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Abstract

Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received
tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures
have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot
solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in
enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving
the solar cells structure, and engineering light trapping techniques.

Review
Introduction
The world energy and environmental crisis urgently calls
for development of renewable energies. Among various
renewable energy sources, solar energy is abundant and
clean. Although solar energy has been an ideal renew-
able energy, the harvesting of the free and abundant
sunshine can be quite costly, which limits the wide de-
ployment of solar power. The next generation of solar
cells with high efficiency over 50 % is in urgent need to
achieve affordable rates below 0.10 €/kWh (0.14 $/kWh)
[1]. In the last 10 years, a lot of efforts have been de-
voted to low-dimensional structures as building blocks
for next generation solar cells [2–7]. Among these nano-
structures, the zero-dimensional nature of quantum dots
(QDs) with discrete energy levels makes an ideal candidate
for intermediate band-based solar cells with a theoretical
efficiency of 63 % [8]. Since Luque and Martí proposed
the concept of intermediate band solar cell (IBSC), QD
solar cells (QDSCs) have attracted great attention and
substantial progress has been made in this field [9–14].
Compared with conventional single junction solar cells,

an IBSC allows two sub-bandgap photons to create an

electron-hole pair via a mid-gap intermediate band. The
intermediate energy band introduces additional photon ab-
sorption, which in turn contributes to higher photocurrent
[8]. The improved utilization of the solar spectrum via
intermediate band-assisted transitions to absorb otherwise
wasted low-energy photons can largely improve photocur-
rent and potentially exceed the Shockley–Queisser limit
[15–17]. Although the early work has provided solid un-
derstanding of the operational principles of IBSCs [18–24],
the experimental studies of QD-IBSCs have not achieved
any notable improvement in their overall conversion effi-
ciency. QDSCs have often shown improved short-circuit
currents compared with the bulk single junction solar cell
without QDs, but the overall contribution to efficiency en-
hancement from the QDs is marginal. Therefore, research
efforts in the last 10 years have been mainly focused on
improving the photocurrent generation.
In this paper, we review the recent progress made in

QDSCs with main focus on the recent effects involving
photocurrent enhancement, which has been the major
limited to realize high-efficiency QDSCs. A variety of
methods used to enhance the optical absorption and
photocarrier collection have been reviewed. Finally, this
review summarizes the progress of QDSCs with enhanced
photocurrent. More comprehensive discussion can also be
found in Ref. [14, 25].
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Principles of Quantum Dot Solar Cells
As schematically shown in Fig. 1a, apart from the con-
duction band and valence band, the IBSC has an inter-
mediate band in between these two bands for additional
absorption of low-energy photons. Electron-hole pairs
can be produced by photon absorption via the primary
bandgap (VB-CB) as in a conventional single junction
solar cell. Additionally, electron-hole pairs can also be
generated by optical transitions from valence band to
the intermediate band (VB-IB) and then from the inter-
mediate band to the conduction band (IB-CB). The
quasi-Fermi level splitting and two-photon absorption
preserve the open-circuit voltage as well as generate
substantially higher photocurrent. As a result, a very
high power conversion efficiency of 63 % is calculated
from the ideal IBSC under maximum concentration [8].
QDSCs share same device structures with the

quantum well solar cells (QWSCs), which incorporate
low-dimensional nanomaterials made from narrow band-
gap semiconductors and hence boost the device efficiency
by capturing low-energy photons below the primary band-
gap. Compared with QWSCs, QDs, instead of QWs, are
used at a solar cell junction. The atom-like density of
states in QDs not only enables additional photocurrent
generation via the discrete energy levels but also preserves
the open-circuit voltage [15]. The carrier confinement in
all three-dimensions in QDs can enable isolated quasi-
Fermi levels which are required to realize of IBSCs [4, 8].
As a result, much higher conversion efficiency is expected
from QDSCs compared with QWSCs. Therefore, the
unique properties of QDs and the attractive concept of
IBSCs have led to intensive research efforts on QD-IBSCs.
The research of QD-IBSCs is also largely benefited from
the well-established fabrication methods of high-quality
QDs in the last couple of decades. Most of the QDSCs
adopt a device structure with self-assembled QDs imbed-
ded between the emitter and base of a bulk single junction
solar cell, as shown in Fig. 1b. In(Ga)As/GaAs QD system
is most used because of its mature fabrication techniques
and well-understood optical properties. On the other
hand, the transition energies in In(Ga)As/GaAs QDs are

