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Abstract 

Background: In this paper, we review the performance of various hidden Markov model‑based imputation methods 
in animal breeding populations. Traditionally, pedigree and heuristic‑based imputation methods have been used 
for imputation in large animal populations due to their computational efficiency, scalability, and accuracy. Recent 
advances in the area of human genetics have increased the ability of probabilistic hidden Markov model methods to 
perform accurate phasing and imputation in large populations. These advances may enable these methods to be use‑
ful for routine use in large animal populations, particularly in populations where pedigree information is not readily 
available.

Methods: To test the performance of hidden Markov model‑based imputation, we evaluated the accuracy and com‑
putational cost of several methods in a series of simulated populations and a real animal population without using a 
pedigree. First, we tested single‑step (diploid) imputation, which performs both phasing and imputation. Second, we 
tested pre‑phasing followed by haploid imputation. Overall, we used four available diploid imputation methods (fast‑
PHASE, Beagle v4.0, IMPUTE2, and MaCH), three phasing methods, (SHAPEIT2, HAPI‑UR, and Eagle2), and three haploid 
imputation methods (IMPUTE2, Beagle v4.1, and Minimac3).

Results: We found that performing pre‑phasing and haploid imputation was faster and more accurate than diploid 
imputation. In particular, among all the methods tested, pre‑phasing with Eagle2 or HAPI‑UR and imputing with Mini‑
mac3 or IMPUTE2 gave the highest accuracies with both simulated and real data.

Conclusions: The results of this study suggest that hidden Markov model‑based imputation algorithms are an accu‑
rate and computationally feasible approach for performing imputation without a pedigree when pre‑phasing and 
haploid imputation are used. Of the algorithms tested, the combination of Eagle2 and Minimac3 gave the highest 
accuracy across the simulated and real datasets.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In this paper, we review and analyse the use of imputa-
tion methods based on hidden Markov models (HMM) 
for animal breeding populations. Genotype imputation is 
a key aspect of many modern animal breeding programs 
and makes it possible to obtain genetic information 
on a large number of animals at a low cost. In breeding 
programs, a small subset of individuals (e.g., sires) are 
typically genotyped at high density and the remaining 

animals are genotyped at lower densities. Statistical regu-
larities between shared chromosomal segments are used 
to impute the untyped loci. Modern methods impute 
missing genotypes at a very high accuracy [1–3], which 
increases the number of animals that can be genotyped 
for a fixed budget [4, 5]. The larger number of genotyped 
animals increases the accuracy of genetic predictions [6] 
and/or offers the potential to increase selection intensity 
[7, 8].

Traditionally, pedigree and heuristic imputation meth-
ods have dominated animal breeding [1, 9, 10]. These 
methods use large chromosome segments that are shared 
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between closely-related animals to impute untyped or 
otherwise missing loci rapidly and accurately. In contrast, 
imputation methods used in human genetics have been 
based largely on the probabilistic HMM framework of 
Li and Stephens [11]. These probabilistic methods tend 
to have a higher accuracy than heuristic methods when 
used on datasets where individuals are not closely related 
or when pedigree information is not available. However, 
the computational cost of these methods has traditionally 
been too high for routine imputation in animal breeding 
populations.

In the last few years, the speed of HMM methods has 
improved, which allows the imputation of hundreds of 
thousands of individuals to hundreds of thousands of 
loci in reasonable computational time [12, 13]. These 
improvements have been driven by the widespread 
availability of large haplotype reference panels, and the 
emergence of a two-step imputation pipeline, in which 
observed genotypes are first phased and then untyped 
loci are imputed based on their phased haplotypes [14]. 
The improved scaling of HMM methods may allow for 
their routine use in large animal breeding populations. 
This progress is particularly timely, given the increas-
ing interest in performing imputation in settings where 
pedigree information is not available, e.g. in developing 
countries or in non-nucleus commercial environments. 
Given the lack of appropriate public domain haplotype 
reference panels for many animal populations, smaller 
population sizes, and sparser marker densities, it is not 
clear whether these advances in HMM will be made for 
imputation in animal breeding populations. In addition, 
several HMM imputation methods have been developed 
and it is not clear which is most suited for routine use in 
animal breeding.

