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Abstract

Recent developments in high-throughput genotyping technologies have revealed
the existence of several new classes of RNA that do not encode proteins but serve
other cellular roles. To date, these non-coding RNAs (ncRNAs) have been shown to
modulate both gene expression and genome remodeling, thus contributing to the
control of both normal and disease-related cellular processes. The attraction of this
research topic can be seen in the increasing number of submissions on ncRNAs to
molecular biology journals, including Cellular Molecular Biology Letters (CMBL). As
researchers attempt to deepen the understanding of the role of ncRNAs in cell
biology, it is worth discussing the broader importance of this research.
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The correlation between genotype and phenotype has become the Holy Grail of bio-

medical research in recent decades. High-throughput genotyping technologies such as

deep sequencing have dramatically enhanced our understanding of the function and

complex organization of the eukaryotic genome. They have also revealed the existence

of several new classes of RNA that do not encode proteins, instead serving other cellu-

lar roles: the non-coding RNAs (ncRNAs) [1–4].

To date, ncRNAs have been assigned a variety of functions, including regulation of

gene expression, both transcriptional (eRNAs) and post-transcriptional (microRNAs;

miRNAs); modulation of RNA processing (ribozymes); translation (miRNAs); and pro-

tection from foreign nucleic acids (piRNA) [1–6]. Furthermore, ncRNAs can guide

DNA synthesis or genome rearrangement. Looking at these functions from a high

level, we can state that these ncRNAs modulate both gene expression and genome re-

modeling [1]. Although some classes of ncRNA simply utilize their RNA structure to

serve their biological function (ribozymes and riboswitches), the majority require spe-

cific associations with proteins (snRNPs, snoRNPs, microRNAs, piRNA and long

ncRNAs) to fulfill their biological activity [1, 6, 7].

The significant growth in number of reports on ncRNAs began in the early 2000s,

when miRNAs, a class of short ncRNAs (22–25 nt), were accepted as

post-transcriptional regulators of eukaryotic gene expression. The level of interest in

these nucleic acids has certainly not abated. Recently, the editors of Cellular Molecular

Biology Letters (CMBL) have witnessed a sharp increase in the number of submissions

aiming to deepen the understanding of the role of ncRNAs in cell biology. In the light

of this increased attention, we would like to briefly discuss that role here.

Cellular & Molecular
Biology Letters

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Bartoszewski and Sikorski Cellular & Molecular Biology Letters  (2018) 23:45 
https://doi.org/10.1186/s11658-018-0111-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s11658-018-0111-3&domain=pdf
mailto:rafalbar@gumed.edu.pl
mailto:rafalbar@gumed.edu.pl
mailto:aleksander.sikorski@uwr.edu.pl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Without doubt, miRNAs constitute the most extensively studied class of ncRNAs.

Discovered in the laboratory of Dr. Victor Ambros and Dr. Gary Ruvkun in 1993, the

original studied organism was Caenorhabditis elegans [8–10]. MiRNAs are now known

to be present in most eukaryotes, including humans [11–13]. It is estimated that they

account for 1–5% of the human genome (from < 1 to 50,000 molecules per cell [14])

and regulate at least 30% of the protein-coding genes [15–17].

In mammalian cells, miRNAs recognize specific target mRNA sequences (with sites

most frequently localized within the 3’-UTR) and initiate translational repression

followed by decay of the mRNA [18–21]. However, since miRNAs rarely repress their

target genes by more than 30%, recent reports suggest that their function is rather to

modulate gene expression then to serve as strong post-transcriptional repressors [22].

Nevertheless, some miRNAs cause large-scale switch-like effects under stress or disease

conditions [23–26]. Notably, mammalian miRNAs are also active in the nucleus, where

they are proposed to mediate chromatin silencing at specific loci by base pairing to

nascent transcripts [27–29].

Since mammalian miRNAs are not perfectly complementary to their target mRNA

sequences, specific miRNAs can modulate transcriptional networks comprising numer-

ous interdependent targets such as like transcription factors [30]. This means that a

single miRNA generally modulates multiple mRNAs and that most mRNAs are modu-

lated by multiple miRNAs [31, 32]. This makes it extremely challenging to decipher the

precise molecular mechanisms underlying the biological function of any given miRNA.

Nevertheless, it is now evident that miRNAs play a crucial role in the regulation of

gene expression, controlling diverse cellular and metabolic pathways [33–35]. Import-

antly, miRNAs contribute to the control of developmental differentiation [30, 36–41]

and disease processes [42–50]. Compelling reports studies have demonstrated that the

expression profiles of certain miRNAs, the so-called oncomiRs, are deregulated in hu-

man cancer, and that these ncRNAs have either oncogenic or tumor suppressor func-

tions [51–57]. OncomiRs have been reported to affect cancer cell proliferation and

signaling, prevent cell death, stimulate invasion and metastasis, and promote angiogen-

esis [52, 58–66]. Obviously, understanding the mechanism governing oncomiR cellular

function could provide a basis for novel anticancer strategies.

