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Abstract

Preparing the thermal-sensitive thin films with high temperature coefficient of resistance (TCR) and low resistivity by
a highly compatible process is favorable for increasing the sensitivity of microbolometers with small pixels. Here, we
report an effective and process-compatible approach for preparing V1-x-yTixRuyO2 thermal-sensitive thin films with
monoclinic structure, high TCR, and low resistivity through a reactive sputtering process followed by annealing in
oxygen atmosphere at 400 °C. X-ray photoelectron spectroscopy demonstrates that Ti4+ and Ru4+ ions are
combined into VO2. X-ray diffraction, Raman spectroscopy, and transmission electron microscopy reveal that
V1-x-yTixRuyO2 thin films have a monoclinic lattice structure as undoped VO2. But V1-x-yTixRuyO2 thin films exhibit no-
SMT feature from room temperature (RT) to 106 °C due to the pinning effect of high-concentration Ti in monoclinic
lattice. Moreover, RT resistivity of the V0.8163Ti0.165Ru0.0187O2 thin film is only one-eighth of undoped VO2 thin film,
and its TCR is as high as 3.47%/°C.
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Introduction
Microbolometers have been widely applied in civil and
military fields. One of the important development trends
is reducing the pixel size in order to reduce product cost
and increase the detection range [1]. However, the
miniaturization causes the decrease of sensitivity. Im-
proving the micro-electromechanical system (MEMS)
manufacturing process to optimize the filling factor, ab-
sorption coefficient, thermal conductivity, and other key
factors can effectively enhance the sensitivity, but this
approach is coming to its limit [1]. Another effective
way is using better thermal-sensitive materials [2]. As a
widely used thermal-sensitive material, VOx with a rela-
tively low resistivity in the range of 0.1–5.0Ω·cm has a
TCR of about 2%/°C at room temperature [3]. Consider-
ing that the sensitivity of a microbolometer is propor-
tional to the TCR, it is more favorable to use thermal-
sensitive materials with higher TCR for increasing the
sensitivity of small pixel microbolometers. In order to

increase the TCR of VOx films, Jin et al. prepared Mo-
doped VOx thin films by bias target ion beam deposition
[3]. The films have a high TCR of − 4.5%/°C, but large
resistivity (> 1000Ω·cm) is not preferable for microbol-
ometer applications.
For fabricating a typical VOx-based bolometer array, it

is necessary to cover VOx thermal-sensitive thin film
with a passivation layer (SiNx or SiOx), which can pro-
tect the thermal-sensitive thin film from the oxidation
by subsequent processes (removing of photoresist, re-
lease of sacrificial layer, etc.) [4]. The protection effect of
the passivation layer depends on its film density. Denser
passivation layer results in better protection effect. Gen-
erally, high preparation temperature contributes to
denser passivation layer [5, 6], thus better protection ef-
fect for VOx thin films. However, VOx thermal-sensitive
thin films, which are generally prepared at relatively low
temperature (lower than 300 °C), are amorphous [3, 7,
8]. Whereas amorphous VOx tends to crystallize at ele-
vated temperature [9]. Once the crystallization happens,
electrical parameters of the film will be significantly chan-
ged. Therefore, relatively low preparation temperature for
VOx thermal-sensitive thin films constrains the process
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for the passivation protection layer. This causes an annoy-
ing problem for fabricating bolometer arrays: the very
stringent control on the subsequent processes.
Monoclinic vanadium dioxide (VO2) thin films have

been considered as a potential thermal-sensitive material
for highly sensitive microbolometers owing to high TCR
at room temperature (RT). Moreover, monoclinic VO2

thin films are prepared at higher temperature than
300 °C [10], which is beneficial for preparing denser pas-
sivation protection layer at higher temperature. How-
ever, the two characteristics of monoclinic VO2 limit, to
a certain extent, its practical application for microbol-
ometers. On the one hand, the semiconductor-to-metal
transition (SMT) happens to VO2 near about 68 °C. The
hysteretic feature and strain changes during the SMT of
VO2 will deteriorate the device performance and reduce
the reliability of the device [11]. On the other hand, rela-
tively high RT resistivity (> 10Ω·cm) restricts the choice
of device operating parameters [12, 13]. Therefore, pre-
paring the vanadium dioxide films with high TCR, non-
SMT, low resistivity, and crystallization structure be-
comes a challenge for developing high-performance
thermal-sensitive materials for microbolometers. Re-
cently, Soltani et al. introduced both Ti and W into VO2