In this paper, we review several imputation methods 
and study their performance on simulated and real data. 
We grouped comparisons based on single-step (dip-
loid) imputation methods and a two-step method that 
are based on a combination of pre-phasing and haploid 
imputation. Specifically, for diploid imputation, we evalu-
ated fastPHASE [15], Beagle v4.0 [16], IMPUTE2 [17], 
and MaCH [18]. For pre-phasing, we evaluated SHA-
PEIT2 [19], HAPI-UR [20], and Eagle2 [12], followed by 
haploid imputation with IMPUTE2 [17], Beagle v4.1 [12], 
or Minimac3 [21]. First, we provide a review of these 
methods and then evaluate their performance on simu-
lated and real data.

Hidden Markov models
All of the methods considered here are based on the 
HMM framework of Li and Stephens [11], in which an 
individual’s genotype is modelled as a mosaic of hap-
lotypes from a reference panel H = {h1 . . . hk} . The 

methods calculate the probability that the individual 
has the pair of haplotypes, hj and hk at a locus i given 
the observed genetic data, G, p(hij , hik |G) . To account 
for linkage between adjacent loci, the methods evalu-
ate the probability of a haplotype, based on its fit to the 
observed genotypes at the loci and its similarity to the 
haplotypes inferred at nearby loci:

In this equation, the term p(hij , hik |gi) measures the 
fit between the pair of haplotypes and the observed 
genotype at a locus; the term p(hij , hik |hi−1, hi+1) cap-
tures transitions between haplotypes given the haplo-
types at neighbouring loci; and the terms p(hi−1|g−i) 
and p(hi+1|g+i) measure the fit between haplotypes and 
observed genotypes at the remaining loci. These prob-
abilities can be calculated using a standard forward–
backward algorithm [22].

Traditionally, methods that rely on the framework of 
Li and Stephens [11] scale linearly with both the num-
ber of individuals and the number of loci, and quad-
ratically with the number of reference haplotypes. 
The quadratic scaling is due to uncertain phase at het-
erozygous loci, which requires the methods to model 
haplotypes that are assigned on both chromosomes 
simultaneously. The quadratic scaling quickly leads to 
intractable computational costs, even for small refer-
ence panels, but this can be avoided if the low-density 
individuals are pre-phased, which allows haplotypes to 
be considered independently. As a result, haploid impu-
tation, i.e. imputation with pre-phased haplotypes, 
scales linearly with the number of individuals, the num-
ber of loci, and the number of reference haplotypes.

In this paper, we consider two classes of HMM. In the 
first class, diploid imputation methods perform phasing 
and imputation simultaneously, which results in quad-
ratic scaling with the reference panel size. To mitigate 
the latter, each of the evaluated methods, fastPHASE, 
Beagle v4.0, IMPUTE2, and MACH, apply their own 
strategy to reduce the effective number of reference 
haplotypes while maintaining high accuracy. In con-
trast, two-step imputation methods treat phasing and 
imputation as separate problems. Individuals are first 
phased and then imputed using a haploid HMM, which 
scales linearly with the number of reference haplotypes. 
Phasing methods may have either quadratic, super-lin-
ear, or linear dependence on the number of reference 
haplotypes. To increase phasing speed and accuracy, a 
number of techniques are deployed that could not be 
used if the phasing methods also had to handle geno-
type uncertainty at untyped loci.
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Intuitively, we might expect that the diploid impu-
tation methods will have higher accuracy (at a higher 
computational cost) than performing phasing and impu-
tation separately because they automatically handle phase 
uncertainty. This is not necessarily the case if most errors 
in imputation stem from the inability to find appropriate 
reference haplotypes that would explain observed geno-
types. By performing pre-phasing and then imputation, 
it may be possible to consider a much larger number of 
reference haplotypes and thus increase accuracy by find-
ing a more appropriate set of reference haplotypes, which 
offset accuracy losses due to phasing errors.

Below, we review methods for diploid imputation, hap-
loid imputation, and phasing.

Diploid imputation
All four diploid imputation methods evaluated here use 
a haplotype state-space reduction technique to alleviate 
the impact of modelling a large number of reference hap-
lotypes. IMPUTE2 and MaCH use subsampling, where 
the haplotypes considered in each iteration are a sample 
of the total haplotype pool. fastPHASE and Beagle v4.0 
use haplotype clustering, where the overall number of 
haplotypes is collapsed into a smaller number of “ances-
tral” haplotypes.

