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Abstract

It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at
normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will
numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole
visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is
composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2

spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag
substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of
monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are
tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption
enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled
by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. Our designed graphene
light absorber may find some potential applications in optoelectronic devices, such as photodetectors.
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Background
Graphene, a monolayer of carbon atoms tightly arranged
in two-dimensional (2D) honeycomb lattice, was first
separated from graphite experimentally in 2004 [1].
Since then, graphene has attracted enormous attentions
in the scientific community, partly owing to its excep-
tional electronic and optical properties, including fast
carrier velocity, tunable conductivity, and high optical
transparency [2]. As one kind of 2D emerging materials,
graphene has promising potentials in a wide variety of
fields ranging from optoelectronics [3–6] to plasmonics
[7–10], to metamaterials [11–15], etc. Due to its unique

conical band structure of Dirac fermions, the suspended
and undoped graphene exhibits a universal absorption of
approximately 2.3% within the visible and near-infrared
regions, which is related to the fine structure constant in
a monolayer atomic sheet [16, 17]. The optical absorp-
tion efficiency is impressive, considering that graphene is
only about 0.34 nm thick. However, it is still too low to
be useful for optoelectronic devices such as photodetec-
tors and solar cells, which need considerably higher ab-
sorption values for efficient operation.
To overcome this problem, various physical mecha-

nisms [18–43] to enhance absorption of graphene in the
visible region have been proposed, which include strong
photon localization on the defect layer in one-dimensional
(1D) photonic crystals [18, 28, 33, 38], total internal reflec-
tion [19, 20, 23, 27], surface plasmon resonances [21, 22,
30, 31, 33], evanescent diffraction orders of the arrays of
metal nanoparticles [34], and critical coupling to guided
mode resonances [25, 26, 32, 34, 35, 37, 39–41]. Besides
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the absorption enhancement in graphene, achieving multi-
band and broadband light absorption in graphene is also
important for some graphene-based optoelectronic de-
vices from a practical point of view. But, it is still a chal-
lenge, as pointed out in the very recent reports [44–46].
At present, different approaches have been proposed to
broaden the bandwidth of graphene absorption in wide
frequency range from THz [44–62] and infrared [63–65]
to optical frequencies [19, 23, 29, 31, 34–36, 38–40, 43].
Especially, a multi-resonator approach was proven to be a
very effective method to resolve the bandwidth limitation
of graphene absorption in the THz and infrared regions
[45, 46, 62, 63]. In the multi-resonator approach, deep-
subwavelength multiple resonators with different sizes are
closely packed, which could extend the absorption band-
width when their resonance frequencies overlap with each
other. However, to the best of our knowledge, up to now
there are only a few reports on such a multi-resonator ap-
proach to obtain multiband and broadband light absorp-
tion of graphene in the visible region.
In this work, by employing similar multi-resonator ap-

proach, we will numerically demonstrate multiband and
broadband absorption enhancement of monolayer gra-
phene in the whole visible wavelength range, which arise
from a set of magnetic dipole resonances in metamateri-
als. The unit cell of metamaterials consists of a graphene
monolayer sandwiched between four Ag nanodisks with
different diameters and a SiO2 spacer on an Ag sub-
strate. The near-field plasmon hybridizations between
individual Ag nanodisks and the Ag substrate form four
independent magnetic dipole modes, which result into
four-band absorption enhancement of monolayer gra-
phene. When the magnetic dipole modes are tuned to
be overlapped spectrally by changing the diameters of
Ag nanodisks, a broadband absorption enhancement is
achieved. The position of the absorption band in mono-
layer graphene can be also controlled by varying the
thickness of the SiO2 spacer or the distance between the
Ag nanodisks.