quite different from the optimal values for the ideal IBSC,
and high-efficiency QDSCs have not been realized yet,
although a high theoretical efficiency of 52.8 % is still
predicted [26]. Nonetheless, In(Ga)As/GaAs QDSCs have
successfully demonstrated the basic operating principles
of the IBSCs [25], including splitting of quasi-Fermi levels
[2] and QD-mediated two-photon absorption [11, 27].
Therefore, in the last few years, many of the research ef-
forts of QDSCs have been focused on realizing practical
QD-IBSCs with high efficiency. In order to achieve this
goal, the major challenges associated with QDSCs are yet
to be addressed, including recombination in the QDs
(radiative and non-radiative), marginal photocurrent col-
lected from the QDs, and degradation of open-circuit
voltage [17]. The radiative recombination via the QD
intermediate band can be largely suppressed under con-
centrated light when CB-VB recombination dominates.
However, additional non-radiative recombination paths
are presented in the QDSCs due to accumulated strain in
S-K QDs [28]. To tackle this issue, improvement in QD
fabrication and development of new growth techniques
have been explored [29–32]. In addition to the strain-
induced defects that largely limit the QD absorption
volume, the sub-bandgap absorption in QDSCs is rather
low and only contributes to ~1 % of the overall efficiency
[17]. Moreover, the slightly improved photocurrent has
been largely undermined by the voltage loss as a result of
thermal coupling of the QD states and the continuum
states [10, 30, 33]. Therefore, the major research activities
have been focused on addressing these challenges facing
QD-IBSCs. The following sections will review the recent
efforts to achieve practical high-efficiency QDSCs through
improving photocurrent.

Recent Efforts to Improve Photocurrent of QDSCs
Although the addition of QDs in a single junction solar
cell normally shows additional photocurrent, improve-
ment in short-circuit current is well below the expectation
for high-efficiency solar cells. The marginal improvement
in the device efficiency with QDs is largely attributed to
the non-radiative recombination, low QD absorption

Fig. 1 Schematics of (a) the band diagram of an IBSC and (b) device structure of QD-IBSCs

Zheng et al. Nanoscale Research Letters  (2016) 11:266 Page 2 of 8



volume, and low optical transition rate [34]. In order to ob-
tain high photocurrent, both the QD material quality and
device structure have to be optimized. Moreover, photonic
structures can also be used to boost the light absorption in
the QDSCs. Here, these efforts are summarized.

Optimization of QDs
A straightforward way to improve short-circuit current
is to increase the absorption volume of QDs. Multiple
stacked In0.4Ga0.6As/In0.2Ga0.8As (In0.4Ga0.6As) QDSCs
with 50 (30) layers of QDs have shown distinct improve-
ment in short-circuit current density [35, 36]. Using simi-
lar method, highly stacked In0.4Ga0.6As QDs up to 400
layers were also reported. Although improvement in
short-circuit current has also been observed from QDSCs
with up to 150 layers of QDs, significant degradation in
open-circuit voltage results in degradation of the overall
device efficiency [12, 35], as shown in Fig. 2.
The difficulty to increase the absorption volume QDs,

e.g., the number of QD layers, is that the accumulated
strain generates various types of defects and largely under-
mines the improvement of photon absorption [22, 37]. To
minimize the number of strain-induced defects that are
deleterious to both optical and electronic properties, strain-
compensation layers are deposited for multiple stacked
QDSCs [38]. By using GaP strain compensation layers,