Both IMPUTE2 and MaCH are run over a series of 
iterations. During an iteration, a subset of the haplotype 
reference panel is used to phase and impute each indi-
vidual’s genotypes. In MaCH, the subset is selected ran-
domly. In IMPUTE2, the subset is selected such that it 
is made up of haplotypes that are “nearby” the currently 
estimated haplotype for the individual. If these methods 
are run without an external reference panel, a reference 
panel is built up from the current phasing of high-density 
individuals. At each iteration, a new subset of the refer-
ence panel is selected for each individual, individuals are 
imputed and phased based on that subset, and then a ref-
erence panel is re-computed from the currently inferred 
haplotypes. The methods are run for a small number of 
iterations (e.g., 20) and the imputation results are aver-
aged across iterations. There is a potential issue in apply-
ing these methods in populations of many closely-related 
individuals, due to the potential for feedback between the 
phasing of closely-related individuals [23].

In contrast, in fastPHASE and Beagle v4.0, individu-
als are imputed based on a set of estimated “ancestral” 
haplotypes. In fastPHASE, an expectation–maximisa-
tion algorithm is used to infer a small number of ances-
tral haplotypes from the data (e.g., 30) and the method 
then iterates between estimating the haplotypes of each 
individual as a mosaic of ancestral haplotypes and esti-
mating the ancestral haplotypes based on the haplo-
type assignments for each individual. Beagle v4.0 uses 

a similar approach as fastPHASE, but instead of using a 
fixed number of ancestral haplotypes, it infers the num-
ber of ancestral haplotypes at each marker and models 
the transition between ancestral states at adjacent mark-
ers in the form of a directed acyclic graph.

Haploid imputation
In contrast to the four diploid methods, haploid methods 
do not need to use a state-space reduction technique to 
handle moderate numbers of haplotypes, because they 
consider each phased chromosome independently and 
scale linearly with the number of haplotypes in the ref-
erence panels. However, with the recent focus on imput-
ing large bio-bank size human populations (over 100,000 
individuals) to whole-genome sequence level data, many 
of the current haploid methods use other techniques to 
reduce the computational burden when analysing large 
numbers of individuals at a large number of markers.

The haploid HMM used by Impute2 is a straightfor-
ward extension of the diploid method implemented in 
the same program and uses a subset of haplotypes (based 
on their similarity to the individual’s current phasing) to 
impute individuals. Minimac3 uses a similar technique, 
but instead of subsetting the reference panel, it uses a 
loss-less haplotype compression technique that combines 
haplotypes that are identical in a region and updates 
the likelihood of those haplotypes simultaneously. This 
update is particularly useful for whole-genome sequence 
data, which may display limited haplotype variation over 
long windows. Beagle v4.1 moves away from the graph-
based haplotype model in Beagle v4.0 and uses the more 
traditional model of Li and Stephens. To reduce com-
putational burden, Beagle v4.1 aggregates adjacent loci 
together into “strings” and performs updates based on 
“strings” instead of individual markers. In addition, it 
only updates the haplotype probabilities at genotyped 
loci and linearly interpolates the haplotype probabilities 
at untyped loci.

Pre‑phasing methods
Just as with diploid imputation, HMM-based phasing 
methods naively scale quadratically with the number of 
haplotypes in the reference panel. However, this quad-
ratic scaling can be avoided by a state-space reduction 
technique of splitting the chromosomes into small win-
dows and assuming that linkage information decays 
quickly across the window boundaries. Both SHAPEIT2 
and HAPI-UR use a window-based approach, whereas 
Eagle2 manages the quadratic dependence by performing 
a limited beam search through the haplotype space.

SHAPEIT2 operates by splitting the chromosome into 
small haplotype windows, each containing three het-
erozygous loci. For each window, there are  23 = 8 possible 



Page 4 of 10Whalen et al. Genet Sel Evol  (2018) 50:44 

ways to phase it, and there are  26 = 64 possible transi-
tions between windows. SHAPEIT2 evaluates the prob-
ability of each of the eight possible haplotypes and 64 
transitions based on a haplotype reference panel, and 
then phases individuals by sampling haplotypes based on 
their posterior probabilities. The probability of a haplo-
type in a given window and transition between windows 
can be evaluated in a time that scales linearly with the 
number of reference haplotypes. As in IMPUTE2, SHA-
PEIT2 subsets the haplotype reference panel by selecting 
haplotypes that are nearby the current haplotypes of the 
individual.

