR
missing mechanism. Simulation data were derived from
the cancer genomic atlas (TCGA; http://cancergenome.-
nih.gov/) database on Glioma cancer study containing
50 subjects with 5939 mRNAs, 104 microRNAs and
5013 DNA methylation sites. We have removed missing
values in all of these data, yielding complete data matri-
ces. Based on these observation matrices, a certain per-
cent of entries (e.g., 1, 5 %) was randomly set to have
missing values. To evaluate the effect of sample size
(e.g., 10, 20 subjects), a specific number of samples was
first selected randomly and then missing matrices were
generated. Similarly, for different noise levels, a random
noise from normal distribution N(0, σe

2) with different
standard deviations was added to the observed matrices
for missing matrices generation. Each type of missing
matrix generation was repeated 50 times, and then sev-
eral imputation methods were applied for comparison.
First, we compared the single-omics based method

with multi-omics based imputation method when only
one type of omics data (e.g., miRNA) contained missing
values and the other datasets (e.g., mRNA and DNA
methylation) were complete. Then, to consider more
realistic situation when more than one type of omics
data contained missing values, we simulated both mRNA
and miRNA datasets with missing values. For simplicity,
we set the same missing rate on both datasets. Single-
omics-based method was applied to each type of missing

matrix, while our iterative multi-omics method was dir-
ectly used for imputing both datasets simultaneously. Fi-
nally, the imputation accuracy was evaluated on both
simulations.

Parameters setting
For KNNimpute method, we set the neighboring size to
be 15 as suggested in [20, 28]. Both BPCA and SVDim-
pute depend on the number of principal axes (eigenvec-
tors). The number of eigenvectors selected in SVD
imputation was set to be 20 % of the number of samples
as tested in [20]; but the number of PCs used in BPCA
could be set more loosely as suggested in the earlier
study [19] which suggested a safety number of PCs to be
k = D-1,where D was the number of samples. The auto-
matic relevance determination prior applied in Bayesian
estimation can reduce the redundant dimension auto-
matically. For local regression based methods, LLS im-
pute [21] and iLLS impute [22], a procedure of
estimating the optimal number k was applied. Prior to
imputation, missing values were initially estimated by
row average and some faking missing values were gener-
ated with true values known. The methods searched op-
timal k (LLS) or ratio (iLLS) value from a given range
(e.g., k between 2 and D-1 or ratio between 0 and 1)
with the lowest estimation error.

Comparison on single missing omics data
We simulated one omics data (e.g., miRNA) with miss-
ing values while keeping the other omics datasets (e.g.,
mRNA and DNA methylation) to be complete. Five
popular imputation methods were applied to single
missing omics data, which were then compared with our
proposed multi-omics imputation method. Three simu-
lations were performed to study the effects of three fac-
tors on imputation accuracy: missing rate, sample size
and noise level.

Effect of missing rate
We randomly generated missing values in miRNA
matrix with different percent of missing rate (e.g., 1, 5,
10, 15 and 20 %) for comparison. Figure 2 shows the
performance of five imputation methods applied to sin-
gle missing omics data and compared to our method
using multiple omics data with different missing rates.
The results show significant decrease of NRMSE with
our multi-omics based method over five prevalent
methods for single-omics. This improvement is demon-
strated consistently across all different missing rates,
showing the efficiency of our method in utilizing com-
plementary information from mRNA and DNA methyla-
tion dataset. With the increase of missing rate, the
performance of all methods is degraded with increasing
NRMSE. Especially for global algorithms, i.e., BPCA and
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SVDimpute, the decrease of NRMSE is more significant
than using local algorithms, indicating the larger effect
of missing data rate on using global features (e.g.,
principle components of data matrix) than that on local
feature selection. However, this decrease is reduced by
using extra information from other datasets in our
multi-omics imputation, indicating the advantage of
using multi-omics data in our method over single-omics
method.