thin films in order to suppress the SMT [14], and pre-
pared Ti-W co-doped VO2 thin films with non-SMT
feature and a high TCR. However, Ti-W co-doped VO2

thin films have a similar resistivity to undoped VO2.
In this article, we demonstrate a high-performance

monoclinic V1-x-yTixRuyO2 thermal-sensitive thin film
through a SMT-inhibition strategy by means of introdu-
cing Ti and Ru ions into VO2 thin films. The thin films
were prepared by a reactive sputtering process followed
by annealing at 400 °C. Higher process temperature than
amorphous VOx thin films provides more parameter
choice of subsequent MEMS processes for bolometer de-
vices. V1-x-yTixRuyO2 thin films have similar monoclinic
structure to undoped VO2, but the SMT feature is com-
pletely suppressed due to the pinning effect of high-
concentration dopants. The thin film with optimal dop-
ant concentration has higher TCR (3.47%/°C) than the
commercial VOx thin films, and much lower RT resistiv-
ity than undoped monoclinic VO2 thin films.

Material and Methods
All the thin films were prepared through direct current
(DC) reactive magnetron sputtering on quartz substrates
(23 mm × 23mm × 1mm). A high-purity vanadium tar-
get (99.99%) with a diameter of 80 mm and a thickness
of 4 mm was used for depositing thin films with a
target-substrate distance of about 11.5 cm. After the base
pressure is below 2.0 × 10−3 Pa, the sputtering was exe-
cuted at 0.32A with an O2/Ar ratio of 1:50. During de-
position, the substrate temperature was kept at 100 °C.

Then as-deposited thin films were in situ annealed for
60 min at 400 °C in pure oxygen (4.4 sccm). The thick-
ness of films was controlled as about 380 nm according
to the calibrated deposition rate. Ti and Ru were intro-
duced with pure Ti pieces (99.9% purity, 10 mm × 10
mm × 2mm) and V/Ru alloy pieces (consisting of 10.0
at.% Ru and 90.0 at.% V, 10 mm × 10mm × 2mm)
placed symmetrically on the sputtered surface of the V
target. V1-x-yTixRuyO2 thin films using 3 Ti pieces and 1,
2, 3 V/Ru alloy piece(s), Ti-doped thin film using 3 Ti
pieces, and undoped VO2 thin film are marked as
VTRO-1, VTRO-2, VTRO-3, VTO, VO, respectively.
The chemical states of dopants (Ti and Ru) were ana-

lyzed by X-ray photoelectron spectroscopy (XPS) with
Al Kα radiation (1486.6 eV) using a ESCALAB 250
(Thermo instrument). The binding energies (BEs) were
calibrated to the C 1 s peak at 284.6 eV from the adven-
titious carbon. The concentrations of dopants in
V1-x-yTixRuyO2 thin films were checked by energy dis-
persive X-ray spectroscopy (EDS). The crystalline struc-
ture of the films was examined by X-ray diffraction
(XRD) on a Bruke D8 diffractometer (Cu Kα irradiation)
and transmission electron microscopy (TEM) on Titan
G2 60–300. Raman spectra were characterized by means
of a confocal ɑ-Raman spectrometer with the excitation
wavelength of 514 nm and an irradiation power of about
0.5 mW (Renishaw inVia). The surface morphology of
samples was observed by scanning electron microscopy
(SEM, SU8020, Hitachi). The temperature-dependent re-
sistivity of thin films was obtained at a temperature
interval of 2 °C according to the thickness and sheet re-
sistance, which was recorded using a four-point probe
(SX1934) along with a heating plate.