The window splitting approach may lead to lower 
imputation accuracy in breeding populations, where 
individuals are expected to share long chromosome seg-
ments. In SHAPEIT2, only the transmission probabilities 
between windows are modelled, not the probabilities of 
the underlying reference haplotypes. This means that 
haplotype assignment information from a given window 
is only used to update the next window and is ignored 
for further windows. This approach limits the amount of 
long-range haplotype information (covering more than 
three heterozygous loci) that can be exploited. One solu-
tion to this is to increase the window size.

HAPI-UR takes a similar approach to SHAPEIT2 in 
reducing the large state-space but uses a series of growing 
windows, which allow it to exploit longer shared chro-
mosomal segments. In order to process large windows, 
HAPI-UR takes advantage of a number of computa-
tional techniques to reduce computation time drastically. 
Unlike most methods that assume a small error rate for 
observed genotypes (to cover genotyping errors, errors in 
the reference panel, mutations from the ancestral state, 
and gene conversions), HAPI-UR sets the probability of 
all reference haplotypes that disagree with the observed 
haplotype to 0. This allows the evaluation of which hap-
lotypes fit an individual’s chromosome to be re-formu-
lated as a bit-wise set-intersection operation. In addition 
to this, HAPI-UR uses a structured representation of 
the reference haplotypes that allows for fast lookups of 
matching haplotypes, and for each individual, it creates 
individual specific diploid HMM, which ignore all hap-
lotypes that disagree with homozygous sites. Instead of 
using a fixed window size, HAPI-UR uses dynamic win-
dows that begin with a small size (4 markers) and grow to 
a user specified maximum (e.g. 64 markers) allowing the 
method to capture longer chromosome segments.

Eagle2 takes a different approach to phasing individuals 
by not using a window-based haplotype representation. 
Instead, Eagle2 uses a highly efficient reference haplo-
type storage method based on the positional Burrows–
Wheeler Transform [24] to allow for consistent haplotype 
pairs to be identified in constant time. Instead of using 

a full HMM to evaluate all possible haplotypes, Eagle2 
employs a beam search to evaluate only the most promis-
ing paths in the space of all possible haplotype pairs. At 
each heterozygous locus, these paths branch into two 
possible sub-paths based on the two phasing options. 
Low probability paths are pruned or merged to keep the 
overall number of paths small. To decrease the impact 
that errors in one part of the genome have on subsequent 
paths, haplotypes are called after 20 markers, allowing 
for the back-propagation of relevant genetic informa-
tion while decreasing the potential impact of genotyping 
errors. Absence of approximate window-based haplotype 
representation makes Eagle2 particularly appealing for 
breeding populations, where a large number of close rela-
tives share long chromosome segments.

Methods
We evaluated the performance of the four diploid impu-
tation methods, fastPHASE, Beagle v4.0, IMPUTE2, 
and MaCH and the three phasing methods, SHAPEIT2, 
HAPI-UR, and Eagle2 followed by three haploid imputa-
tion methods, IMPUTE2, Beagle v4.1, and Minimac3 on 
a series of simulated datasets and a real dataset.

The simulated dataset modelled a cattle population. 
The population consisted of five generations of 2000 ani-
mals, genotyped for single nucleotide polymorphisms 
(SNPs) on a single chromosome. Each generation was 
produced by selecting 100 sires from the previous gen-
eration based on their true breeding values and mating 
them with 1000 dams at random. The initial set of haplo-
types was sampled using a Markovian Coalescent Simula-
tor [25], assuming a single 100-cM long chromosome that 
was simulated using a per site mutation rate of 2.5 × 10−8, 
and an effective population size (Ne) that changed over 
time. Based on estimates for the Holstein cattle popula-
tion [26], Ne was set to 100 in the final generation of sim-
ulation and to 1256, 4350, and 43 500 at 1000, 10,000, and 
100,000 generations ago, with linear changes in between. 
The simulation of breeding values and of haplotypes of 
progeny were performed using AlphaSim [27].

