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Abstract

Artificial synapses are the fundamental of building a neuron network for neuromorphic computing to overcome
the bottleneck of the von Neumann system. Based on a low-temperature atomic layer deposition process, a flexible
electrical synapse was proposed and showed bipolar resistive switching characteristics. With the formation and
rupture of ions conductive filaments path, the conductance was modulated gradually. Under a series of pre-synaptic
spikes, the device successfully emulated remarkable short-term plasticity, long-term plasticity, and forgetting behaviors.
Therefore, memory and learning ability were integrated to the single flexible memristor, which are promising for the
next-generation of artificial neuromorphic computing systems.
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Background
The classical von Neumann computing scheme is suffering
a bottleneck of information transfer between the processing
center and storage units [1]. Through emulating biological
brains, neuromorphic computing has become an attractive
candidate with the ability of learning and memory in one
single system [2, 3]. Electronic synapses, with the ability of
mimicking bio-synaptic behavior, are the foundation of neu-
romorphic systems. Recently, bio-synaptic behaviors have
been emulated by various memristors, including
two-terminal devices and novel three-terminal synaptic tran-
sistors based on ionic defects [4, 5]. With history-dependent
conductance, memristors were reported to simulate the
long-term depression (LTD) or potentiation (LTP),
pair-pulse fluctuation (PPF), paired-pulse depression (PPD),
and spike-timing-dependent plasticity (STDP) [6–8]. Espe-
cially, LTP/LTD is vital for face classification, digital recogni-
tion, and other artificial intelligence applications based on
synaptic weight modification [9–11]. Originating from im-
mediate post-synaptic current response, STP is widely used

for information filtering and instantaneous signal transmis-
sion [12].
A variety of material systems were studied for artificial

synapses with bio-synaptic plasticity, including HfO2,
ZnO, WOx, TaOx, InGaZnO, organic polymers, and 2D
transition-metal dichalcogenides (TMDCs) [13–19].
Among them, Hf0.5Zr0.5O2 (HZO) is one of the novel
high-K materials and compatible with the process of
complementary metal oxide semiconductor (CMOS)
[20]. Although HZO-based artifical synapstic devices
have been reported, the high-temperature preparation
process is hard to aviod [21–23].
On the other hand, flexible artificial synaptic devices

were widely studied to satisfy the rising need for wear-
able artificial intelligence applications [24, 25]. However,
the high-temperature preparation process is an impedi-
ment to the application of a flexible substrate. Although
a transfer process was proposed to solve the problem,
the high failure rate and wrinkle defects caused by trans-
fer hinder the large-scale use of this method [26, 27]. It
is worth noting that low-temperature processing has no
damage to flexible substrates, which is an effective way
of developing large-scale wearable synaptic arrays.
In this work, a low-temperature ALD technique for

HZO-based memristor (PET/ITO/HZO/Ag) was
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developed. Gradual conductance switching process was
demonstrated in this memristor. Based on gradual resist-
ance switching characteristics, typical synaptic plasticity
was emulated, including LTP/LTD, STP, PPF, and forgetting
curves. With the function of biological synapses, the flexible
HZO-based memristor is attractive for future applications
in a neuromorphic computing system.

Methods
The flexible synaptic device was prepared on ITO-coated
polyethylene terephthalate (PET) substrate, which was
cleaned in acetone, isopropanol, and deionized water and

dried by N2 flow. A 10-nm-thick HZO film was deposited
on PET/ITO substrate by ALD with the carrier gas of N2.
The precursors were tetrakis (ethylmethylamino) hafnium
(TEMAH), tetrakis (ethylmethylamino) zirconium
(TEMAZ), and H2O, and the growth temperature of the
ALD chamber was maintained at 130 °C. Then, a 50-nm
Ag top electrode (TE) layer with an area of 100 × 100 μm2

was deposited by physical vapor deposition (PVD) followed
by photolithography and lift-off process. The structure of
PET/ITO/ HZO/Ag was shown in Fig. 1. The top electrode
of Ag and bottom electrode of ITO are corresponding to
pre- and post-synaptic neuron in biological synapse.

Fig. 1 Schematic illustration of biological synapse between neurons and artificial electrical synapses. A bio-synapse was composed of pre-synaptic
neuron, synaptic cleft, and post-synaptic neuron. The HZO-based flexible electrical synapse was fabricated with the structure of ITO/HZO/Ag on the
plastic substrate at low temperature

Fig. 2 a Resistive switching characteristics of HZO-based device measured by DC sweep. b Distribution of the set and reset voltages extracted
from DC sweep cycles in flexible device. c Statistical data of HRS and LRS, where resistance were measured at a read voltage of 0.1 V
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The electrical characteristics were performed using a
semiconductor parameter analyzer (Agilent B1500A) in
the atmospheric environment at room temperature. The
bottom electrode was grounded while the programming
bias was applied to the top electrode.