Effect of sample size
Imputation accuracy may be influenced by the number
of samples in the missing data. Too few samples can
lead to large variances of the imputed values. For local
algorithms, mostly based on regression models, few sam-
ple size will lead to the increases of the variance of esti-
mated coefficients; for global algorithms, the matrix
tends to be ill-conditioned if the sample size is limited.
To evaluate the effect of sample size on the performance
of our imputation method, we simulated five datasets
with sample size from 10 to 50, and randomly set 5 %
missing values in each dataset. Figure 3 shows the influ-
ence of sample size on both single-omics and multi-
omics imputation methods. It can be seen that our
multi-omics method consistently outperforms single-
omics method with respect to all sample sizes, indicating
the benefit of incorporating extra information, especially
when the sample size is small. In most algorithms, both
the imputation error and variance are generally decreas-
ing with the increase of sample size, showing the import-
ance of sample size for reducing imputation errors. For
iLLS and LLS, the gain of multi-omics method over sin-
gle omics method is relatively stable regardless of sample
size. However, for KNNimpute and SVDimpute

algorithms, the influence of sample size is significant, in
that NRMSE decreases rapidly by increasing sample size.
In particular, when sample size is small (<30), the
NRMSE of single-omics method increases significantly
while our multi-omics method shows less increase, dem-
onstrating the advantage of multi-omics method.

Effect of noise level
Due to technical limitations, there are a variety of noises
introduced in the collected data, which may cause diffi-
culty in imputation. To test the robustness of diverse
imputation methods to noise, we simulated five datasets
by adding different levels of Gaussian noise with varying
standard deviations (std) from 0.1 to 1. The sample size
was set to be 50 and missing rate was 5 % in all datasets.
Figure 4 shows the comparison of single-omics and

multi-omics imputation methods by varying noise level
from 0.1 to 1.0. For all five algorithms, significant in-
crease of NRMSE can be seen with the increasing level
of noise. Our multi-omics method consistently outper-
forms single-omics method among all algorithms, show-
ing the importance of using complementary information
(mRNA and DNA methylation) to suppress noise in
miRNA. In addition, with the increase of noise level
(e.g., std > 0.5), the performance gain of multi-omics
method over single omics method also increases, indi-
cating its better robustness to noise.

Comparisons on multiple missing omics data
To further evaluate the imputation methods when there
are missing values in multiple omics data, we simulated
mRNA and miRNA datasets with different missing rates
of 1, 5 and 10 % respectively. Five single-omics methods
were used to impute each missing data separately and

Fig. 2 Average NRMSE by five imputation algorithms (BPCA, iLLS, KNNimpute, LLS and SVDimpute) on single omics data v.s. multiple omics
datasets with different missing rates (e.g., 1, 5, 10, 15 and 20 %)
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then compared with our iterative multi-omics imput-
ation method, which can impute both missing matrices
simultaneously.
Figure 5 shows the comparison of NRMSE between

our iterative multi-omics imputation method and other
single-omics methods on imputing both mRNA (Fig. 5a)
and miRNA (Fig. 5b) missing matrices. Similar to the re-
sults in Fig. 4, our multi-omics method can significantly
decrease the NRMSE of miRNA matrix imputation than
all five single-omics methods. This improvement is not
consistently found in mRNA imputation, as shown in
Fig. 5(a). Local imputation methods such as LLS and
iLLS show no change of NRMSE between our method
and single-omics method; however, they deliver much

lower NRMSE value than the other three methods. This
may be because local mRNA expressions were highly
correlated and local features can provide enough infor-
mation for imputation. Moreover, although correlation
exists between miRNA and mRNA, because of the small
number of miRNA probes, they are not expected to pro-
vide much extra information for mRNA imputation.