In the baseline scenario, a single chromosome was 
genotyped either with a high-density array of 1000 SNPs 
(allele frequency greater than 0.01) or with a low-density 
array of 200 SNPs, evenly spaced across the high-den-
sity array. These numbers of SNPs per chromosome are 
order equivalent to some of the commonly used arrays 
in livestock. To cover the full span of arrays used in live-
stock, we varied the number of high-density and low-
density SNPs as described in the following section. All 
sires and 100 dams were genotyped with a high-density 
array, while the remaining animals were genotyped with 
a low-density array. Pedigree information was not used in 
any of the phasing or imputation algorithms. To test the 
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robustness of each method we independently modified 
the baseline scenario by varying:

  • the number of SNPs on the low-density array from 5 
to 400,

  • the number of individuals in the population from 200 
to 10,000, randomly selecting individuals that were 
genotyped at both high- and low-density,

  • the number of genotyped dams from 0 to 500,
  • the number of SNPs on the high-density array from 

3000 to 45,000, while keeping the ratio of low-density 
to high-density SNP constant at 15:1.

We also considered the case in which the first two gen-
erations were genotyped on a different high-density array 
than the next two generations, with either 25, 50, or 75% 
of the SNPs overlapping between the two high-density 
arrays.

To compare the methods on a real dataset, we per-
formed imputation on 56,607 individuals from a com-
mercial pig breeding program. These animals were 
genotyped either with a high-density array of 60,000 or 
80,000 SNPs or with a low-density array of 15,000 SNPs. 
To estimate imputation accuracy, we selected 500 high-
density animals (typed at 60,000 SNPs) and masked part 
of their genotypes to mimic the pattern of missingness 
found for 500 animals that were genotyped at low-den-
sity. We restricted imputation to chromosome 1.

Imputation accuracy was measured as the correlation 
between the animals’ imputed genotypes and their true 
genotypes for each animal separately and averaged over 
all animals. The genotypes were not centered or stand-
ardized prior to calculating the correlation. While not 
centering or standardizing the alleles may increase the 
resulting correlations, it also makes the correlations inde-
pendent of the minor allele frequency. We did not assess 
phasing accuracy independently of imputation accuracy.

For the simulated datasets, each method was given 
8 GB of memory and 24 h to run. Jobs were terminated if 
they exceeded the runtime or memory limits. Unless oth-
erwise specified, we used the default parameters for each 
simulation. We tested IMPUTE2 using either the default 
10-cM windows or the entire chromosome and found 
that imputing the entire chromosome increased accuracy 
at the cost of additional computational time. We used 
windows of 5 cM with an overlap of 1 cM for Beagle v4.0 
and Beagle v4.1. The real dataset was only imputed using 
the two-step imputation methods, given their high accu-
racy and shorter runtimes.

In all cases, high-density and low-density individu-
als were phased separately. In the case of multiple high-
density arrays, we used the “merge_ref_panels” option 
in IMPUTE2 and phased genotypes from the two 

high-density arrays separately. Because neither Minimac3 
nor Beagle v4.1 accept multiple high-density arrays, we 
phased the high-density individuals together and let the 
phasing method fill in the missing genotypes for high-
density individuals.

Results
Accuracy
Performance of the diploid imputation methods is shown 
in Fig. 1. Among these methods, MaCH performed well 
in most settings. Its accuracy depended slightly on the 
number of high-density dams, the number of low-den-
sity SNPs, and the overlap between high-density arrays. 
The performance of fastPHASE was similar to that of 
MaCH but fastPHASE performed better when there was 
a small number of high-density animals or a small over-
lap between high-density arrays. Accuracies of IMPUTE2 
and MaCH were similar but IMPUTE2 performed worse 
than MaCH when considering a small number of high-
density dams, or a small number of individuals, and 
better when a large number of high-density dams was 
considered. Beagle v4.0 performed similarly to IMPUTE2 
but was less affected by the number of high-density dams 
and the number of individuals. In all cases, the diploid 
imputation methods were not able to impute to more 
than 3000 SNPs per chromosome in 24  h and so they 
were not evaluated under that condition.

Performance of the pre-phasing and haploid imputa-
tion methods is shown in Fig. 2. Among these methods, 
we found that the combination of Eagle2 and IMPUTE2 
gave the highest imputation accuracy. Eagle2 led to the 
highest imputation accuracy regardless of the imputa-
tion method it was combined with, and led to higher 
accuracies than any of the diploid imputation methods. 
SHAPEIT2 led to a similar but slightly lower perfor-
mance than Eagle2. HAPI-UR led to the lowest overall 
performance for low-density arrays but its performance 
increased as the number of high-density SNPs increased 
and reached the same accuracy as Eagle2 for arrays with 
more than 10,000 SNPs per chromosome. Of the tested 
haploid imputation methods, we found only a small dif-
ference between IMPUTE2 and Minimac3 but we found 
that Beaglev4.1 had poor imputation accuracy for all 
tested scenarios. We re-ran Beagle v4.1 with different-
sized windows but did not see a noticeable increase in 
accuracy. The accuracy of Beaglev4.1 did increase as the 
total number of high-density SNPs increased but its accu-
racy was still substantially lower than that of either Mini-
mac3 or IMPUTE2 at 45,000 SNPs per chromosome. 
There was no interaction between the choice of phasing 
method and the choice of imputation method for the 
overall imputation accuracy, except when multiple high-
density arrays were used. In this case, the combination of 
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HAPI-UR and Minimac3 outperformed the combination 
of Eagle2 and Minimac3.

