

PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Small-molecule microarrays

ArticleInfo			
ArticleID	\Box	4554	
ArticleDOI	\Box	10.1186/gb-spotlight-20020814-01	
ArticleCitationID	\Box	spotlight-20020814-01	
ArticleSequenceNumber	\Box	220	
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	\Box	2	
ArticleHistory	:	RegistrationDate : 2002–8–14 OnlineDate : 2002–8–14	
ArticleCopyright	\vdots	BioMed Central Ltd2002	
ArticleGrants	\Box		
ArticleContext	\Box	130593311	

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Microarray technologies have been developed to measure differences in mRNA or protein expression levels, but few approaches have addressed the issue of functional enzymatic activity on a genome-wide scale. In the Early Edition of the Proceedings of the National Academy of Sciences, Winssinger *et al.* describe an innovative microarray application that exploits small molecules to monitor protein function (Proc Natl Acad Sci USA 2002, 10.1073/pnas.172286899). They used libraries of small molecules, each tethered to a peptide nucleic acid (PNA)tag, that can be detected by hybridization to an oligonucleotide microarray. They predict that this technology could be used to screen 400,000 enzyme activity probes in a 300 μl volume. To demonstrate proof-of-principle, they monitored caspase activity upon experimentally induced apoptosis and showed that the small molecule inhibitor they identified could prevent cell death.

References

- 1. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 2. Profiling protein function with small molecule microarrays., [http://www.pnas.org/cgi/content/abstract/172286899v1]
- 3. Peptide nucleic acids and their potential applications in biotechnology.

This PDF file was created after publication.