InAs QDs with good structural and optical properties up to
50 layers have been reported [39]. The improved material
quality has also led to increase in short-circuit current and
reduced dark current [40]. Additionally, the reduced strain-
induced defects also decrease non-radiative recombination,
and then, high open-circuit voltage can be obtained [10].
Bailey et al. reported 0.5 % enhancement in absolute effi-
ciency from a 40-layer QDSC with reduced InAs coverage
and GaP strain compensation layers compared with the
GaAs reference cell [30].
A number of different materials have also been ex-

plored to improve QD quality. Highly stacked QDs up
to 100 layers are also achieved by using dilute nitride
GaAsN strain compensation layers [41, 42]. The effect-
ively compensated strain results in a distinct improve-
ment in short-circuit current as high as 2.47 mA/cm2

[41]. Strain-balanced In0.47Ga0.53As/GaAs1 − xPx QDs
have also been reported with improved quality as well
as uniformity on GaAs (311) substrates [29]. Further-
more, strain-compensated InAs/GaNAs QDs with
additional strain-mediating GaInNAs layers can not
only shift the absorption to long wavelength but also
increase the surface density of QDs [43]. Strain reducing
layers is also beneficial for realizing high-performance
QDSCs. It has also been reported that an addition of
Ga0.90In0.10As strain-reducing layers in an InAs/GaAs

Fig. 2 a SEM micrographs of the surface plane on top of 400-stack In0.4Ga0.6As QD structures. The ultra-high stacked structures have good surface
morphologies even after the stacking of 300 or 400 QD layers. b Enlarged cross-sectional STEM images of bottom portions of 300-stack In0.4Ga0.6As QD
layers. No dislocations were generated after the stacking of 300 layers, even though no strain balancing was employed during the growth. c EQE
spectra of multi-stacked In0.4Ga0.6As QD solar cells and a GaAs reference cell. The EQEs of the 10-, 20-, 30-, 50-, 100- and 150-stack In0.4Ga0.6As QD solar
cells are indicated. Reproduced from Ref. [12] with permission from The Royal Society of Chemistry

Zheng et al. Nanoscale Research Letters  (2016) 11:266 Page 3 of 8



QDSC results in a 1.19 % improvement of the conver-
sion efficiency of a GaInP/Ga(In)As/Ge triple junction
solar cell due to reduced Shockley–Read–Hall recom-
bination centers [44].
Another effective way to increase the absorption vol-

ume is to increase the surface density of QDs. In Fig. 3,
a QDSC with a high sheet density of 7.0 × 1010 cm−2 was
obtained via optimization of growth temperature and V/
III flux [45]. Despite the high QD density, the formation
of defective QDs, e.g., In segregation, resulted in poor
short-circuit current [45, 46]. Sb-mediated growth was
capable of achieving high QD density over 1 × 1011 cm−2

with a low density of defective QDs, which thus led to a
distinct enhancement in short-circuit current [47]. Apart

from the Stranski–Krastanov (S-K) QDs, high-density
QDs can also be obtained by using another growth
mode. Submonolayer (SML) QDs have been reported to
have high areal density (~1011 cm−2), adjustable aspect
ratio, uniform size distribution of QDs, and absence of
wetting layer [48, 49]. By using InGaAs/GaAs SML QDs,
the solar cell has shown improved performance compared
with an InGaAs/GaAs quantum well solar cell of the same
structure [48]. Similar to S-K QDs, SML QDs can also
significantly contribute to photocurrent enhancement.
Kim et al. recently demonstrated an improved short-
circuit current of the InAs/GaAsSb SML QDSC compared
with the reference GaAs solar cell [50]. Also, an InGaAs/
GaAs SML QDSC is also demonstrated with better short-