Run time and memory requirements
The elapsed run times for each method in the baseline 
scenario are in Table 1. Of the diploid imputation meth-
ods, MaCH had the shortest run time, followed by Beagle 
v4.0, fastPHASE, and IMPUTE2. Of the phasing meth-
ods, HAPI-UR was the fastest by an order of magnitude, 
followed by Eagle2 and SHAPEIT2. Of the haploid impu-
tation methods, Minimac3 was the fastest, followed by 
Beagle v4.1 and IMPUTE2. The combined run-times of 
the two-step phasing and imputation methods were all 
substantially shorter than that of the single-step methods.

Real data
The two-step methods evaluated had similar perfor-
mance on the real dataset (see Table  2). SHAPEIT2 
was not able to phase the high-density and low-density 
individuals in 4  days and so was not analysed. Imputa-
tion accuracies of Eagle2 with Minimac3, Beagle v4.1, 
and IMPUTE2 were 0.992, 0.925 and 0.827, respectively. 
Imputation accuracies of HAPI-UR with Minimac3, Bea-
gle v4.1, and IMPUTE2 were 0.995, 0.939 and 0.997%, 
respectively. Phasing with Eagle2 took 7  h distributed 
across eight cores. Phasing with HAPI-UR took 54 h on 

a single core. All haploid imputation methods took less 
than 6 h.

Discussion
In this paper, we evaluated the performance of HMM-
based methods for imputation in animal breeding popu-
lations. We found that combinations of pre-phasing and 
haploid imputation methods led to greater imputation 
accuracy at substantially reduced runtimes compared to 
diploid imputation methods, even for a very small num-
ber of low-density markers or for a small number of high-
density genotyped dams and small numbers of genotyped 
individuals. The combination of using Eagle2 to pre-
phase genotypes and using Minimac3 for imputation led 
to high accuracy imputation in a wide range of simulation 
scenarios and when analysing a real animal population.

Our results highlight the power of phasing and imput-
ing genotypes separately. Intuitively it makes sense that 
performing phasing and imputation in a single step may 
increase imputation accuracy by marginalizing over 
uncertainty in phasing. However, the results suggest that 
the additional accuracy lost by marginalizing over phas-
ing errors is outweighed by the accuracy gained by con-
sidering larger haplotype reference panels. These results 
are particularly surprising in the context of animal breed-
ing populations where pre-existing reference panels may 
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Fig. 1 Genotype imputation accuracy of four diploid HMM algorithms based on simulated data. Unless otherwise noted, there were 1000 
high‑density (HD) SNPs per chromosome, 200 low‑density (LD) SNPs per chromosome, 100 dams genotyped at high‑density, and complete 
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high‑density, b the number of individuals in the population, c the number of SNPs in the low‑density array, and d the amount of overlap between 
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not exist (at least in the public domain), and so the ref-
erence panel itself is inferred by phasing high-density 
genotyped individuals. Our results suggest that modern 
phasing methods have a sufficiently high accuracy for 
this phasing to lead to only a small number of imputation 
errors.

The superior performance of pre-phasing and haploid 
imputation is also surprising given the lower density of 
SNP arrays (both high-density and low-density) and the 
substantially smaller numbers of genotyped individuals 
that we used compared to recent human genetics studies. 
These results also suggest that when working with multi-
ple low-density SNP arrays, individual SNP arrays can be 
phased and imputed separately.

