PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Recognizing Mom's scent

ArticleInfo		
ArticleID	:	3767
ArticleDOI	:	10.1186/gb-spotlight-20000915-02
ArticleCitationID	:	spotlight-20000915-02
ArticleSequenceNumber	:	204
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-09-15OnlineDate: 2000-09-15
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

Proteins of the major histocompatibility complex (MHC) are involved in cell-cell recognition: they bind and present antigens in the immune system. But, at least in mice, they are also involved in odorbased recognition between individuals. Mice tend to mate with MHC-dissimilar mice (to maintain MHC diversity) and nest with MHC-similar mice. In the September 12 Proceedings of the National Academy of Sciences Yamazaki *et al.* report that mothers recognize and preferentially retrieve MHC-similar pups, and that pups placed in a maze head for bedding soaked in the urine from an MHC-similar adult mouse (*Proc Natl Acad Sci USA* 2000, **97**:10500-10502). The latter effect is partially, but not completely reversed by foster parenting, suggesting that some part of the response may be learned prenatally or by self-referral.

References

- 1. Population biology of antigen presentation by MHC class I molecules.
- 2. Mating patterns in seminatural populations of mice influenced by MHC genotype.
- 3. Communal nesting patterns in mice implicate MHC genes in kin recognition.
- 4. Proceedings of the National Academy of Sciences, [http://www.pnas.org/]