Fig. 3 2 × 2 μm2 top view AFM images of 2.0 ML InAs QDs with V/III ratios of (a) 35, (b) 72, and (c) 110; 2.8 ML InAs QDs with V/III ratios of (d) 8,
(e) 35, and (f) 72. Reprinted from Ref. [45] with the permission of AIP Publishing
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circuit current than the reference S-K QDSC [49]. It
should be noted that SML QDs show a higher compres-
sive strain and thus more non-radiative recombination
centers than S-K QDs [49]. Nonetheless, the high areal
density of QDs can compensate the non-radiative recom-
bination centers generated. In combination with strain
compensation technique, further improvement in short-
circuit current can be expected.
Apart from the strained S-K QDs and SML QDs,

quantum structures grown by different modes can be
used as promising alternatives for improving photocur-
rent. Quantum well dots (QWD), two-dimensional layers
with lateral modulation of thickness and composition,
have unity surface coverage, which facilitates higher ab-
sorption as compared with S-K QDs and demonstrates
significantly improve sub-bandgap photocurrent [51].
Strain-free quantum structures fabricated by droplet epi-
taxy have also show promise in boosting photon absorp-
tion [52–55]. Based on these strain-free nanostructures
grown by droplet epitaxy, additional photocurrent was
clearly demonstrated [56–59]. Although further efforts
to improve material quality are needed, the two-photon
absorption observed in strain-free QDSCs opens new
opportunities for QD-based high-efficiency intermediate
band solar cells [59, 60].

Optimization of Device Structures
In addition to increase absorption with more QDs, en-
gineering the QD structures also plays a critical role in
boosting the photocurrent. For example, through simple
truncation of the dot height, an increase in both short-
circuit current density and open-circuit voltage has been
observed as a result of improved photocarrier extraction
and reduced carrier recapture probability by the QDs
[61]. To boost photon absorption, Wei et al. proposed a
quantum-dot-in-a-fence (DFENCE) structure which

consists of InAs QDs enclosed by thin AlxGa1 − xAs
“fence” layers of larger energy bandgap [62], as shown in
Fig. 4a. The fences facilitate sub-bandgap photocarrier
generation rather than recombination in the QDs, and
hence, a very high solar power conversion efficiency of
45 % can be expected for InAs QDSCs with AlxGa1 − xAs
“fence” layers under AM1.5 conditions. Experimentally,
such structures have not shown any clear improvement
in device performance yet, but the thermal extraction of
carriers was suppressed due to improved quantum con-
finement [63].
Engineering the QDs locally to change the carrier dy-

namics can also lead to a higher short-circuit current. A
simple but effective way to achieve this goal is doping in
the QD region, which has been reported to reduce non-
radiative recombination via defect passivation [64] and
to improve the photocarrier collection by build-in field
[65]. The doping in the QD region forms charged QDs
that also reduce the probability of electron capture. Al-
though state filling can also decrease interband quantum
dot absorption [66], the charged QDs enhance the col-
lection of photocarriers generated above bandgap and
lead to overall improvement in photocurrent [67, 68]. It
has also been shown that the positioning of the QD
layers can also largely affect the performance of QDSCs
[69], which also reflects the effects of doping [70].
Substantial efforts have also been made to type II QDs

to improve short-circuit current [20, 71–75]. QDSCs can
benefit from largely enhanced absorption coefficient,
particularly for transitions from extended states to
bound states, by using type II QDs rather than type I
QDs [76], as depicted in Fig. 4b. Yet, it is still needed to
find new material system with even high absorption co-
efficient to compete with the higher bound-to-bound
state absorption coefficient in type I QDs. Another at-
tractive feature of the type II QDSCs is the extremely

Fig. 4 a Structure of the quantum dots in a fence barrier (DEFENCE) solar cell. Reprinted with permission from Ref. [62] Copyright (2007) American
Chemical Society. b Time evolution of carrier lifetime for the two samples with type II band structures. Excitation intensity is 38 mW/cm2. Reprinted
from Ref. [77] with the permission of AIP Publishing
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long radiative lifetime over 200 ns [77]. Such a long carrier
radiative lifetime facilitates the photocarrier collection as
long as non-radiative recombination centers are suppressed
with the presence of additional strain [78]. Moreover, the
reduced Auger recombination rate in type II structure can
also benefit the QDSC performance [72].