Methods/Experimental
The designed metamaterials for multiband and broad-
band absorption enhancement of graphene at optical fre-
quencies are schematically shown in Fig. 1. The unit cell
of the metamaterials consists of a graphene monolayer
sandwiched between four Ag nanodisks with different
diameters and a SiO2 spacer on an Ag substrate. We cal-
culate the reflection and absorption spectra, and the dis-
tributions of electromagnetic fields by the commercial
software package “EastFDTD, version 5.0,” which is
based on finite difference time domain (FDTD) method
(www.eastfdtd.com). In our numerical calculations, the
refractive index of SiO2 is 1.45, and the frequency-
dependent relative permittivity of Ag is taken from

experimental data [66]. Under the random-phase approxi-
mation, the complex surface conductivity σ of graphene is
the sum of the intraband term σintra and the interband
term σinter [67, 68], which are expressed as follows:

σ intra ¼ ie2kBT
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where ω is the frequency of incident light, e is electron
charge, ħ is reduced Planck constant, Ef is Fermi energy (or
chemical potential), τ is the relaxation time of electron-
phonon, kB is Boltzmann constant, T is temperature in K,
and i is the imaginary unit. Graphene has an anisotropic
relative permittivity tensor of εg expressed as
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where ε0 is the permittivity of the vacuum, and tg is the
thickness of graphene sheet.

Results and Discussion
Figure 2 shows the calculated absorption spectra of gra-
phene, Ag, and total metamaterials at normal incidence.

Fig. 1 Schematic of metamaterials for multiband and broadband
absorption enhancement of graphene at optical frequencies, which
are composed of a graphene monolayer sandwiched between four
Ag nanodisks and a SiO2 spacer on an Ag substrate. Geometrical
parameters px and py are the array periods along the x and y
directions, respectively; t is the thickness of the SiO2 spacer; d1, d2,
d3, and d4 are the diameters of four Ag nanodisks (d1 > d2 > d3 > d4);
h is the height of the Ag nanodisks. Ein, Hin, and Kin are the electric
field, magnetic field, and wave vector of the incident light, which
are along the x, y, and z axes, respectively
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One can clearly see four absorption peaks, whose
resonance wavelengths are λ1 = 722.9 nm, λ2 = 655.7 nm,
λ3 = 545.5 nm, and λ4 = 468.8 nm. At four absorption
peaks, the light absorption in graphene can reach as high
as 65.7, 61.2, 68.4, and 64.5%, respectively. Compared with
a suspended monolayer graphene whose absorption effi-
ciency is only 2.3% at optical frequencies [16, 17], the
monolayer graphene in our designed metamaterials has an

absorption enhancement of more than 26 times. It is also
clearly seen in Fig. 2 that the absorbed light is mainly dis-
sipated in graphene rather than in Ag. Moreover, the total
absorption at the third peak exceeds 98.5%, very similar to
much reported metamaterial electromagnetic wave perfect
absorbers [69–75], which have many potential applica-
tions such as solar cells [76–81].
To find the physical origins of above four absorption

peaks, Figs. 3 and 4 plot the distributions of electric and
magnetic fields at the resonance wavelengths of λ1, λ2,
λ3, and λ4. At the resonance wavelength of λ1, the elec-
tric fields are mainly concentrated near the left and right
edges of the first Ag nanodisk with a diameter of d1 (see
Fig. 3a), and the magnetic fields are highly confined
within the SiO2 region under the first Ag nanodisk (see
Fig. 4a). Such field distributions correspond to the exci-
tation of a magnetic dipole mode [82–86], which steps
from the near-field plasmon hybridization between the
first Ag nanodisk and the Ag substrate. At the resonance
wavelengths of λ2, λ3, and λ4, the electromagnetic fields
have the same distribution properties, but are localized
in the vicinity of the second, third, and fourth Ag nano-
disks with diameters of d2, d3, and d4, respectively. In
short, the excitations of four independent magnetic di-
pole modes lead to the appearance of four absorption
peaks in Fig. 2.