Results and Discussion
Figure 2a shows the typical bipolar resistive switching
curve of the memristor with the current compliance
of 500 uA. The sweeping voltage was applied in a se-
quence of 0→ 2 V→ 0 V for the set process, and the
resistance turned from high-resistance state (HRS) to
low-resistance state (LRS). In contrast, a negative
voltage was applied from 0 V to − 2 V and returned to
0 V for the reset process. The gradual switching char-
acteristic in positive and negative bias sweeps indi-
cates the potential of HZO-based memristor
emulating synaptic behaviors. The cumulative prob-
ability of operating voltages in the set and reset
process during consecutive sweep cycles are shown in

Fig. 2. The means (μ) of the set voltage and reset
voltage are 0. 99 V and − 1. 33 V, respectively, which
showed the average level of operating voltage. The
standard deviation (σ) of the operating voltage (0.245
for set process and 0.566 for reset process) indicated
the degree of deviation from the center. The relative
fluctuation of data could be described as a coefficient
of variance (σ/μ). Superior uniformity was obtained in
the set process while the variation of HRS resistance
and reset voltage are remarkable, which could attri-
bute to the formation and rupture process of con-
ductive filament (CF) of Ag atoms. During the
process of set operation, the size or number of CFs
would increase. The current level of device is almost
linearly proportional to the increment of CFs. During
the reset process, the CFs would break and decrease.
While the current level of device is exponentially
dependent on the breaking length of CFs [28]. A
small change of CFs during the reset process could
result to obvious changes of resistance and reset

Fig. 3 a Gradual conductance modulation for LTP and LTD in the artificial flexible synapse, where the post-synaptic current was obtained at a
read voltage of 0.1 V. b Forgetting behaviors after 100 consecutive programing pulses (1 V, 50 ms) and fitted curves of the electrical synapse

Fig. 4 a–c The schematic diagrams of forming Ag cations conductive path under consecutive positive pulses in LTP. d–f Rupture of the conductive
filament after consecutive negative pulses in LTD
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voltage. The ON/OFF ratio of μ in HZO-based device
was larger than 300, as shown in Fig. 2c.
Besides gradually resistance switching behaviors in

DC sweep, the device with modulated conductance
could be programed by a sequence of consecutive
pulses. As shown in Fig. 3a, the conductance could be
modulated gradually to emulate LTP and LTD with 400
consecutive programing pulses, indicating the potential
of the synaptic device for neuromorphic computing.
With 200 consecutive positive pulses (0 .8V, 20 ms) and
200 negative pulses (− 0 .5V, 20 ms), the conductance of
synaptic device potentiated and depressed gradually.
The conductance state was obtained under a read volt-
age of 0.1 V after each consecutive pulse. Forgetting is
one of the common phenomena in human brains,
which could be simulated by the relaxation of
post-synaptic current in electrical synapses. After a
series of pulses, the post-synaptic current (PSC)
decayed and turned to an intermediate state over time,
as shown in Fig. 3b. The forgetting curve could be fit-
ted with the Kohlrausch equation that was frequently
used in psychology:

I tð Þ ¼ I0 þ A exp −t=τð Þ ð1Þ

where I(t) is the PSC at the time of t, I0 is the stabilized
current, A is a prefactor, and τ is a relaxation time con-
stant. In the artificial synaptic device, the constant τ was
57 s which was used to evaluate the forgetting
characteristics.
To better understand the work mechanism of the

HZO-based synaptic device, the conductive filaments
(CF) in different states were shown in Fig. 4. The forma-
tion and rupture of the CFs were due to the migration
of Ag atoms and mobile Ag+. When the positive pro-
graming stimulus was applied to the top electrode,
atoms of top electrode were oxided to Ag+, which were
accumulated in the bottom electrode and reduced to Ag
atoms. In Fig. 4a–c, the thickness and diameter of CF
increased slightly from state I to state III, which induced
the conductance increase [29]. In contrast, the bridge of
Ag atoms ruptured with a weak effect on the conduct-
ance after applying a series of negative spikes in memris-
tor, as shown in Fig. 4d–f. Typical LTP and LTD
behaviors in this HZO-based artificial synaptic device

Fig. 5 a Typical PPF behavior induced by a pair of pre-synaptic spikes (2 V, 10 ms). b The PPD phenomenon of the artificial flexible synapse under
inhibited spikes (− 1 .5V, 10 ms)

Fig. 6 a The retention characteristics of electrical synapse under positive programing pulse, indicating the long-term potential behaviors. b In
LTD process, the post-synaptic current could be inhibited under a single negative pulse (− 0 .5V, 20 ms) and the conductance state could stay
stable for over 1000 s
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were organized from the CF gradual formation and rup-
ture, respectively.
Short-term synaptic plasticity is crucial to both excitatory

and inhibitory bio-synapses, which is considered to play im-
portant roles in treatment of temporal information [30, 31].
The PPF and PPD behaviors are typical short-term
phenomenon organized from two consecutive synaptic
spikes with a short interval. Such plasticity was also suc-
cessfully mimicked in our flexible HZO-based synaptic de-
vice. The PPF function was short-term enhancement of
synaptic weights trigged by a pair of spikes (2 V, 10ms) with
an interval of 60ms, as shown in Fig. 5a. In contrast, the
response current of second spike is smaller than that of
previous spike, which is described as PPD and simulated by
two negative pulses (− 1 .5V, 10ms) with an interval of 60
ms.
To demonstrate the reliability of long-term plasticity

in our synaptic device, retention characteristics were
measured for over 1000 s. As shown in Fig. 6, the PSC in
excitatory and inhibitory states were read at a bias of 0.1
V after a single pre-synaptic spike. The long-term reten-
tion behavior of our HZO-based device shows the po-
tential of storage, and the consecutive modulated
conductance paves the way for memory function, which
could be integrated into a system.

Conclusions
In summary, a flexible HZO-based artificial synaptic de-
vice was proposed based on low-temperature ALD. Typ-
ical bipolar resistive switching characteristics were
demonstrated in this flexible memristor. By applying
consecutive pulses in the top electrode, long-term plasti-
city and short-term plasticity were simulated by the elec-
trical synapse, including LTP, LTD, PPF, PPD, and
forgetting behaviors. Gradually modulated conductance
could be attributed to controllable Ag ions conductive
filament path. The flexible electrical synapse becomes
one of the promising candidates for hardware imple-
mentation of neuromorphic circuits.
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