Results and Discussion
The chemical states of dopants in the films were deter-
mined by XPS analyses. Figure 1 a shows the XPS survey
spectra of VO, VTO, and VTRO-3, clearly showing the
strong peaks of V2p, O1s, Ti2p, and C1s. The peak of
Ru 3d in V1-x-yTixRuyO2 thin films as a shoulder signal
of about 281.4 eV can be observed near the C 1 s peak
[15]. The successful incorporation of Ti4+ and Ru4+ ions
into the VO2 lattice is demonstrated by the Ti 2p peak
and the Ru 3d peak of VRTO-3 in Fig. 1 b and c. The Ti
2p1/2 peak at 464.0 eV, the Ti 2p3/2 peak at 458.3 eV, and
splitting energy of 5.7 eV for the Ti 2p doublet indicate
the oxidation state of Ti4+ ions in VTO and VTRO-3
[16]. Figure 1 c exhibits the Ru 3d XPS spectrum for
VTRO-3. The binding energy of 281.4 eV suggests the
presence of Ru4+ ions in VTRO-3 [16]. The presence of
Ti and Ru elements can be further verified by EDS ana-
lysis as shown in Fig. 1f. The doping concentrations of Ti
and Ru elements (x, y in V1-x-yTixRuyO2), obtained by
EDS analyses, for all the samples are listed in Table 1.
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High-concentration Ti was introduced into V1-x-yTix-
RuyO2 thin films. The doping level of Ru in the thin films
was well controlled by varying the number of V/Ru alloy
pieces.
Moreover, the oxidation states of vanadium ions in films

were also analyzed from the deconvoluted V 2p3/2 peaks
using the Shirley function [17–19]. Figure 1 d and e shows
the high-resolution V 2p3/2 XPS spectra for VO and
VTRO-3. The V 2p spectra both consist of two peaks at
517.4 eV, indicative of V5+, and 516.1 eV, indicative of V4+

[20]. The appearance of V5+ ions could be ascribed to nat-
ural oxidation of the sample surface during storage in the
air [21, 22]. Specifically, the relative contents of V5+ spe-
cies in VO and VTRO-3, estimated from the integrated in-
tensity of V 2p peak shown in Fig. 1 d and e, are 34.5%
and 28.0%, respectively. The relative contents of V4+ spe-
cies in VO and VTRO-3 are 65.5% and 72.0%, respectively.

This indicates that V1-x-yTixRuyO2 thin film shows higher
stability than undoped VO2.
To confirm the crystalline structures, XRD patterns of

all the samples were collected (Fig. 2a). All the films ex-
hibit monoclinic structure of VO2 (PDF No. 43-1051)
[23]. For all the films, the (011) peak seems to be of
higher intensity than the other peaks, revealing a prefer-
ential growth along (011) facet. No diffraction peaks
from other vanadium oxide (V2O3, V2O5) [22] or titan-
ium/ruthenium oxide phases can be detected [24]. Also,
it is worth noting that V5+ ions are probed by XPS while
there are no characteristic peaks of the V2O5 phase in
XRD patterns. Considering that XPS is a surface-
sensitive technique and the XRD analysis reveals the lat-
tice structure of the whole sample, the presence of V5+

ions is believed to be derived from surface oxidation
during storage and it exists only on the surface of sam-
ples as reported previously [24–27] .
Figure 2 b further shows the close-up views of (011)

peak for all the samples after fitting with Lorentzian
function. Compared to VO, the (011) diffraction peak of
VTO moves from 27.78 to 27.76°. This implies Ti-
doping causes a slight increase of the interplanar spacing
of (011) facet due to the substitutional presence of Ti in
monoclinic VO2 [28, 29]. As for V1-x-yTixRuyO2, the
peak position of the (011) facet shift toward a larger
angle (from 27.78° for VO to 27.86° for VTRO-2), indi-
cating that the interplanar lattice spacing varies along

Fig. 1 a XPS survey spectra of VO, VTO, and VTRO-3, deconvoluted XPS spectra of b Ti 2p, and c Ru 3d for VTRO-3, d V 2p3/2 XPS spectra for VO
and VTRO-3, e EDS spectrum of VTRO-3

Table 1 Doping levels of Ti and Ru, crystallite size, resistivity,
and TCR of all the samples