Light Trapping
A very interesting and promising method to improve
photocurrent of QDSCs is light trapping. To full fill the
promise of QDSCs, the QD density needs to be signifi-
cantly improved (>1000). Such a requirement poses a
significant challenge for material growth. If the optical
path can be improved, high density of QDs is not neces-
sarily required [24]. For example, given a QD density
achievable by existing growth techniques, an optical ab-
sorption enhancement over 50 can potentially realize
high-efficiency QDSCs beyond the Shockley–Queisser
limit [24].
Plasmonic structures can be an effective way to enhance

the optical absorption in QDSCs. It has been shown
that it is possible to obtain an absorption enhancement
factor up to ~300 by using the strong scattered near-
field potential from metal nanoparticles [79]. Although
metallic nanoparticles cannot be placed in close proximity
to QDs without undermining the material quality, sur-
face nanoparticles can be used as good light scatter to
improve optical path in QDSCs [80]. The effective forward
scattering of metal nanoparticles deposited on QDSC sur-
face has shown distinct improvement in short-circuit
current [81]. Using similar technique but with novel metal
nanoparticles, e.g., nanostars, a broadband enhancement
in photon absorption has been observed in QDSCs [82],
as illustrated in Fig. 5. Especially, external quantum effi-
ciency in short-wavelength region has been improved by
fourfold. The enhancement is originated from both the
near-field enhancement and effective light scattering. It

also demonstrates that appropriate control of shape, size,
and density of the metallic nanoparticles plays a critical
role in achieving panchromatic photon absorption. How-
ever, the surface plasmonic structures do not show clear
improvement in absorption in the QD region. By inserting
a TiO2 between the QDSC and metal nanoparticles, the
plasmon resonance wavelength was red-shifted to the
QD wavelength region [83]. As a result, a pronounced
improvement in long-wavelength photon absorption
has been achieved in the QDSCs with TiO2/Ag back
reflector and leaded to 5.3 % enhancement in short-
circuit current. Back reflector has also been developed
by growing a brag reflector beneath the QDSC. A brag
reflector centered at 920 nm leads to about ~2 % increase
in short-circuit current due to enhanced absorption in the
long-wavelength region [84]. As a result, a maximum effi-
ciency of 24.93 % (AM 1.5D, 30 suns) has been obtained
from the QDSCs with brag reflector, which is nearly as
high as the efficient GaAs reference cell (25.75 % at
AM 1.5D, 10 suns). Interestingly, an epitaxial lift-off
QDSC thin film can act as a resonance cavity by itself
[85]. In addition to the enhancement of photon absorp-
tion in the QDSC film, there is no need for additional
processing steps to create photonic structures, which is
desired in terms of reducing cost. Further development
and optimization of photonic structures will enable
substantial improvement of solar energy harvesting by
using QDs.

Conclusions
In the present paper, we have briefly reviewed the efforts
to improve the photocurrent in QDSCs. A number of
different methods have so far been examined to improve
the optical absorption as well as photocarrier collection
in QDSCs. Although each of these methods shows
promise in boosting the cell performance in terms of
photocurrent, there is still a lot of room to improve. Till

Fig. 5 a Schematic illustration shows the depth profile positions that were used for the FDTD simulation of enhanced optical absorption in the
QD solar cell with deposition of gold nanostars. b The EQE enhancement ratio after depositing gold nanostars. The inset shows the EQE enhancement
ratio in the long-wavelength range. Reprinted from Ref. [82], Copyright 2015, with permission from the Elsevier
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now, the absorption from the QDs is still much inferior to
the bulk absorption. Undoubtedly, novel designs and fur-
ther improved growth of QDSCs need to be in place to
achieve efficiency exceeding that of single junction solar
cells. Nonetheless, the progress made so far discussed here,
including growth of high-density QDSCs, modification of
carrier dynamics, and light trapping, provides helpful guide-
lines for further development of high-efficiency QDSCs.
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