Comparisons for network analysis
Besides the comparison of imputation accuracy between
different methods, we further evaluated the influence of
different imputation methods on downstream analysis,
e.g., reconstruction of regulatory network between
mRNA and miRNA, which is significant for exploring

Fig. 4 Average NRMSE by five imputation algorithms (BPCA, iLLS, KNNimpute, LLS and SVDimpute) on single omics data only v.s. multiple omics
datasets with noise of different standard deviations (std) from 0.1 to 1

Fig. 3 Average NRMSE by five imputation algorithms (BPCA, iLLS, KNNimpute, LLS and SVDimpute) on single omics data v.s. multiple omics
datasets with different sample size (10, 20, 30, 40 and 50)
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the interactions between different omics. There are a
variety of methods proposed for reconstructing genetic
regulatory networks. We applied a web tool, miRNA and
genes integrated analysis (MAGIA) [44], to reconstruct
fundamental post-transcriptional regulatory networks
between miRNAs and mRNAs for Glioma cancer. The
Pearson correlation was used as the measure of interac-
tions between each pair of miRNA and mRNA expres-
sions on the matched design. Then the combination of
two target prediction algorithms (PicTar and PITA) was
applied to predict the target of miRNA and thus the
mRNA-miRNA regulatory network was built based on
significant test on each interaction.
We evaluated network reconstruction as a binary

classification task (prediction of absence or presence
of mRNA-miRNA interaction). The original network

was constructed by using completed matrices. Then
for each network built on the imputed matrices, a re-
ceiver operating characteristics (ROC) curve was de-
rived by varying correlation threshold. The area under
curve (AUC) was calculated to evaluate the influence
of different imputation methods on regulatory net-
work. Higher AUC indicates better capability of pre-
serving significant interactions while lower AUC
means worse effect of imputation methods on net-
work structure reconstruction.
Missing matrices of mRNA and miRNA were imputed

and regulatory network was reconstructed by MAGIA
using the correlation based algorithm. The original net-
work structure was built based on complete matrices
and their interactions (p < 1 × 10−4) were selected to be
significant. There are 655 mRNA-miRNA interactions

Fig. 5 The NRMSE of iterative multi-omics imputation and five single-omics imputation methods on both a mRNA and b miRNA
missing matrices
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selected corresponding to the correlation value less than
−0.55. For each pair of imputed mRNA and miRNA
matrices by different methods, their interactions were
reconstructed and compared with significant interaction
set to obtain false positive rate (FPR) and true positive
rate (TPR). Figure 6 shows the ROC plots, which com-
pared the performance of iterative multi-omics imput-
ation and single-omics imputation (i.e., KNNimpute)
algorithms on recovering true mRNA-miRNA interac-
tions. The curves were plotted by choosing different cor-
relation thresholds. When missing rate is small, e.g., 1 %,
both imputation methods give similar network struc-
tures with relatively better performance of multi-omics
method for the two higher missing rates. The difference
between two ROCs increases as the missing rate in-
creases, showing the advantage of our iterative method
for preserving significant mRNA-miRNA interactions
We further used AUC as a metric to compare their

performances. The results shown in Fig. 7 were averaged
on 15 replications. It can be seen that the missing value
rate affects the network structure severely. High missing
rate leads to reduced power of miRNA-mRNA identifi-
cation (i.e., decrease of AUC) by applying single-omics
imputation. However, our iterative imputation can com-
pensate for this decrease by improving the imputation
accuracy and utilizing correlations among omics data.
This improvement was demonstrated consistently across
all five algorithms, especially in local algorithms (e.g.,
KNNimpute, LLS, iLLS).

Discussion
In this work, our multi-omics imputation method is able
to combine the estimations from various basic models
linearly to estimate missing values, e.g., self-imputation
and cross-imputation. Multi-omics imputation method
aims to employ information from different sources (e.g.,
diverse omics data). Each source is expected to contribute
partially to the estimation. Similar to the contribution
measure in [23], source contribution can be reflected in
the coefficient weight in the final linear combination
model as shown in (4). We evaluated the coefficient value

Fig. 6 The ROC plots of identifying mRNA-miRNA interaction based on data imputed by iterative multi-omics imputation method and single-omics
imputation (KNNimpute) method respectively. Missing rate changes from 0.01 to 0.1