Sample no. VO VTO VTRO-1 VTRO-2 VTRO-3

Ti concentration (x, %) – 17.6 17.1 16.7 16.5

Ru concentration (y, %) – – 0.65 1.36 1.87

Crystallite size (nm) 25.5 27.6 24.7 17.2 12.5

Resistivity (at 26 °C, Ω·cm) 13.5 12.8 6.53 3.14 1.55

TCR (%/°C) − 3.13 − 3.46 − 3.54 − 3.46 − 3.47
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(011) facet. This should originate from the replacement
of some V4+ ions in the monoclinic lattice by Ru4+ with
a larger ionic radius. According to the Scherrer’s for-
mula, the average crystallite size was estimated from the
diffraction data of (011) facet by the Scherrer equation
[30]. VTO has larger crystallite size than VO (Table 1).
This reveals that Ti-doping promotes the growth of VO2

crystallites. But the addition of Ru reduces the crystallite
size of films. With increasing the concentration of Ru,
V1-x-yTixRuyO2 thin films (VTRO-1, VTRO-2, VTRO-3)
exhibit gradually reduced crystallite size. Our previous
work has demonstrated that Ru4+ ions in the VO2 lattice
inhibit the growth of VO2 crystallites in Ru-doped VO2

thin films [24]. Similarly, the Ru4+ ions suppress the

coalescence of adjacent crystallites in V1-x-yTixRuyO2

thin films, thus decrease the crystallite size of films.
The direct observation of the monoclinic lattice in VO

and VTRO-3 was performed by means of TEM analysis
[31–33]. Figure 3 a and b shows the selective area dif-
fraction (SAD) patterns of VO and VRTO-3. They ex-
hibit clear series of Debye-Scherrer diffraction rings,
which can be indexed as monoclinic VO2. This suggests
the monoclinic polycrystalline feature of undoped VO2

and V1-x-yTixRuyO2 thin films, which is accordant with
the XRD analyses. The high-resolution TEM (HRTEM)
images shown in Fig. 3 c and d reveal the clear lattice
fringes from monoclinic VO2. This further demonstrates
that V1-x-yTixRuyO2 thin films have the monoclinic

Fig. 2 a XRD patterns and b close-up views of (011) peaks of all the samples

Fig. 3 a and b SAD patterns, c and d HRTEM images of VO and VTRO-3
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structure as the undoped one (VO) [34]. But the insert
in Fig. 3d shows the distortion of local lattice fringes in
a crystallite of VTRO-3. This indicates that the introduc-
tion of Ti and Ru dopants causes obvious disturbance in
the lattice of monoclinic VO2.
Figure 4 shows the Raman spectra obtained at RT for

the films. All the Raman peaks for VO can be attributed
to the Ag and Bg phonon modes from the monoclinic
VO2 [35]. No Raman modes from V2O5 can be observed
[24]. Three prominent Raman modes (ω1 around 193
cm−1, ω2 around 223 cm−1, and ω3 around 613 cm−1) are
used for further probing the influence of the doping on
the crystalline structure of VO2 thin films. Ti-doped
VO2 thin film (VTO) has the similar high-frequency
phonon mode (ω3) as VO2 (VO), typical of monoclinic
VO2. Differently, two low-frequency modes (ω1 and ω2)
in VTO exhibit obvious redshift compared with undoped
VO2. The low-frequency modes ω1 and ω2 can be as-
cribed to the V-V vibrations [36]. The redshift of ω1 and
ω2 indicates Ti

4+ ions was introduced into the zigzag V-
V chains in monoclinic VO2 [37], which decreases the
Raman frequencies of the V-V vibrations due to the local
structure perturbations around Ti4+ ions.
The high-frequency phonon mode ω3 is still observed

for V1-x-yTixRuyO2 thin films, which suggests the pres-
ence of monoclinic VO2. This is consistent with the
XRD and TEM analyses. But their Raman intensities of
ω3 outstandingly decrease compared with VO and VTO.
The other Raman peaks remarkably weaken, even dis-
appear with increasing the Ru concentration. This indi-
cates that there is local disturbance in monoclinic VO2

lattice due to the existence of Ti and Ru ions. The previ-
ous work has demonstrated that the Ru4+ ions in the
VO2 lattice conduce to inducing the local tetragonal
symmetry in the monoclinic framework since the Ru–O
coordination exhibits an almost identical symmetry to
tetragonal VO2 [24, 38]. The tetragonal symmetry has

lower Raman activity than the monoclinic phase [39].
Thus, the V1-x-yTixRuyO2 thin films show much lower
Raman intensity.
Figure 5 shows the SEM surface morphologies for VO,