Fig. 2 Normal-incidence absorption spectra of monolayer graphene
(red circle), Ag (green triangle), and total metamaterials (black
square) in the wavelength range from 450 to 800 nm. Geometrical
and physical parameters: px = py = 400 nm, d1 = 140 nm, d2 = 110 nm,
d3 = 80 nm, d4 = 50 nm, h = 50 nm, t = 30 nm, Ef = 0.50 eV, τ =
0.50 ps, T = 300 K, tg = 0.35 nm

Fig. 3 (a)-(d) Corresponding normalized electric field intensity (E/Ein) on the xoz plane across the center of the SiO spacer for the resonance
wavelengths of λ , λ , λ , and λ labeled in Fig. 2. Red arrows represent the field direction, and colors show the field strength

Liu et al. Nanoscale Research Letters  (2018) 13:153 Page 3 of 7



In our designed metamaterials, the near-field plas-
mon hybridizations between individual Ag nanodisks
and the Ag substrate form four independent magnetic
dipole modes, which result into multiband absorption
enhancement of monolayer graphene in the visible
wavelength range from 450 to 800 nm, with an aver-
age absorption efficiency exceeding 50% (please see
Fig. 2). The resonance wavelength of each magnetic
dipole mode can be conveniently tuned by changing
the diameter of the corresponding Ag nanodisk. If the
diameters of the Ag nanodisks are varied for the ab-
sorption peaks in Fig. 2 to approach one another, a
broad high-absorption band of monolayer graphene
will be formed. To demonstrate this, Fig. 5a presents
the normal-incidence absorption spectra of monolayer
graphene, when the diameters d1, d2, d3, and d4 of
four Ag nanodisks are equal to 110, 90, 70, and
50 nm, respectively. In this case, a broadband absorp-
tion enhancement in the wavelength range from 450
to 650 nm is achieved by the spectral design on the
overlapped absorption peaks, with the lowest (highest)
absorption efficiency more than 50% (73%). For the
diameters of the Ag nanodisks to be increased grad-
ually, this broad high-absorption band is red-shifted,
as shown in Fig. 5b, c.

Besides the diameters of the Ag nanodisks, we can tune
the position of the absorption band in monolayer graphene
by changing the thickness t of the SiO2 spacer. Figure 6
shows the normal-incidence absorption spectra in mono-
layer graphene, for t to be increased from 25 to 45 nm.
With the increasing t, the absorption band in monolayer

Fig. 4 The same as in Fig. 3, but for normalized magnetic field intensity (H/Hin)
2

Fig. 5 (a)-(d) Corresponding normal-incidence absorption spectra of
monolayer graphene in the wavelength range from 450 to 800 nm
with the diameters of four Ag nanodisks are varied, but the other
parameters are the same as those in Fig. 2
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graphene will have an obvious blue-shift, because the near-
field plasmon hybridizations between individual Ag nano-
disks and the Ag substrate become weaker and thus mag-
netic dipole modes are blue-shifted [83].
In the above calculations, the coordinate points of four

Ag nanodisks are (±px /4, ±py /4), so the center distance
l between the nearest-neighbor Ag nanodisks is 200 nm.
By varying l, we can also tune the position of the absorp-
tion band in monolayer graphene. Figure 7 gives the
normal-incidence absorption spectra in monolayer gra-
phene, for l to be decreased from 220 to 160 nm. With
the decreasing l, the absorption band in monolayer gra-
phene is slightly blue-shifted, owing to the plasmon in-
teractions among the Ag nanodisks.

Conclusions
In this work, we have numerically investigated multi-
band and broadband absorption enhancement of mono-
layer graphene at optical frequencies from multiple
magnetic dipole resonances in metamaterials. The unit
cell of the metamaterials consists of a graphene mono-
layer sandwiched between four Ag nanodisks with differ-
ent diameters and a SiO2 spacer on an Ag substrate. The
near-field plasmon hybridizations between individual Ag
nanodisks and the Ag substrate form four independent
magnetic dipole modes, which result into multiband ab-
sorption enhancement of monolayer graphene in the vis-
ible wavelength range. When the magnetic dipole modes
are tuned to be overlapped spectrally by changing the di-
ameters of Ag nanodisks, a broadband absorption en-
hancement is achieved. The position of the absorption
band in monolayer graphene can be also controlled, by
varying the thickness of the SiO2 spacer or the distance
between the Ag nanodisks. The numerical results may
have some potential applications in optoelectronic de-
vices, such as photodetectors.
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