Of the three phasing methods that we evaluated, 
Eagle2 led to the most accurate imputation, probably 
because it is able to exploit longer segments of shared 
haplotypes between individuals, which are very com-
mon in closely related breeding populations. Although 
Eagle2 resulted in the highest imputation accuracy, we 
found that HAPI-UR was an order of magnitude faster 
for most datasets and resulted in a small decrease in 
accuracy for the simulated scenarios but no decrease in 
accuracy for the real dataset. In their original paper, the 
authors of HAPI-UR suggest that it may be possible to 
increase the accuracy of HAPI-UR by running it mul-
tiple times with different window start positions and 
taking the consensus phase [19]. Due to the short run 
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time, this strategy would be feasible in animal popula-
tions but was not analysed here. SHAPEIT2, the old-
est of the phasing methods, had the longest run-time, 
which prevented us from evaluating it for the real 
dataset. Although the authors of SHAPEIT2 have now 
released SHAPEIT3, they do not recommend its use 
for populations with less than 60,000 individuals and so 
the performance of SHAPEIT3 was not analysed here. 
The great speed increases of HAPI-UR and Eagle2 over 
SHAPEIT2 are also notable because it closes the gap 
between HMM-based imputation methods and tradi-
tional heuristic imputation methods. For example, Miar 
et  al. [2] found that, for phasing, FImpute was over a 
hundred times faster than SHAPEIT2. In this paper, we 
found that HAPI-UR was over fifty times faster than 
SHAPEIT2, which suggests that the difference between 
HAPI-UR and a heuristic pedigree-based method may 

be of a similar order of magnitude (a fact supported by 
pilot simulations, not shown).

We found little difference in performance between the 
assessed haploid imputation methods. Both Minimac3 
and IMPUTE2 led to accurate imputation. The accu-
racy of IMPUTE2 was consistently slightly (< 1%) higher 
than that of Minimac3 with the simulated data but the 
runtime of IMPUTE2 was between two and three times 
longer than that of Minimac3. For the real dataset, the 
imputation accuracy of IMPUTE2 dropped when Eagle2 
was used to pre-phase the data but remained high when 
HAPI-UR was used to pre-phase the data. Overall, the 
performance of Beagle v4.1 was poor in the context of the 
simulated datasets, although it improved in the context 
of the real dataset. As the number of SNPs increased, the 
performance of Beagle v4.1 also increased. This may be a 
result of the approximations used in Beagle v4.1, which 

Table 1 Run time and  accuracy for  diploid imputation, phasing, and  haploid imputation methods in  the  default 
simulated data scenario

The run time is given in seconds separately for phasing and imputation steps and as a total

HD high-density, LD low-density

Phasing method Imputation method Computing time (s) Accuracy

HD phasing LD phasing Imputation Total

IMPUTE2 42,796 42,796 0.861

Beagle v4.0 23,042 23,042 0.901

MaCH 21,998 21,998 0.944

fastPHASE 28,892 28,892 0.941

HAPI‑UR IMPUTE2 117 14 149 280 0.964

HAPI‑UR Minimac3 117 14 62 193 0.967

HAPI‑UR Beagle v4.1 117 14 78 209 0.793

Eagle2 IMPUTE2 1361 207 148 1717 0.988

Eagle2 Minimac3 1361 207 55 1623 0.988

Eagle2 Beagle v4.1 1361 207 79 1647 0.794

SHAPEIT2 IMPUTE2 8495 1175 150 9820 0.979

SHAPEIT2 Minimac3 8495 1175 58 9728 0.977

SHAPEIT2 Beagle v4.1 8495 1175 77 9747 0.792

Table 2 Run time and accuracy for phasing, and haploid imputation methods on the real dataset scenario

The run time is given in hours separately for phasing and imputation steps and as a total. For Eagle2, the program was run distributed across 8 compute cores. 
HAPI-UR was run on a single core

HD high-density, LD low-density

Phasing method Imputation method Computing time (h) Accuracy

HD phasing LD phasing Imputation Total

HAPI‑UR IMPUTE2 11.53 43.09 5.63 60.25 0.997

HAPI‑UR Minimac3 11.53 43.09 2.27 56.89 0.995

HAPI‑UR Beagle v4.1 11.53 43.09 2.69 57.31 0.939

Eagle2 IMPUTE2 4.48 (8 cores) 2.37 (8 cores) 5.63 12.48 0.827

Eagle2 Minimac3 4.48 (8 cores) 2.37 (8 cores) 2.21 9.06 0.992

Eagle2 Beagle v4.1 4.48 (8 cores) 2.37 (8 cores) 4.19 11.04 0.925
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were designed for imputation of human high-density 
SNP arrays to whole-genome sequence data and which 
may be less appropriate for the lower-density SNP arrays 
used in animal breeding populations.

