CORRECTION Open Access

Correction to: Assessing the leaching behavior of different gunshot materials in natural spring waters

Julian Fäth* and Axel Göttlein

Correction to: Environ Sci Eur (2019) 31:57

https://doi.org/10.1186/s12302-019-0249-2

The authors note a correction to the original article [1].

Table 3 legend is incorrectly processed. This article presents the corrected version of Table 3.

The original article has been corrected.

Table 3 Mean ± standard error of relevant heavy metal concentrations [μmol/L] for each shot type during short-term (1 day; 8 days) and long-term exposure (15 days; 22 days) leaching tests, including the results for ADaM given by Fäth et al. [7]

shot type (main component)	leached element	ADaM	siliceous aerobic	calcareous aerobic	siliceous anaerobic	calcareous anaerobic
short term period						
PL 34 (Pb)	Pb	1.81 ± 0.26	1.77 ± 0.36	0.32 ± 0.15	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Sb	<lod< td=""><td><loq< td=""><td>0.39 ± 0.06</td><td><loq< td=""><td>0.31 ± 0.08</td></loq<></td></loq<></td></lod<>	<loq< td=""><td>0.39 ± 0.06</td><td><loq< td=""><td>0.31 ± 0.08</td></loq<></td></loq<>	0.39 ± 0.06	<loq< td=""><td>0.31 ± 0.08</td></loq<>	0.31 ± 0.08
Blind Side (Fe)	Zn	13.39 ± 3.35	11.82 ± 3.91	2.47 ± 0.26	0.21 ± 0.01	<lod< td=""></lod<>
Hubertus (Zn)	Zn	33.79 ± 4.56	29.99 ± 9.02	3.96 ± 0.81	1.33 ± 0.19	<loq< td=""></loq<>
Silver (Pb)	Ni	0.59 ± 0.08	0.68 ± 0.09	0.55 ± 0.06	1.56 ± 0.47	0.65 ± 0.10
Sweet Copper (Cu)	Cu	1.91 ± 0.51	3.53 ± 1.06	2.63 ± 1.12	0.14 ± 0.01	<loq< td=""></loq<>
Ultimate (W)	Sn	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.89 ± 0.29</td><td>0.89 ± 0.44</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.89 ± 0.29</td><td>0.89 ± 0.44</td></lod<></td></lod<>	<lod< td=""><td>0.89 ± 0.29</td><td>0.89 ± 0.44</td></lod<>	0.89 ± 0.29	0.89 ± 0.44
long term period						
PL 34 (Pb)	Pb	0.60 ± 0.25	4.30 ± 1.12	0.20 ± 0.09	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Sb	<loq< td=""><td><loq< td=""><td>0.75 ± 0.05</td><td><loq< td=""><td>0.59 ± 0.05</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.75 ± 0.05</td><td><loq< td=""><td>0.59 ± 0.05</td></loq<></td></loq<>	0.75 ± 0.05	<loq< td=""><td>0.59 ± 0.05</td></loq<>	0.59 ± 0.05
Blind Side (Fe)	Cr	<loq< td=""><td>0.10 ± 0.00</td><td><loq< td=""><td>0.10 ± 0.01</td><td><loq< td=""></loq<></td></loq<></td></loq<>	0.10 ± 0.00	<loq< td=""><td>0.10 ± 0.01</td><td><loq< td=""></loq<></td></loq<>	0.10 ± 0.01	<loq< td=""></loq<>
	Zn	34.70 ± 0.92	24.82 ± 1.29	3.78 ± 0.16	0.49 ± 0.11	<lod< td=""></lod<>
Hubertus (Zn)	Zn	30.48 ± 1.79	55.71 ± 3.75	4.83 ± 0.15	0.69 ± 0.10	<loq< td=""></loq<>
Silver (Pb)	Ni	1.34 ± 0.19	0.52 ± 0.02	0.31 ± 0.04	1.20 ± 0.23	<loq< td=""></loq<>
Sweet Copper (Cu)	Cu	4.11 ± 0.37	5.92 ± 0.27	6.35 ± 0.10	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Ultimate (W)	Sn	<loq< td=""><td><lod< td=""><td><lod< td=""><td>1.23 ± 0.07</td><td>0.65 ± 0.08</td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td>1.23 ± 0.07</td><td>0.65 ± 0.08</td></lod<></td></lod<>	<lod< td=""><td>1.23 ± 0.07</td><td>0.65 ± 0.08</td></lod<>	1.23 ± 0.07	0.65 ± 0.08

LOQ: Limit of quantification; LOD: limit of detection; bold values indicate homogeneous subsets with the significant highest concentrations among the tested environments determined by ANOVA. Grey shading represents those values that exceeded the EC_{50} for *Daphnia magna* according to Khangarot and Ray [15]

^{*}Correspondence: julian.faeth@tum.de Professorship of Forest Nutrition and Water Resources, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany

Fäth and Göttlein Environ Sci Eur (2019) 31:77 Page 2 of 2

The original article can be found online at https://doi.org/10.1186/s1230 2-019-0249-2.

Published online: 09 October 2019

Reference

 Fäth J, Göttlein A (2019) Assessing the leaching behavior of different gunshot materials in natural spring waters. Environ Sci Eur 31:57. https://doi.org/10.1186/s12302-019-0249-2

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com