Although oncology is a major source of reports on miRNAs, they are also recognized

as important mediators of cellular responses to various stress stimuli, including the

hypoxia that accompanies not only cancer but also cardiovascular disorders. This cellu-

lar insult modulates miRNA expression to restore oxygen homeostasis and survive hyp-

oxic stress [67–70]. Recent reports have provided compelling evidence that miRNAs

modulate hypoxic transcriptional networks, related angiogenesis and endothelial func-

tion [39, 53, 71–79]. Furthermore, many hypoxamiRs recently described in normal

endothelium were previously reported as oncomiRs, suggesting that understanding

hypoxia-related changes in miRNA profiles could be beneficial for both cardiovascular

and cancer research [68, 69, 80–89].

Despite miRNAs being the most often examined class of ncRNAs, the biological role

of long non-coding RNA (lncRNAs; > 200 nt) has become recently a popular but often

controversial topic [90, 91]. To date, lncRNA have been implicated in a range of devel-

opmental processes, cellular stress responses and human diseases, including cancer

[92–94]. They have been proposed to carry out a large number of biological functions
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and to modulate gene expression transcriptionally and post-transcriptionally through a

variety of mechanisms that include: dueling polymerase activity [95–98], antisense

RNA base pairing [99, 100], inhibiting histone acetyltransferase activity and repressing

transcription [101, 102], recruiting transcriptional regulators [103–106], and chromatin

remodeling [102]. Despite the ongoing increase in the number of reports describing

lncRNA functions, our knowledge of the mechanisms by which they act remains lim-

ited. Novel and dedicated experimental methods to explore their mechanisms of action

are needed [107].

There is no doubt that understanding the role and function of ncRNAs is crucial for

the further development of cell biology and that it also may contribute novel thera-

peutic strategies for human pathologies [108]. However, achieving this challenging goal

requires further experimental research. Unfortunately, a plethora of often contradictory

reports of ncRNA roles exists, especially in the context of human diseases, with the

majority utilizing computational and predictive methods, lacking any experimental veri-

fication and ignoring the necessity of the mechanistic approach.

Our goals with CMBL remain to reflect new and evolving advances in cellular and

molecular biology, and to establish a record of accepting only reports of high-quality,

innovative and state-of-the-art studies. Thus, we recommend that submitting authors

consider two main criteria for reporting on ncRNA function: (i) functional experimen-

tal validation of the ncRNA related to its direct target or affected process; and (ii)

mechanistic testing of the mechanism by which the ncRNA contributes to a disease or

modulates cellular processes.

Notably, the means of engagement between miRNAs and their target mRNAs re-

mains not fully understood. Even a single nucleotide change in either the miRNA or

mRNA target sequence may have functional consequences [109–112]. That means that

even sites strongly predicted as targets require functional validation.

Furthermore, while miRNA expression profiles often undergo dynamic changes due

to epigenetic factors [113], the commonly used methods to confirm differential miR-

NA:mRNA binding, such as in vitro luciferase reporter assays and miRNA overexpres-

sion [114], often ignore the physiological miRNA levels in vivo. Importantly, changes in

a particular gene’s mRNA level are not always definitively reflected in the protein levels

[115]. Studies of ncRNA-affected targets should always be accompanied by monitoring

of the protein levels.

Finally, ncRNAs can directly and simultaneously modulate multiple targets – and as

with transcription factors, that means their signal can transfer onto a vast number of in-

direct effectors. A single miRNA is usually predicted to modulate hundreds of mRNAs

and thus may have multiple effects on cellular metabolism. Therefore, predictions of the

cellular function of ncRNAs require verification if the ncRNA effects are direct.

Recently, guidelines were proposed for the functional annotation of miRNAs using the

Gene Ontology classification [116]. Similar recommendations will hopefully soon be avail-

able for other ncRNA classes. The nomenclature for ncRNAs has not kept up with devel-

opments in the field, which often contributes to disparities in ncRNA functional

assignments. Moreover, the nomenclature requires redefining to provide clear discrimin-

ation between putative and bona fide ncRNAs and to include: isomiRNAs (variants of ma-

ture miRNAs), and organellar miRNA (like mitochondria specific mitomiRNAs) [117].

Although these limitations can be challenging to address experimentally, they should be
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carefully considered when proposing a biological function for ncRNAs or connecting

them with a disease phenotype.

We trust that CMBL will further provide a environment to integrate novel, high-quality

findings regarding the role of ncRNA in cell biology and human disease. We are inviting

researchers to submit manuscripts on these topics fulfilling the above-mentioned criteria

in the belief that our journal provides a professional forum to exchange knowledge and

experience concerning ncRNA function in controlling cellular processes.
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