With two exceptions, we found little interaction 
between the choice of phasing method and the choice 
of haploid imputation method. The first exception was 
observed for HAPI-UR when individuals were genotyped 
with multiple, semi-overlapping, SNP arrays, where the 
imputation accuracy obtained for HAPI-UR with Mini-
mac3 or Beagle v4.1 was substantially higher than accu-
racy obtained for Eagle2 with Minimac3 or Beagle v4.1, 
although the accuracy of HAPI-UR with IMPUTE2 was 
lower than that of Eagle2 with IMPUTE2. The reason for 
this interaction stems from the fact that, in the case of 
Minimac3 and Beagle v4.1, the phasing algorithms were 
also used to perform imputation on the missing non-
overlapping SNPs for each high-density array, whereas in 
IMPUTE2 the two high-density arrays were phased sepa-
rately, and IMPUTE2 was used to fill in missing SNPs as 
part of its high-density array merging step. The higher 
accuracy obtained with HAPI-UR over Eagle2 in this sce-
nario suggests that HAPI-UR can impute untyped loci in 
high-density arrays better than Eagle2. This is consistent 
with the second exception, which was that the imputation 
accuracy obtained with HAPI-UR was at least as high, as 
that  obtained with Eagle2 when performing imputation 
on the real dataset. Animals in the real dataset were gen-
otyped with two high-density arrays and two low-density 
arrays that both exhibited a number of randomly missing 
SNP genotypes. When using Eagle2 to phase individuals, 
IMPUTE2 and Beagle v4.1 resulted in markedly lower 
imputation accuracy, in particular compared to Mini-
mac3. In contrast, when HAPI-UR was used to phase 
individuals, the performance of Minimac3, IMPUTE2 
and Beagle v4.1 remained high, which suggests an advan-
tage of using HAPI-UR over Eagle2 when individuals are 
genotyped on multiple arrays or when observing a large 
amount of random missing genotypes.

Some of the analysed phasing methods have an 
option to use pedigree information to improve phasing. 
Although these options were originally designed to help 
phase and impute parent–progeny trios [28], they can 
also be used for larger pedigrees [29]. Previous work on 
phasing and imputing animal populations showed that 
combining pedigree and linkage information can improve 
phasing and imputation accuracy [1, 2]. In this paper, we 
focused only on HMM-based methods that use linkage-
disequilibrium information for phasing and imputation, 
as originally proposed by Li and Stephens [11]. SHA-
PEIT2 [29], Beagle v4.0 [28], and HAPI-UR [19] all pro-
vide options to use parent–progeny trio information. 
However, the top two performing methods in this study, 

Eagle2 and Minimac3, do not provide this option. It is 
likely that pedigree information can be included in these 
algorithms by pre-phasing and pre-imputing an individ-
ual’s genotypes based on the genotypes of the individu-
al’s parents. This is similar to the approach of DuoHMM 
[29]. Future work is needed to analyse how HMM can 
use pedigree information to improve phasing and impu-
tation, and to integrate this with the high-performance 
methods that were reviewed and tested here.

Conclusions
Overall, this study suggests that modern hidden Markov 
model pre-phasing and haploid imputation methods 
can perform fast and accurate imputation of SNP geno-
types in animal breeding populations of any size without 
the use of pedigree. This is particularly important given 
an interest in performing imputation and implementing 
genetic selection in non-traditional livestock populations 
without recorded pedigree, for which existing heuristic 
methods may be less appropriate, such as in developing 
countries or on multiplier and commercial farms. We 
noticed no disadvantage of using the two-step imputation 
approach even in cases of small populations, low-density 
SNP arrays, or multiple high-density arrays. Of the algo-
rithms, we found that Eagle2 and HAPI-UR both reliably 
pre-phased the data and that IMPUTE2 and Minimac3 
led to the highest imputation accuracy. However, we also 
noted a decreased accuracy when Eagle2 and IMPUTE2 
were used to pre-phase and impute the data when ani-
mals were genotyped with semi-overlapping high-density 
SNP arrays. In this case, using Eagle2 with Minimac3 and 
HAPI-UR with IMPUTE2 or Minimac3 led to higher 
accuracy. Overall, our findings highlight the importance 
and feasibility of using HMM to perform imputation in 
animal breeding populations, even as the number of gen-
otyped animals and genotyping densities increase.
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