VTO, and VTRO-3. The undoped VO2 film is mainly
composed of particles with size around 50–100 nm (Fig.
5a). Ti-doping obviously influences the surface morph-
ology of VO2 films. VTO has a bigger particle size than
VO (Fig. 5b). This further indicates that Ti-doping facili-
tates the growth of VO2 crystallites, which is accordant
with the XRD data. Differently, VTRO-3 has a denser
and smoother surface morphology than VO and VTO
(Fig. 5c), which is preferable for fabricating the high-
quality pixels in a mircobolometer. Dense surface
morphology of VTRO-3 should originate from the inhib-
ition effect of Ru4+ ions in VO2 lattice on the crystalline
growth as revealed by the XRD analysis. Ru4+ ions sup-
press the coalescence of VO2 grains by restraining the
grain boundary (GB) mobility [24]. VTRO-3 has smaller
crystallite size than VO and VTO (Table 1). As a result,
smaller grains in VTRO-3 constitute denser films than
VO and VTO as shown in Fig. 5.
Figure 6 a compares the temperature dependence of

resistivity (ρ) for undoped VO2 film and V1-x-yTixRuyO2

thin films. VO has a typical SMT feature of polycrystal-
line VO2 thin films with a SMT amplitude (ratio of the
resistivity at 26 °C to the one at 90 °C) of about 3 orders
of magnitude, a hysteresis width of 13.4 °C, and the SMT
temperature of 72.1 °C (obtained from the plot dln ρ/dT
vs. T in Fig. 6b) [40–42]. Interestingly, Ti-doped thin
film (VTO) exhibits no abrupt change of resistivity with
temperature from RT to 106 °C (Fig. 6c) although it has
the same monoclinic structure at RT as VO. This indi-
cates that the SMT of VO2 is restrained by Ti-doping
with high concentration. The no-SMT feature can avoid
the hysteresis and strain changes due to the SMT of
VO2 across the SMT temperature, which is valuable for
the application in microbolometers. With further doping
with Ru, the no-SMT feature is maintained in V1-x-yTix-
RuyO2 thin films (Fig. 6c). Moreover, the resistivity of
thin films at RT obviously decreases with the increase of
Ru concentration (Table 1). The resistivity at RT of
VTRO-3 (1.55Ω·cm) is only one-eighth of VO
(13.5Ω·cm). Generally, the resistivity of polycrystalline
films includes grain resistivity and GB resistivity. The
decrease of grain size in films results in the increase of
GB density, thus increases resistivity owing to GB scat-
tering [43]. VTRO-3 has smaller grain size than VO as
revealed by the SEM analysis (Fig. 5). The GB resistivity
in VTRO-3 should be larger than that in VO due to in-
creased GB density. But the predicted change trend of
GB resistivity with grain size contradicts the change of
film resistivity with doping. Therefore, the grain resistiv-
ity, rather than GB one, could play a predominant role