Fig. 7 The AUC comparison between iterative multi-omics imputation
and single-omics imputation methods by changing missing rate from
0.01 to 0.1
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of each source in the simulation of varying missing rate
(data not shown). The weights of sources in most methods
(except KNNimpute) are stable with the change of missing
rate. miRNA shows higher weights than the other omics,
indicating that self-information is still most important for
imputation in this simulation. The other omics data also
contain useful information and contribute to the improve-
ment of imputation with appropriate weights. In addition
to building basic model by different omics data, there are
some other basic models such as multiple single-omics im-
putation algorithms that can also be incorporated as basic
models and combined with cross-imputation estimation.
Similar to the results discussed in [23], other types of
single-omics imputation algorithms may also provide com-
plementary information to improve imputation accuracy.
The cross-imputation part of the proposed multi-

omics imputation method is based on regression model
which requires the subjects cross omics data to be
matched, while this case may not always hold in real
data analysis. For the case that some subjects are shared
across multiple omics data while some are omics data
specific, we suggest the following imputation strategy: if
those missing points are located on the subjects having
only one type of omics data, only self-imputation part
can be used in the proposed method, which degrades to
single-omics imputation; for other missing points hap-
pened on subjects assayed with more than one types of
omics data, both self-imputation and cross-imputation
can be applied and combined in our method.
Since most of single-omics imputation methods were

evaluated by simulations based on MCAR missing
mechanism, we applied the same simulation strategy in
this study for evaluation of multi-omics imputation per-
formance. However, this assumption may not always
hold in reality. Two other missing mechanisms (MAR
and MNAR) may also be possible in expression data, as
mentioned in Introduction. We further evaluated the
performance of imputation methods with MAR missing
mechanism by assuming data missing in some specific
genes or proteins (e.g., existing on neighboring genes or
probes). This missing may be due to the contamination
of slides in the experiment, which can be documented
for users. Additional file 1: Figure S1 shows the results
of comparisons. There is no significant difference be-
tween two simulation schemes when missing rate is low
(<0.2), indicating the insensitivity of the imputation
methods to the way of how missing values are generated.
When missing rate is high (i.e., 0.2), NRMSE in MAR
imputation is much higher than that with MCAR miss-
ing, because of more information loss of these neighbor-
ing genes in MAR simulation (they all contain missing
values). More importantly, the multi-omic method still
shows significant improvement over single-omics
methods since extra information can be provided by

other omics data. For more complicated MNAR missing
mechanisms, the loss of valuable information causing
the missingness may make the most of imputation
methods to be suboptimal and the estimation of missing
patterns to be infeasible [1, 11]. Although this case is not
discussed in this study, it is still expected that imputation
method incorporating informative features from different
types of omics data will outperform single-omics imput-
ation methods, given the advantage of integrating more
information from multiple omics data.

Conclusions
We proposed a novel multi-omics imputation frame-
work, which can take advantage of information from
multiple omics data for improving the imputation accur-
acy. With the production of vast multi-omics data, there
is increasing knowledge about complex biological rela-
tionship among multiple levels of omics (e.g., co-
expression or co-regulation among gene expression,
miRNA expression and transcriptional factors). We pro-
posed multi-omics imputation method to exploit the
underlying cross-omics relationship for missing value
imputation. Experimental results confirmed the advan-
tage of our multi-omics based method over five single-
omics imputation methods (KNNimpute, BPCA,
SVDimpute, LLS and iLLS) consistently in all three dif-
ferent scenarios in terms of lower value of NRMSE. To
handle multiple omics data with missing values, we ex-
tended the imputation method, so it can utilize the rela-
tionship among multi-omics data iteratively to impute
multiple missing omics data simultaneously. Compared
with conventional single-omics methods for imputing
each omics data separately, our iterative method is able
to improve the imputation accuracy significantly in each
missing omics data, especially for lower dimensional
omics datasets, e.g., miRNA. In addition, the evaluation
of mRNA-miRNA regulatory network demonstrated that
our iterative method outperforms all five single-omics
methods in uncovering the relationship across omics
data, which is therefore significant for the study of bio-
logical regulatory mechanisms.

Additional file

Additional file 1: The document contains the brief introduction of various
single-omics imputation methods, the algorithm of proposed multi-omics
imputation method and the comparison of different imputation methods
on simulation using MAR mechanism. (DOCX 122 kb)
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