Fig. 4 Room-temperature Raman spectra for undoped VO2, Ti-
doped VO2 and V1-x-yTixRuyO2 thin films
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in the resistivity of VO2 polycrystalline thin films. The
outstandingly reduced resistivity of VTRO-3 could result
from the remarkable decrease of grain resistivity due to
the incorporation of Ru4+ ions. Substitutional Ru4+ ions
conduce to induce local tetragonal symmetry in mono-
clinic VO2 lattice, which has been demonstrated by pre-
vious work [24]. This causes the upward shift of the
maximum of valence band and increase of the density of
states of the V 3d electrons, which results in the remark-
able decrease of grain resistivity. Thus, VTRO-3 exhibits
much lower resistivity than VO. Lower resistivity of
thermal sensitive materials generally indicates smaller
noise and larger electrical magnification for microbol-
ometer devices, thus higher sensitivity of microbol-
ometers [2]. More importantly, VTRO-3 with low
resistivity has large TCR (3.47%/°C), similar to undoped
VO2 thin film (VO). It is reasonable since semiconductor
VO2 with monoclinic structure generally exhibits large
TCR [44]. As revealed by XRD, Raman, and TEM ana-
lyses, V1-x-yTixRuyO2 thin films have same monoclinic
structure as undoped VO2. So, they retain high TCR as
monoclinic VO2. The TCR value of VTRO-3 is 1.7 times
VOx thin films used in commercial microbolometers
(about 2%/°C). This is valuable for increasing the sensi-
tivity of microbolometers since it is proportional to the
TCR of thermal-sensitive materials [1]. Therefore,
V1-x-yTixRuyO2 thin film with preferred dopant concen-
trations (VTRO-3) has attractive characteristics (no-
SMT feature, low resistivity, and high TCR) of thermal-

sensitive materials for high-performance microbol-
ometers. Furthermore, V1-x-yTixRuyO2 thin film exhibits
superior trade-off performance to other vanadium
oxide-based thermal-sensitive thin films as shown in
Table 2. This indicates that V1-x-yTixRuyO2 could be a
promising thermal-sensitive material for
microbolometers.
In order to investigate the mechanism resulting in the

no-SMT feature in Ti-doped VO2 and V1-x-yTixRuyO2

thin films, the Raman spectra of VTO and VTRO-3 are
acquired at different temperature. As a control, the
temperature dependence of the Raman spectrum for
undoped VO2 thin film (VO) is shown in Fig. 7 as well.
Considering that the high-frequency mode ω3 is gener-
ally reckoned as a fingerprint for the monoclinic VO2

[36], the change of this peak with temperature is ana-
lyzed. As indicated in Fig. 7a, a clear Raman peak from
ω3 can be observed for VO before the SMT although the
integrated Raman intensity decreases from RT to 60 °C.
After the SMT, no Raman peak from ω3 can be probed
due to the complete structural transition from mono-
clinic to tetragonal lattice [39]. Differently, the ω3 peak
can be observed for VTO till 106 °C (Fig. 7b). This indi-
cates the existence of monoclinic VO2 in VTO from RT
to 106 °C. It has reported that Ti-doping increases the
SMT temperature of VO2 for a low doping level [48, 49].
But the SMT temperature saturates at 80–85 °C as the
doping level reaches above about 8at% [37, 50]. The pre-
vious literature demonstrated the SMT amplitude of Ti-

Fig. 5 SEM images of the surface morphologies for a VO, b VTO, and c VTRO-3

Fig. 6 a Temperature dependence of ρ for all the samples, plots of dln ρ/dT vs. T for b VO and c VTO and VTRO-3
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doped VO2 thin films obviously decreases with Ti-
doping level, owing to outstanding increase of the resist-
ivity for the metal state [48]. This could originate from
stronger Ti–O bonds than V–O ones. It is well-known
that the SMT of VO2 is associated with structural trans-
formation from monoclinic phase to tetragonal phase
[51]. Compared with the tetragonal phase, monoclinic
VO2 has remarkably lowered symmetry, which is charac-
terized by zigzag V-V chains with two V-V distances
(2.65 and 3.12 Å) [51, 52]. As the temperature rises
across the SMT temperature, zigzag V-V chains in the
monoclinic phase are transformed into linear V-V chains
with a unique V-V distance of about 2.85 Å in the tet-
ragonal phase. Ti has more negative standard heat of
formation of oxides than V [53]. This indicates that Ti–
O bonds are stabler than V–O bonds. For Ti-doped

VO2, strong Ti–O bonds stabilize the zigzag V-V chains
around them due to the pinning effect. This causes some
monoclinic domains to be kept in tetragonal lattice
across the SMT. As a result, the post-SMT resistivity of
Ti-doped VO2 films obviously increases with Ti-doping
level since monoclinic VO2 has much higher resistivity
than tetragonal one. As the concentration of Ti reaches
a relatively high value, such as about 17% for VTO, most
of monoclinic structures are maintained after the
temperature goes above the SMT temperature of VO2.
As a result, monoclinic structure can be detected in
VTO till 106 °C (Fig. 7b). Similar mechanism works for
V1-x-yTixRuyO2 thin films since Ti4+ ions with equivalent
concentration to VTO are doped into VTRO thin films.
So, the monoclinic structure can be also observed in
VTRO-3 till 106 °C as shown in Fig. 7c. Enhanced

Table 2 TCR, RT resistivity, and processing temperature of V0.8163Ti0.165Ru0.0187O2 and other vanadium oxide-based thermal-sensitive
thin films previously reported

Material −TCR (%/°C) Resistivity (Ω·cm) Processing temperature (°C) References

VOx ~ 2.7 2 No heating [45]

Mo-doped VOx 4.0–4.5 > 1000 300 3

Mo-doped VOx 2.5 0.3 No heating [45]

Nb-doped VOx 2.1 0.5 No heating [45]

Ti-doped VOx 2.5 ~ 360 370 [46]

Ta-doped VOx 3.47 9.32 400 [47]

V0.8163Ti0.165Ru0.0187O2 3.47 1.55 400 This work

Fig. 7 Temperature-dependent Raman scattering characteristics of a VO, b VTO, and c VTRO-3 during the heating
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stability of monoclinic structure causes the no-SMT fea-
ture in Ti-doped VO2 thin film and V1-x-yTixRuyO2 thin
films.
Low RT resistivity of V1-x-yTixRuyO2 thin films should

result from the enhanced local symmetry in monoclinic
lattice through the substitutional doping of Ru4+ ions [24].
Figure 8 shows the XPS valence band (VB) spectra of VO
and VTRO-3. Their VB spectra exhibit a two-region struc-
ture, consisting of a broad O 2p band and a V 3d band.
The band edge at about 0.3 eV reveals the semiconductor
state of undoped VO2 (VO). Compared with VO, a shift of
the V 3d band towards the Fermi level (EF) can be ob-
served for VTRO-3. Moreover, the ratio of the integrated
intensity of the V 3d band to that of the O 2p band for
VTRO-3 (6.23%) is larger than that for VO (4.62%). This
suggests that the density of states (DOS) of the V3d band
for VTRO-3 increases compared with that for VO [24,
54]. According to the Goodenough’s model, the zigzag V-
V chains in monoclinic VO2 causes the splitting of the d||
band of V 3d electrons into lower and upper d|| bands,
which results in a bandgap. Thus, monoclinic VO2 ex-
hibits a semiconductor state [41, 55]. After doping with
Ru4+ ions, enhanced local symmetry weakens the splitting
of the d|| band. This leads to the upward shift of the max-
imum of VB and the increase of the DOS of the V 3d band
[24]. So, more electrons can jump at RT from the VB to
the conduction band. Therefore, V1-x-yTixRuyO2 thin films
have much lower RT resistivity than undoped one.

Conclusions
V1-x-yTixRuyO2 thin films have been prepared by a reac-
tively magnetron co-sputtering process followed by an-
nealing at 400 °C. Ru4+ and Ti4+ ions are incorporated
into VO2 monoclinic lattice by substitution. Although
V1-x-yTixRuyO2 thin films have the same monoclinic struc-
ture as undoped VO2, the co-existence of Ti and Ru ions

deceases the crystallite size of films. This results in
smoother surface morphology than VO2 thin films. Ti4+

ions in the V-V chains of monoclinic VO2 stabilize, to
some extent, the zigzag V-V chains owing to the pinning
effect due to stronger bond strength of Ti–O bonds than
V–O bonds. This brings about the no-SMT feature of Ti-
doping and Ti-Ru co-doped thin films. V1-x-yTixRuyO2

thin films with monoclinic structure exhibit large TCR as
monoclinic VO2. Enhanced local symmetry due to the Ru-
doping leads to much lower RT resistivity for V1-x-yTix-
RuyO2 thin films than undoped one. V1-x-yTixRuyO2 is one
of promising thermal-sensitive materials for fabricating
high-performance small-pixel microbolometers.
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